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Abstract

Fair transmission cost allocation, among network users, is very important in restructured power system. On the other hand, transmission
pricing is  the basis issues for transmission cost allocation.  In  this  paper,  a  fair  method for  specifying transmission tariffs  especially  for
wheeling  contracts  during  peak  and  off-peak  periods  is  proposed.  Calculating  congestion  cost,  when  the  wheeling  contract  leads  to
transmission congestion, is the main objective of our proposed method. In this method, the congestion cost is allocated to all users whose
transactions contribute in congestion. The cost is allocated according to their contribution in network congestion. The method utilizes power
transfer distribution factors. Then, Fairness of the method is analyzed. The proposed method has been implemented on 9-bus IEEE test
system. Simulation results  confirm the advantages of the method. The results also show that by using the method, the cost related to
congestion will completely be recovered.
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ABSTRACT 

 Fair transmission cost allocation, among network users, 
is very important in restructured power system. On the other 
hand, transmission pricing is the basis issues for transmission 
cost allocation.  

 In this paper, a fair method for specifying transmission 
tariffs especially for wheeling contracts during peak and off-
peak periods is proposed. Calculating congestion cost, when 
the wheeling contract leads to transmission congestion, is the 
main objective of our proposed method. In this method, the 
congestion cost is allocated to all users whose transactions 
contribute in congestion. The cost is allocated according to 
their contribution in network congestion. The method utilizes 
power transfer distribution factors. Then, Fairness of the 
method is analyzed. The proposed method has been 
implemented on 9-bus IEEE test system. Simulation results 
confirm the advantages of the method. The results also show 
that by using the method, the cost related to congestion will 
completely be recovered. 

 
 
KEY WORDS 
 Congestion Cost, Transmission Tariff, Wheeling Contract.   

1. INTRODUCTION 
ower systems in many countries of the world have 
experienced restructuring during the past decade. The aim 

has been to increase the efficiency in power generation and 
to offer better services to electric power consumers [1]. After 
restructuring of power systems, transmission lines have been 
subjected to more attention. In restructured power systems, 
bilateral contracts have received more attention. In this 
environment, determination of contract tariff has become 
more important than before. 

In the new environment, attention should be paid to: 1) 
how to create necessary incentive for investment in 
transmission and 2) how to recover the investments on 
transmission fields.  

Wheeling has been defined as “the usage of a utility’s 
transmission facilities to transmit power for other buyers and 
sellers” [11]. Therefore, a wheeling contract refers to the 
right for a buyer and a seller to use a utility’s transmission 
network for energy transfer. At least three parties are 
involved in a wheeling transaction: a buyer, a seller and one  

 
or more utilities that transmit the power from the seller to the 
buyer. The third party is paid for the use of its network [6]. 
The wheeler may not necessarily be the owner of 
transmission network, but it mainly refers to the operator of 
the network. Until now, several methods have been proposed 
for wheeling cost. Wheeling cost models mainly have been 
based on two principles: the amount of transmission capacity 
used for the transaction and the cost for transmission 
capacity. 

A wheeling transaction is defined as an injection into one 
or more nodes of the network and simultaneous retrieval 
from one or more nodes of the network. It can be separated 
into three groups, specified as follows [3]:  

1-  Point to point wheeling transaction: both injection 
and retrieval are located in the same network. In the case of 
injection, this is an independent power producer (IPP). 

2- Interconnected system-point: in this case, the 
retrieval of electrical energy is released in distribution 
network and injection is located outside of this network. 

3- Point-inter connected system: in this case, the 
retrieval of electrical energy is located outside of network 
and injection is located inside of network. 

Wheeling contracts have several impacts on wheeler 
network such as increasing losses, transmission congestion 
and deviation from optimal power generation [10]-[13]. 
Normally, a wheeler tries to keep the power generation in its 
optimal pattern. 

For any wheeling contract, the forced losses due to the 
contract must be recovered by sellers and buyers. 

In this paper, the transmission cost is divided into two 
parts: capacity cost and congestion cost. For a fair 
transmission cost allocation, the method utilizes power 
transfer distribution factors. Firstly, transmission capacity 
cost is calculated using distribution factors and MW-MILE 
method [15]. Then with implementation of wheeling contract 
to the network, congestion costs related to wheeling 
contracts are allocated to the contract parties, fairly. 
This paper is organized as following: in section 2, the 
existing different methods for transmission cost allocation 
are briefly explained. In section 3, the distribution factors 
method is described. In section 4, our proposed method for 
specifying fair hourly tariff of wheeling contracts has been
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described. In section 5, the proposed method has been 
implemented on a 9-bus IEEE test system. Using simulation 
results in section 5, the validity of the method is evaluated. 
Finally, in section 6, the fairness of the method from the 
viewpoint of network’s owner and users will be studied. 

2. OVERVIEW OF TRANSMISSION PRICING 
METHODS 
From network owner’s point of view, transmission pricing 
should recover the total costs for transmission services. On 
the other hand, network users would like pricing schemes for 
usage of system be reasonable. Different methods for 
transmission pricing have been proposed. Based on proposed 
methods, so far, the wheeling prices mainly mainly utilize 
one of two basic methods: 

1- Marginal cost methods [2] 
2- Embedded cost methods [15] 
A complete wheeling charge method has to fulfill the 

following items [7], [8]: 

1- Conciseness and transparency 
2- Recovery of invested cost 
3- Efficient operation of electric network 
4- Fairness and acceptability for wheeling service users 

Marginal cost methods do not necessarily satisfy the first 
and the second items mention above.  Therefore, embedded 
cost methods are more acceptable. On the other hand, the 
embedded cost methods have remarkable features. 
Embedded cost methods are advantageous, because they not 
only allocate total costs among transmission network users 
according to their usage of system, but also, these methods 
can recover the investment cost [8]. In embedded cost 
methods, network owner cannot obtain excess profit by 
market power. However, as in these methods, the total cost 
for transmission usage is recovered; it is more acceptable for 
network users [5]. On the other hand, the embedded cost 
method may be disadvantageous, because this method, in its 
general form, does not identify high or low usage of 
network. The main deficiency for both of above mentioned 
methods is that they do not consider the costs for congestion 
and losses. 

Embedded cost methods include post stamp, contract path 
and MW-mile methods. In the first two methods load flow 
calculation is not performed. On the other hand, the MW-
Mile method is based on load flow calculation. In MW-mile 
method, transmission embedded cost is allocated among 
transactions in proportion to the ratio of flow magnitude 
contributed by each particular transaction. To consider 
reactive power transactions together with active power in 
transmission facilities, MW-mile method may be expanded 
as MVA-mile method. In this way, both active and reactive 
power changes are considered [5], [14]. In [7], wheeling 
charges are calculated based on identification of transactions 
paths. Utilizing this method, some of disadvantages of 
conventional MW-mile method may be resolved.  

In this paper, a fair method for specifying transmission 
tariffs especially for wheeling contracts during peak and off-
peak periods is proposed. In this method, the congestion cost 
is allocated to all users whose transactions contribute in 
congestion. 

 

3. DISTRIBUTION FACTOR METHOD 
Distribution factors are calculated using linear load flow. 

Then, using these factors, the effect of each generator and 
load on transmission flow can be evaluated with respect to 
these factors [9]. 

3.1 Generalized Generation Distribution Factors (GGDF 
or D Factors)  
These factors specify the amount of change in real power of 
a transmission line caused by variation in generation of a 
certain generator. They may be negative or positive. D 
factors are defined as below: 
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Fl-k: total transmission flow between buses l and k 
F0

l-k: transmission flow between buses l and k obtained in 
previous iteration 

 Dl-k,r: D factor related to line connecting buses l and k 
caused by generation variation in reference bus 

Gi: total generation in bus i  
Al-k,i: Generation Shift Distribution Factors(GSDF or A 

factors) related to line connecting buses l and k caused by 
generation changes in bus i.  

GGDF factors determine the total usage of transmission 
network related to injections in the network. 

 

3.2 Generalized Load Distribution Factors (GLDF or C 
Factors) 

These factors determine the contribution of each load in 
transmission line flow. C factors are defined as below [9]: 
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Fl-k: total transmission flow between buses l and k 



 

F0
l-k: transmission flow between buses l and k obtained in 

previous iteration 
Cl-k,j: C factor related to the line between buses l and k 

caused by demand in bus j  
Cl-k,r: GLDF related to the line between buses l and k 

caused by demand in bus r  
Lj: total demand in bus j  
Notice that GLDF factors are calculated with DC load 

flow. 

4. PROPOSED METHOD FORMULATION 
In this paper, the transmission cost is divided into two 

parts: capacity cost and congestion cost. The congestion cost 
is allocated to all users whose transactions contribute in 
congestion. Distribution factors are used to allocate this cost 
to different buses.  Capacity cost is calculated using 
distribution factors and utilizing the MW-mile method. Then, 
applying wheeling contracts to the network, the congestion 
cost related to the contract is allocated fairly to contract 
parties. 

 

4.1 Calculation of Capacity Cost  
In this paper, transmission capacity cost is calculated 

using the method in [9]: 
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TCt: the allocated cost to contract 
TC: total transmission cost 
Lk: length of line k (mile) 
Ck: cost per MW due to line unit length 
T: set of contracts 
K: set of transmission lines 

According to the above formulation, each user of the 
network should pay for transmission cost corresponding to 
its contribution to flows of transmission lines which can be 
calculated using distribution factor method. 

 

4.2 Congestion Cost Calculation 
Applying wheeling contracts, due to system congestion 

and losses, the wheeler network deviate from its optimal 
generation pattern. So wheeler should receive additional 
costs imposed by contract parties. To do this, OPF1 is 
executed for the network until injections and deviations of 
generations from the optimal pattern are calculated. This cost 
will be added to transmission cost. Therefore, if congestion 
occurs in any line, the congestion cost must be allocated only 
to contract parties. After calculating the contribution of each 
user in congested lines, according to distribution factors, the 
congestion cost will be calculated and added to transmission 
tariff. The wheeling tariff, then, can be written as below:  

                                                           
1 Optimal Power Flow 
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TP: wheeling tariff for the contract 
TC: transmission capacity cost 
CC: congestion cost 
P:  the amount of transmitted power 
 
According to the above formulation, we can evaluate 

wheeling tariff for the contract fairly considering congestion 
cost. It should be noted that, if the congestion occurs in the 
network, the transmission cost will be different for peak and 
off peak hours.  
The flowchart for the proposed method is illustrated in figure 
1. The proposed method is implemented on 9-bus test system 
shown figure 2. 

5. CASE STUDY AND DISCUSSION OF THE 
RESULTS 

To investigate the proposed method, it has been applied to 
the 9-bus test system shown in figure 2 [4]. The network data 
are given in the appendix. It is also assumed that there is a 
wheeling transaction between buses 6 and 8. In this contract, 
the seller and the buyer are located in buses 8 and 6, 
respectively. 

 

 Figure 1. Flowchart of the proposed method 
 



 

 
Figure 2. The 9 bus test system 

 

5.1 Calculation of Transmission Cost during Peak Period 
 
Assume a contract for exchanging power between 

contract parties at buses 6 and 8 with the amount of 60 MW 
are available, considering network topology, distribution 
factors C and D for these buses can be calculated as Table 
(1). 

Table 1 
Distribution factor due to wheeling transaction 

Line Cij,6 Dij,8 
1-2 0.364595 -0.06408 
1-4 0.029261 0.063964 
1-6 0.59453 0.007066 
2-3 -0.00768 0.205655 
2-4 0.170499 0.005038 
2-7 -0.00318 0.397659 
3-4 0.280049 -0.10669 
3-9 0.000999 0.609874 
4-5 0.442296 -0.01657 
5-6 -0.43124 0.011689 
7-8 0.002026 -0.39153 
8-9 -0.00168 -0.60149 

 
Considering values in table 1 and D factors for the three 

generators, the contribution of injection buses in the network 
from the transmitted power will be as those shown in table 
(2). 

 
Table 2 

Transmission usage allocation applying distribution factor  
Line Line cost PijG8 PijG1 PijG2 PijG3 
1-2 200 -3.84 -34.93 100.38 34.42 
1-4 840 3.84 37.20 12.27 -10.27 
1-6 1000 0.42 21.57 37.64 16.61 
2-3 760 12.34 12.34 88.56 -69.94 
2-4 300 0.30 -2.19 51.53 12.19 
2-7 400 23.86 11.00 42.54 -3.08 
3-4 320 -6.40 -10.49 34.17 57.63 
3-9 120 36.59 6.58 5.92 29.91 
4-5 600 -0.99 9.09 47.21 30.21 
5-6 80 0.70 -8.15 -1.13 3.42 
7-8 280 -23.49 4.27 -0.24 26.06 
8-9 380 -36.09 8.63 35.88 -6.51 
total  5280 - - - - 

 
Now, using equation (5), considering values in table (2), 

the capacity cost due to the contract are calculated as below: 
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Therefore, the transmission capacity cost that should be 
paid by contract parties can be calculated as mentioned 
above. 

In the test system, if the wheeling contract is not 
considered, the generation cost will be equal to 5638.13 $/h. 
On the other hand, considering the wheeling transaction for 
the network, the line 1-4 becomes congested. This is mainly 
because of the fact that the transfer capacity is only 60 MW. 
After generation re-dispatch in the network, the generation 
cost deviate from the optimum value and increases to 
5923.47 $/h. 

Considering the section 4.2, the excess cost related to 
congestion problem must be compensated by transaction 
parties. Table I shows that the distribution factor for both 
buyer and seller. As it can be observed, they are equal to 
0.029261 and 0.063964 respectively. This means that the 
seller and buyer should pay 68.7% and 31.3% of congestion 
cost, respectively. Therefore, the transmission cost due to the 
capacity and congestion cost is equal to: 
TTC = TC + CC          (8)                              
        = 534.76 + 285.34 =820.1 $/hr 

In (8), TTC is the total transmission cost. According to 
(6), wheeling tariff for mentioned transaction is equal to: 

)9   (820.1 $13.66
60

TC CCTP
P MWh
+

= = = 

Wheeler receives the tariff calculated in (9) from 
transaction parties. It should be noted that this cost must be 
compensated by transaction parties according to their 
contribution in transmission capacity and the congestion they 
cause. Transmission capacity cost for both seller and the 
buyer is paid equally. However, the congestion cost will be 
allocated between both contributors according to their 
portion in congestion (table 3).  

Table 3 
Wheeling tariff 

Wheeling Tariff for contract parties ($/MWh) 
tariff  buyer  seller  

capacity  4.456  4.456  
congestion  1.488  3.267  

total  5.944  7.723  
 

5.2 Calculation of Transmission Cost during Off Peak 
Period 

The network data for off peak period is given in table 
(10). In this case, line 1-4 is loaded less than 60 MW and 
therefore, it will not be congested. Data for line flow and D 
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that the proposed method can compensate the imposed cost 
to the wheeler network fairly. 

 

7. CONCLUSION 
Proper transmission pricing can promote the efficient 

operation of power system and encourage investment in 
production and transmission. The marginal cost method may 
not cover all of the investment and operation costs. 
Therefore, the embedded cost methods are more acceptable. 

In this paper, the transmission pricing method is 
evaluated. Then, the wheeling tariff has been modified to 
allocate the congestion cost to all users who contribute in 
congestion according to their contribution to the congestion. 
Also, the wheeling tariffs during peak and off peak periods 
are compared.  
 

8. APPENDIX 
Table 8 

Test system data 
Y(p.u)  X(p.u)  R(p.u) Start and End Bus  Line No.  
0.041  0.0168  0.042  1-2 1  
0.031  0.121  0.031  1-4 2  
0.051  0.21  0.053  1-6 3  
0.031  0.126  0.031  2-3 4  
0.082  0.336  0.084  2-4 5  
0.051  0.21  0.053  2-7 6  
0.051  0.21  0.053  3-4 7  
0.051  0.126 0.053  3-9 8  
0.031  0.126 0.03  4-5 9  
0.031  0.126 0.031  5-6 10  
0.031  0.126 0.03  7-8 11  
0.015  0.0513  0.015  8-9 12  

 
Table 9 

Wheeler generators data 
V 

(p.u)  
Pgmax 

(MW)  
Qgmin 

(MVar)  
Qgmax 

(MVar)  

C(Pg)=A.Pg
2+B.Pg+C ($/hr) 

Generator 
C  B  A  

1.06  1000  -800  800  561  7.92  0.00156  1  
1.045  400  -90  100  310  7.85  0.00194  2  
1.01  400  -90  100  78  7.97  0.00482  3  

 
Table 10 

Wheeler buses load 
Bus 9  Bus 7  Bus 5  Bus 4  Bus 3  Bus 2  Bus 1  load  Condition  

70  70  120  120  80  80  80  Active(MW) Peak  20  20  50 50 30 30 30  Reactive(MW) 
40 40 50  50 50 50 50  Active(MW) Off peak  20 20 20 20 20 20 20  Reactive(MW) 
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