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Abstract. In this paper we introduce a new approach to solve constrained nonlinear non-

smooth programming problems with any desirable accuracy even when the objective function is

a non-smooth one. In this approach for any given desirable accuracy, all the nonlinear functions

of original problem (in objective function and in constraints) are approximated by a piecewise

linear functions. We then represent an efficient algorithm to find the global solution of the later

problem. The obtained solution has desirable accuracy and the error is completely controllable.

One of the main advantages of our approach is that the approach can be extended to problems

with non-smooth structure by introducing a novel definition of Global Weak Differentiation in

the sense of L1 norm. Finally some numerical examples are given to show the efficiency of

the proposed approach to solve approximately constraints nonlinear non-smooth programming

problems.

Mathematical subject classification: 90C30, 49M37, 49M25.

Key words: nonlinear programming problem, non-smooth analysis, equicontinuity, uniform
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1 Introduction

Frequently practitioners need to solve global optimization problem in many fields

such as engineering design, molecular biology, neural network training and so-

cial science. So that the global optimization becomes a popular computational
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task for researchers and practitioners. There are some interesting recent papers

for solving nonlinear programming problems [3], non-smooth global optimiza-

tion [6, 10], solving a class of non-differentiable programming based on neural

network method [11] and controllability for time-varying systems [4].

One of the efficient approaches for solving nonlinear programming problems

is to linearize the nonlinear functions when the domain of the function is parti-

tioned to very small sub-domains. However many realistic problems cannot be

adequately linearized. So throughout its domain efforts to approximate nonlinear

problems efficiently is the focused of the new researcher. Two other aspects that

should be considered are non-convexity and non-smooth dynamics due to our

ability to obtain the global solution of nonlinear, non-convex and non-smooth

problems(when they exist) is still limited. So an efficient approach which is

applicable in the presence of non-convex and non-smooth functions should be

investigated (see [1, 2, 5]).

In this paper we introduce a new approach to solve approximately nonlinear

non-smooth programming problems which don’t have any limitation upon con-

vexity and smoothness of the nonlinear functions. In this approach any given

nonlinear function is approximated by a piecewise linear function with controlled

error. In this manner, the difference between global solution of the approximated

problem and the main problem is less than or equal a desirable upper bound which

is shown by ε > 0. Also we represent an efficient algorithm to find global solu-

tion of approximated problem. One of the main advantages of our approach is

that it can be extended to problems with non-smooth functions by introducing

a novel definition of Global Weak Differentiation in the sense of L1-norm. The

paper is organized as follow:

In section two we explain our approach for one dimensional nonlinear program-

ming problem. In the third section we deal with the extension of our approach for

n dimensional nonlinear programming problems. In section four the approach

was extended for non-smooth nonlinear programming problems by introducing

the definition of global weak differentiation. In the fifth sections some illustrative

examples are given to show the effectiveness of the proposed approach. Some

suggestions and Conclusions are included in Section 6.
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2 Proposed approach for one dimensional problem

Consider the following non-constrained nonlinear minimization problem:

Minimize f (x) (1)

subject to x ∈ [a, b]

where f : [a, b] −→ R; is a nonlinear smooth function. We may approximate

the nonlinear function f (x) by a piecewise linear function defined on [a, b].

Let us mention the following definitions.

Definition 2.1. Let Pn([a, b]) be a partition of the interval [a, b] as the form:

Pn([a, b]) =
{
a = x0, x1, ∙ ∙ ∙ , xn = b

}

where h = b−a
n and xi = x0 + ih. The norm of partition defined by:

‖Pn([a, b])‖ = max
1≤i≤n

{
xi − xi−1

}
. (2)

It is easy to show that ‖Pn([a, b])‖ → 0 as n → ∞.

Definition 2.2. The function fi (x, si ) is defined as follows:

fi (x, si ) , f ′(si )x + f (si ) − si f ′(si ); x ∈ [xi−1, xi ] i = 1, ∙ ∙ ∙ , n (3)

where si ∈ (xi−1, xi ) is an arbitrary point. The function fi (x, si ) is called

the linear parametric approximation of f (x) on [xi−1, xi ] at the point si ∈

(xi−1, xi ). (In usual linear expansion the point si is fixed, but here we assume

si is a free point in [xi−1, xi ]).

Now, we define gn(x) as the parametric linear approximation of f (x) on

[a, b], associated with the partition Pn as follows:

gn(x) =
n∑

i=1

[
fi (x, si )χ[xi−1,xi ](x)

]
(4)

where χA is the characteristic function and defined as below:

χA(x) =

{
1 x ∈ A

0 x 6∈ A.
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The following theorems are shown that gn(x) is convergence uniformly to the

original nonlinear function f (x) when ‖Pn([a, b])‖ → 0. In the other word we

show that

gn → f uniformly on [a, b] as ‖Pn([a, b])‖ → 0

Lemma 2.3. Let Pn([a, b]) be an arbitrary regular partition of [a, b]. If f (x) is

continuous function on [a, b] and x, s ∈ [xi−1, xi ] are an arbitrary points then

lim
‖Pn([a,b])‖→0

fi (x, si ) = f (xi ).

Proof. The proof is an immediate consequence of the definition.

This lemma shown that gn → f point-wise on [a, b].

Definition 2.4. A family F of complex functions f defined on a set A in a metric

space X , is said to be equicontinuous on A if for every ε > 0 there exists δ > 0

such that | f (x) − f (y)| < ε whenever d(x, y) < δ, x ∈ A, y ∈ A, f ∈ F .

Here d(x, y) denotes the metric of A (see [7]).

Since {gn(x)} is a sequence of linear functions it is trivial that this sequence

is equicontinuous.

Theorem 2.1. Let { fn} is an equicontinuous sequence of function on a com-

pact set A and { fn} converges point-wise on A. Then { fn} converges uniformly

on A.

Proof. Since { fn} is a sequence of equicontinuous function on A then:

∀ ε > 0 ∃ δ > 0 s.t

d(x, y) < δ → | fn(x) − fn(y)| < ε x, y ∈ A ; n = 1, 2, ∙ ∙ ∙ .

For each x ∈ A there exists δ > 0 such that A ⊆
⋃

x∈A N (x, δ). Since A is a

compact, this open covering of A has a finite sub-covering. Thus, there exists a fi-

nite number of points such as x1, x2, . . . , xr in A such that A ⊆
⋃r

i=1 N (xi , δ).

Therefore for each x ∈ A there exists xi ∈ A i = 1, 2, . . . , r; such that

d(x, xi ) < δ.
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We know fn is point-wise convergent sequence then there exists a natural

number N such that for each n ≥ N , m ≥ N we have:

| fn(x) − fm(x)| = | fm(x) − fm(xi ) + fm(xi ) − fn(xi ) + fn(xi ) − fn(x)|

≤ | fm(x) − fm(xi )| + | fm(xi ) − fn(xi )| + | fn(xi ) − fn(x)|

≤ 3ε.

Then according to the Theorem 7.8 in [7] the sequence { fn} is uniformly con-

tinuous on A and the proof is completed.

Theorem 2.2. Let gn(x) is a piecewise linear approximation of f (x) on [a, b]

as (4). Then:

gn → f uniformly on [a, b].

Proof. The proof is an immediate consequence of Lemma 2.3 and Theorem 2.1.

Now, we introduce a novel definition of global error for approximated f (x)

with linear parametric function gn(x) in the sense of L1-norm which is a suit-

able criterion to show the goodness of fitting.

Definition 2.5. Let f (x) be a nonlinear smooth function defined on [a, b] and

let gn(x) defined in (4) be a parametric linear approximation of f (x). Let the

global error for approximation of the function f (x) with function gn(x) in the

sense of L1-norm is defined as follows:

En =
∫ b

a
| f (x) − gn(x)|dx =

n∑

i=1

∫ xi

xi−1

| f (x) − fi (x)|dx . (5)

It is easy to show that En tends to zero uniformly when ‖Pn([a, b])‖ → 0.

This definition is used to make the fine partition which is matched with a

desirable accuracy. These partitions can be obtained according to the following

iterative algorithm.

Step 1. Let select an acceptable upper bound for desirable global error of ap-

proximation which called Uε and set n = 1.

Step 2. n is substituted by 2n and then determine En as in (5).
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Step 3. If En > Uε go to 2 and else end the process.

The value of n which is achieved in the above algorithm indicates the number

of points in the suitable partition which is matched with the desirable accuracy.

Let f (x) in the problem (1) is replaced with its piecewise linear approximation

gn(x). So, we will have the following minimization problem:

Minimize gn(x) (6)

subject to x ∈ [a, b].

Where its solution is an approximation for the solution of the problem (1) we

want this approximated solution have a given desirable accuracy. For this mean

the partition should be chosen enough fine. But we don’t know how fine the

partition should be chosen? In the next section this question will be answered.

2.1 Error analysis for one dimensional problem

Assume that global optimum solution of (6) and (1) are happened at x = α

and x = β respectively. It means that:

gn(α) ≤ gn(x) ∀ x ∈ [a, b] and f (β) ≤ f (x) ∀ x ∈ [a, b].

Now it is desirable to find an appropriate partition such that for any given

ε > 0 the following inequality is hold:

|gn(α) − f (β)| < ε. (7)

The following theorems are proved to show the achievement to the above goal.

Theorem 2.3. Consider nonlinear real function f (x) and it’s piecewise linear

approximation gn(x) defined in (4). Then, for each x ∈ [a, b] and ε > 0 such

that ε � b − a, we have:

gn(x) −
En

ε
≤ f (x) ≤

En

ε
+ gn(x),

where En is a global error of fitting defined in (5).

Comp. Appl. Math., Vol. 30, N. 2, 2011
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Proof. We know that [a, b] = [a, b)
⋃

{b}. Thus the above inequality is

proved separately for [a, b) and {b} as follows:

Let [a, b) is considered then for each x ∈ [a, b) there exist ε1 > 0 such that

[x, x + ε1] ⊆ [a, b]. Therefore we have:
∫ x+ε1

x
| f (x) − gn(x)|dx ≤

∫ b

a
| f (x) − gn(x)|dx .

According to (5) the right hand side of the above inequality is En . Additionally,

if ε1 is chosen such that ε1 � b − a the left hand side of the above inequality is

calculated approximately using the rectangular role. Therefore we have:

| f (x) − gn(x)| × ε1 ≤ En

| f (x) − gn(x)| ≤
En

ε1
.

Let {b} is considered then for x = b there exist ε2 > 0 such that [x − ε2, x] ⊆

[a, b]. Therefore we have:
∫ x

x−ε2

| f (x) − gn(x)|dx ≤
∫ b

a
| f (x) − gn(x)|dx .

If ε2 be chosen such that ε2 � b − a the left hand side of the above inequality

is calculated approximately in the same manner which yield:

| f (x) − gn(x)| × ε2 ≤ En

| f (x) − gn(x)| ≤
En

ε2
.

Let ε ≤ {ε1, ε2}. According to the above discussion for any x ∈ [a, b)
⋃

{b} =

[a, b] there exists ε > 0 such that:

| f (x) − gn(x)| ≤
En

ε

or

gn(x) −
En

ε
≤ f (x) ≤

En

ε
+ gn(x).

Thus the proof is completed.

Theorem 2.4. Let f (x) is a nonlinear function if for each ε > 0 we have

En ≤ ε2 then (7) is satisfied.
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Proof. Let ε � b − a according to the Theorem 2.3 we have:

gn(x) −
En

ε
≤ f (x) ≤

En

ε
+ gn(x) ∀x ∈ [a, b].

First, consider the right inequality i.e.:

f (x) ≤
En

ε
+ gn(x) ∀x ∈ [a, b].

According to the definition of f (β) we have:

f (β) ≤
En

ε
+ gn(x) ∀x ∈ [a, b].

Let x = α, so we have:

f (β) ≤
En

ε
+ gn(α) ∀x ∈ [a, b]

or

f (β) − gn(α) ≤
En

ε
∀x ∈ [a, b].

Now consider the left inequality i.e:

gn(x) −
En

ε
≤ f (x) ∀x ∈ [a, b]

or

gn(x) ≤ f (x) +
En

ε
∀x ∈ [a, b].

According to the definition of gn(α) we have:

gn(α) ≤ f (x) +
En

ε
∀x ∈ [a, b].

Setting x = β,we have:

gn(α) ≤ f (β) +
En

ε
∀x ∈ [a, b]

or

gn(α) − f (β) ≤
En

ε
∀x ∈ [a, b].

Let n is chosen such that En ≤ ε2. Then the above inequality is transformed to

the following ones:

|gn(α) − f (β)| < ε

and the proof is complete.
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2.2 Described algorithm for one dimensional problem

According to the previous section in the first step of our algorithm for finding

the optimum solution of nonlinear constrained programming problem with a

desirable accuracy ε we must find an appropriate partition of [a, b]. Then the

function f (x) must be approximated by the parametric linear function gn(x).

At the next step the global optimum solution of the problem (6) must be calcu-

lated which is an accurate approximation for the global optimum solution of the

problem (1). Here an efficient algorithm to solve the problem (6) is represented.

In each sub-interval of the form [xi−1, xi ] we have the following optimization

problem:

Minimize1≤i≤n fi (x) (8)

subject to x ∈ [xi−1, xi ]

where fi (x) is a parametric linear approximation of f (x) which is defined

in (3). Since fi (x) has an affine form such as ai x + bi (ai = f ′(si ) and

bi = f (si ) − si f ′(si )) based on the sign of ai the global minimum of fi (x) is

happened at extreme points of its validity domain or equivalently on {xi−1, xi }.

Thus the optimization problem (8) is transferred to the following ones:

Minimize1≤i≤n fi (x) (9)

subject to x ∈ {xi−1, xi }.

Here we define αi i = 1, ∙ ∙ ∙ , n as the global solution of problem (9). So αi

can be formulated as follows:

αi =

{
fi (xi−1) αi > 0

fi (xi ) αi < 0.

Therefore the optimization problem (6) is converted to the following ones:

Minimize1≤i≤n αi .

3 Extension of the proposed approach for n dimensional problems

Consider the following nonlinear minimization problem:

Minimize f (x) (10)

subject to x ∈ A

Comp. Appl. Math., Vol. 30, N. 2, 2011
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where A =
∏n

i=1[ai , bi ] ⊆ Rn and f (.) : A → R is nonlinear smooth function.

Here we introduce a piecewise linear parametric approximation for f (x) which

is the extension of Definition 2.2.

Definition 3.1. Consider the nonlinear smooth function f (.) : A → R where

A =
∏n

i=1[ai , bi ]. Also consider Pn([ai , bi ]) as a regular partition of [ai , bi ],

i = 1, . . . , n as follows:

Pn([ai , bi ]) = {ai = x0
i , . . . , xki

i , . . . , xni
i = bi }

where ki = 0, 1, . . . , ni and i = 1, . . . , n.

Therefore A is partitioned to N cells where N = n1 × ∙ ∙ ∙ × nn . Let us show

the k th cell by Ek , k = 1, . . . , N . Let sk = (s1
k , . . . , sn

k ) be an arbitrary point

of Ek . Now fk(x) is defined as a linear parametric approximation of f (x) for

x ∈ Ek as follows:

fk(x) = ∇ f (x)|x=sk .(x − sk) + f (sk) (11)

where x ∈ Ek , k = 1, . . . , N .

Now gN (x) is defined as a piecewise linear approximation of f (x) as follows:

gN (x) =
N∑

k=1

[ fk(x) × χEk (x)].

we have lim‖Pn‖→0 gN (x) = f (x) or equivalently lim N→∞ gN (x) = f (x).

Now a definition of global error of approximation nonlinear function f (x)

and it’s piecewise linear approximation gn(x) in the sense of L1-norm is intro-

duced which is the extension of Definition 2.5.

Definition 3.2. Consider the nonlinear smooth function f (x) and it’s piece-

wise linear approximation gN (x). We define a global error of approximation in

the sense of L1-norm to be EN as follows:

EN =
∫

A
| f (x) − gN (x)|dx =

N∑

k=1

∫

Ek

| f (x) − fk(x)|dx . (12)
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Remark 3.3. The iterative algorithm which is presented in Section 2 can be

used to find the appropriate number of partitions. According to that manner this

number increases until the approximation is achieved with a desirable accuracy.

Therefore the following minimization problem must be solved:

Minimize gN (x)

subject to x ∈
n∏

i=1

[ai , bi ].

The solution of this optimization problem is an approximated solution of the

original problem (10). Since we want to achieve to a given desirable accuracy

the partition should also be chosen enough fine. Therefore the method which

has been explained in Section 2.1 is extended.

3.1 Error analysis for n dimensional problems

Assume that the global minimum of gN (x) and f (x) on A =
∏n

i=1[ai , bi ] are

happened at x = α and x = β respectively. So the approximated partition must

be found such that:

|gn(α) − f (β)| < ε

where ε is a given desirable error.

Since the above inequality must be satisfied thus the manner which has been

represented in Section 2.1 should be repeated in n dimensions. Then, we find N

such that we have EN ≤ εn+1. (En is defined in (12)).

3.2 Description of the algorithm for n dimensional problems

According to the above manner which is explained in the previous sections the

following independent linear optimization problem are defined:

Minimize fk(x) (13)

subject to x = (x1, ∙ ∙ ∙ , xn) ∈ Ek ; k = 1, ∙ ∙ ∙ , N .

Where fk(x) is a linear parametric approximation of f (x) on Ek which is de-

fined in (11). Since fk(x) has an affine form similar to

ak .x + bk(ak = ∇ f (x)|x=sk and bk = f (sk) − ∇ f (x)|x=sk .sk)
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based on the sign of ak the global minimum of fk(x) is happened at 2n extreme

points of its validity domain Ek .

Therefore the optimization problem (13) is transferred to the following ones:

Minimize fk(x) (14)

subject to x ∈
{
2n distinct extreme point of Ek

}
; k = 1, ∙ ∙ ∙ , N .

Here we define αk , k = 1, . . . , N as the global solution of problem (14). Thus

the optimization problem (13) is converted to the following simpler ones:

Minimize1≤k≤N αk .

4 Extension to nonlinear non-smooth problems

In general it is reasonable to assume that the objective function is a non-smooth

ones. Therefore we define a kind of generalized differentiation for non-smooth

functions in the sense of L1-norm. This kind of differentiation is coincideing

with usual differentiation for smooth functions. Therefore the following the-

orem is represented.

Theorem 4.1. Consider the nonlinear smooth function f : A → R where

A =
∏n

i=1[ai , bi ]. Then the optimal solution of the following optimization

problem is f ′(x).

Minimizep(.)

∫ b1

a1

∙ ∙ ∙
∫ bn

an

| f (x) − ( f (s) + p(s).(x − s))|dx1 ∙ ∙ ∙ dxn (15)

where s = (s1, s2, ∙ ∙ ∙ , sn) ∈ A is an arbitrary point and p(.) = (p1(.), . . . ,

pn(.)) is a vector.

Proof. See [9].

Now based on Theorem 4.1 the following definition can be stated for non-

smooth functions.

Definition 4.1. Let f : A → R is a non-smooth function where A =
∏n

i=1[ai , bi ]. The global weak differentiation with respect to x in the sense

of L1-norm is defined as the p(.) the optimal solution of the minimization

problem which is shown in (15).
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5 Examples

In the current section we apply the performance of our method on some examples.

Example 5.1. Consider the following nonlinear minimization problem:

Minimize f (x) = x sin
1

x
subject to x ∈ [0.1, 1].

Which is desirable to be solved with accuracy more than ε = 10−3.

Based on our proposed approach we approximate f (x) with a piecewise linear

function with global error less than (10−3)2. An appropriate number of parti-

tions which is matched with desirable accuracy is obtained as n = 128. Figure 1

shows f (x) and its accurate enough piecewise linear approximation.

Figure 1 – Nonlinear function f (x) = x sin 1
x and it’s piecewise linear approximation.

Table 5.1 compares approximated solution and exact solution of this example.

Comparison results show the effectiveness of the proposed approach to solve this

problem with desirable accuracy.
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Nonlinear Global Exact Approximated

function error solution solution

f (x) = x sin 1
x 5.6527 × 10−8 –0.2172336 –0.2174230

Table 5.1 – Numerical results of example 5.1.

Example 5.2. Consider the following minimization problem (see Schuldt [8]):

Minimize f (x, y) = y + 10−5(y − x)2

subject to − 1 ≤ x ≤ 1

0 ≤ y ≤ 1.

Here it is desirable to solve above problem with accuracy more than

ε = 10−3. Thus we approximate f (x, y) with a piecewise linear function with

global error less than (10−3)3. Table 5.2 compares the solution which is obtained

by our proposed approach and exact solution of this problem. It can be shown

that proposed approach is effective to solve the problem with desirable accuracy.

Nonlinear Global Exact Approximated

function error solution solution

f (x, y) = y + 10−5(y − x)2 2.6615 × 10−11 0 −5.625 × 10−6

Table 5.2 – Numerical results of example 5.2.

Example 5.3. In this example we consider a nonlinear non-smooth function as

follows:

Minimize f (x) = |x |e−|x |

subject to x ∈ [−1, 1].

It is desirable to solve with accuracy more than ε = 10−5

Since objective function is non-smooth function we find the global weak dif-

ferentiation of f (x) = |x |e−|x |; x ∈ [−1, 1] which is the optimal solution of

the following optimization problem:

Minimizep(.)

∫ 1

−1
||x |e−|x | − |s|e−|s| − p(s).(x − s)|dx
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The optimal solution is shown in Figure 2.

Figure 2 – Global Weak Differentiation of nonlinear non-smooth function f (x) =

|x |e−|x |.

Now we find a piecewise linear approximation for non-smooth function

f (x) = |x |e−|x | on [−1, 1] with the global error less than (10−5)2. Therefore

number of partitions should be chosen as n ≥ 512. Figure 3 shows f (x)and its

accurate enough piecewise linear approximation with n = 512.

Table 5.3 compares approximated and exact solution of last example. Com-

parison results show the effectiveness of the proposed approach in the presence

of non-smooth functions.

Nonlinear Global Exact Approximated

function error solution solution

f (x) = |x |e−|x | 1.7697 × 10−12 0 3.8073 × 10−6

Table 5.3 – Numerical results of example 5.3.
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Figure 3 – Nonlinear function f (x) = |x |e−|x | and it’s piecewise linear approximation.

6 Conclusion

In this paper we introduce a new approach to solve approximately wide class

of constrained nonlinear programming problems. The main advantage of this

approach is that we obtained an approximation for the optimum solution of the

problem with any desirable accuracy. Also the approach can be extended for

problems with non-smooth dynamics by introducing a novel definition of global

weak differentiation in the sense of L1 and L p norms. In this paper we assume

f be a non-smooth function, so it may have a finite or infinite points where

the gradient of f does not exist. It is very interesting that we may not know

these point (where are located) and also the set of points where the functions

are non-smooth may be an infinite set.
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