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a b s t r a c t

Predicting air pollution is an important prerequisite for estimating, monitoring and mapping unknown
pollution values. We can use fuzzy spatial prediction techniques to determine pollution concentration
areas in practical situations where our observations are imprecise and vague. Fuzzy membership kriging
with a semi-statistical membership function is an example of this type of technique. The implementation
of fuzzy membership kriging extracts semi-statistical membership functions from data, and applies these
functions to an indicator kriging model. Such functions, which can be linear or nonlinear, transform fuzzy
data into membership degrees and grades.

Evolutionary genetic algorithms (GAs) can improve prediction efficiency and make it easier to choose
an optimum membership function for air pollution applications. In this paper, we used a GA to determine
the threshold parameters for a fuzzy membership kriging function based on preprocessed data from Teh-
ran, Iran. We measured particulate matter with a mass median aerodynamic diameter of less than 10 lm
(PM10) concentrations at 52 sample stations in Tehran to identify areas that are dangerous for human
health. After we predicted the PM10 data, our results showed that GAs reduce the estimated error
(3.74) compared to linear functions (8.94 and 12.29). This study indicates that using a GA for optimizing
membership functions can get higher estimated accuracy than fuzzy membership kriging for modeling
uncertainty in the prediction process of PM10 data.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Air quality agencies in various countries have tried to improve
air quality management policy by mapping, estimating and moni-
toring air pollution based on particulate matter (PM) levels (Beau-
lant et al., 2008). This is because a major factor in public health
relates to air quality and depends on the concentrations of partic-
ulate matter, which has been supported by comparing PM concen-
trations with life expectancy (Pope et al., 2002). The concentration
of particulate matter with a mass median aerodynamic diameter of
less than 10 lm (PM10), an indicator for life expectancy, consists of
small liquid and solid particles that can easily be inhaled deeply.
Based on previous scientific studies, the current standard for the
annual allowable average of PM10 is not to exceed 50 lg/m3

(Guo, Guo, & Thiart, 2007).
For people with emphysema, asthma and chronic bronchitis,

high concentrations of PM10 can cause breathing difficulties. In
addition, for older people with heart problems and respiratory dis-
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eases, increasing PM10 levels can cause premature death. There-
fore, PM10 is commonly considered one of the major factors
contributing to problems caused by air pollution (Bealey et al.,
2007); thus, it appears that obtaining measurements of air pollu-
tants based on PM10 observations in urbanized regions is essential.

There are some difficulties in accurately using PM10 levels in
sample points collected from monitoring stations as an indicator
of problems associated with air pollution. For example, when
studying the effects of the distribution of PM10 on lung diseases,
the use of collected sample data is inadequate to represent the spa-
tial variability of PM10 data within an urban area. Interpolation
techniques such as kriging (Krige, 1951) can consider spatial sim-
ilarities through an interpolation process at unknown locations
and thereby overcome this difficulty for health scientists who are
studying the spatial variability of air pollution. Moreover, informa-
tion measured at monitoring stations in the real world is
incomplete and imprecise. Thus, it is essential to consider this
uncertainty when modeling air pollution. Uncertain geostatistical
simulation techniques such as fuzzy membership kriging may pro-
vide useful data in this respect. Fuzzy membership kriging includes
data of restricted quality in the interpolation procedure and
calculates kriged values and estimation variances as fuzzy
numbers by their membership functions. Membership functions
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transform fuzzy data into spatially distributed membership de-
grees and grades and create an uncertainty measure, which de-
pends both on homogeneity and configuration of the data. Then,
the membership function can be extracted from the data. Some
authors have proposed semi-statistical membership functions: lin-
ear, quadratic or tangent hyperbolic kriging (Guo et al., 2007). A
weakness of these methods is that their use depends on case stud-
ies and applications. Optimizing fuzzy membership functions with
genetic algorithms (GAs) can present a robust way to search effi-
ciently in the large solution spaces of available membership func-
tions in different case studies.

Therefore, the aim of this paper is to optimize the parameters of
fuzzy linear membership functions using a GA and evaluating this
method for modeling uncertainty in the prediction process of
PM10 data. In this way, we predicted and estimated air pollution
with a combination of GAs and fuzzy linear membership kriging.
Then, we used 52 preprocessed observations of PM10 concentra-
tions in Tehran, analyzed them based on membership functions
and estimated the errors for them.

The structure of this paper is as follows. In Section 2, we present
several studies based on kriging methods, fuzzy concepts and the
advantages of using GAs for prediction. In Section 3, the basic con-
cepts of required kriging algorithms such as indicator, fuzzy mem-
bership and GA are defined. In Section 4, we present a case study to
demonstrate spatial properties, the reasons for their importance
and various characteristics of the data used. Then, in Section 5,
we use the case study to evaluate and demonstrate the results of
applying the different kriging methods discussed in Section 3. In
this section, we analyze the different results obtained when an
algorithm is implemented. In Section 6, we discuss and compare
the final results to acquire/show conclusions. Finally, the conclu-
sion section outlines the final results and some possibilities for fur-
ther work.
2. Related work

Kriging is a well-known spatial estimation technique developed
by Krige (1951). This method gives an unbiased estimation of un-
known locations by minimizing the estimation variance (Stein, Ri-
ley, & Halberg, 2001). In other words, kriging is a geostatistical
technique to estimate the values of random fields at unobserved
points from the observation of values at known locations. Indicator
kriging, a variation on kriging, is usually used to approximate the
conditional cumulative distribution function at each point of a grid,
based on the correlation structure of indicator-transformed data
points (Journel, 1983).

Several studies have applied indicator kriging to various do-
mains of application (e.g., Guo et al., 2007; Isaaks & Srivastava,
1989; Ying, 2000). Based on these studies, we think it is clear that
combining fuzzy mathematics with kriging (fuzzy kriging) under
vague and imprecise conditions can make indicator kriging more
efficient. Fuzzy kriging is derived from Zadeh’s (1965, 1987) fuzzy
theory. The main goal of fuzzy theory is to simplify mathematical
models of uncertain situations or indeterminate processes by map-
ping a two-value crisp function {0, 1} onto an infinite fuzzy func-
tion [0, 1].

Some authors have applied this idea to fuzzy kriging (Diamond,
1989; Lee, 2000; Omre, 1987). Guo (2003) generalized Journel’s
(1983) threshold indicator coding, indicator variogram and indica-
tor kriging methods to the fuzzy membership grade, fuzzy mem-
bership grade variogram and fuzzy membership grade kriging
methods. Guo simplified these treatments by predicting air pollu-
tion based on three semi-statistical membership functions for fuz-
zy membership grade kriging. In this study, optimal membership
functions must be extracted from the data.
GAs make it easier to find the optimal thresholds of member-
ship functions in the complex fuzzy data modeling, improve the
accuracy of fuzzy algorithms used in the prediction processes
and facilitate fuzzy spatial programming, which is difficult to
implement in geographic information system (GIS). Chang, Lo,
and Yu (2005) estimated precipitation with GAs and fuzzy inverse
distance weighting (IDW). His results confirm that his method is
flexible and usually much better than traditional methods. Thus,
the main goals of the present paper are to suggest ways to increase
the precision of fuzzy membership kriging with GAs and thereby to
improve the prediction of PM10-based air pollution in Tehran.

3. Methods

3.1. Indicator kriging

Kriging is an interpolation technique that estimates unknown
values from known sample values and semivariograms. The key
tool of this method is the variogram, which relates half of the aver-
age squared difference between paired data values to the distance
between them. Indicator kriging is a nonlinear indicator coding kri-
ging technique that uses the distribution of grades at different
thresholds (Journel, 1983). This method can overcome the limita-
tions (normality and independence of estimation variance) of con-
ventional kriging analysis by transforming data into a set of binary
variables (Goovaerts, 1997). In fact, indicator kriging transforms
data values into crisp indicators as follows:

vðUðxi; yiÞÞ ¼
1 Uðxi; yiÞ > T

0 Otherwise

�
ð1Þ

where T is the cut-off (threshold) value and U(xi, yi) is a sampled va-
lue at the ith spatial location (xi, yi). This nonlinear equation can im-
prove predictions substantially. The indicators are analyzed to
determine spatial directional variability with a series of experimen-
tal variograms as follows:

cðd; TÞ ¼ 1
2Nd

Xn

i¼1

½vðUððxi; yiÞ þ dÞÞ � vðUðxi; yiÞÞ�
2 ð2Þ

where d is the distance between two spatial positions {(xi, yi), (x-
i, yi)+d}, T is the predefined cut-off value, Nd is the number of pairs
separated by lag distance d and U(xi, yi) is an observed sample da-
tum at (xi, yi). Inspection of Eq. (2) allows us to select the orientation
of greatest and least spatial distribution. Therefore, the indicator
values are ordinarily kriged using the variograms to determine
the probability of exceeding the cut-off values by replacing Eq. (2)
in Eq. (3) and estimating the coefficient Wi.

Xn

i¼1

Wi ¼ 1

cððxl; ylÞ � ðxi; yiÞ; TÞ ¼
Xn

j¼1

Wjcððxi; yiÞ � ðxj; yjÞ; TÞ þ e i ¼ 1:::n

vðUðxl; ylÞÞ ¼
Xn

i¼1

WivðUðxi; yiÞÞ

ð3Þ
where (xl, yl) is an unknown location, Wi is the desired coefficient
value and e is a LaGrange multiplier to ensure that v(xl, yl) is unbi-
ased. Thus, the estimated indicator values are a linear function of Wi

at known positions. In Eq. (3), Wi is an unknown weight for a mea-
sured value at ith location. This parameter depends on the semivari-
ogram, the distance to the prediction location and the spatial
relationships among the measured values around the prediction
location. The constraint

P
Wi = 1 assures us that the predictor is

unbiased for unknown measurement. Using this constraint, the dif-



Fig. 2. PM10 sample membership function.
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ference between the true value and predicated value will be as
small as possible. The next two equations work together to measure
an empirical semivariogram, fit a model to it, calculate Wis and pre-
dict unknown values.

3.2. Fuzzy membership kriging

Phrased in terms of fuzzy logic, kriging is the grade of member-
ship (between 0 and 1) of the probability of exceeding a certain
threshold. Converting the distribution of crisp threshold values
into fuzzy thresholds gives us a powerful tool for modeling uncer-
tainty in the prediction process. In our application, hazardous ef-
fects on the human body can begin at a very low level, e.g.,
30 lg/m3, and rise to a very severe level, e.g., 50 lg/m3 and above
(Guo et al., 2007). Fuzzy sets can represent this imprecision and
observational vagueness of PM10 data. In fuzzy set theory, the
membership function lZ(x, y) can determine the degree to which
the value (x, y) belongs to the fuzzy set Z on the universe set U.

lZðx; yÞ : U ! ½0;1� ð4Þ

The membership degrees and grades can be defined in different
ways (e.g., triangular, trapezoidal or Gaussian), based on experi-
ence and application characteristics. For example, the trapezoidal
membership functions of four parameters [l1, l2, r1, r2] can model
uncertainty on interval observations, as in Fig. 1 and Eq. (5).

lðxÞ ¼

x�l1
l2�l1

l1 6 x < l2

1 l2 6 x < r1
r2�x
r2�r1

r1 6 x < r2

0 Otherwise

8>>>><
>>>>:

ð5Þ

The triangular membership function is a special case of the
trapezoidal function when l2 = r1.

In membership kriging, a typical linear triangular membership
function can be defined by:

lT¼fT1 ;T2 ;T3gðUðxi; yiÞÞ ¼

0 Uðxi; yiÞ < T1
Uðxi ;yiÞ�T1

T2�T1
T1 6 Uðxi; yiÞ < T2

�Uðxi ;yiÞþT3
T3�T2

T2 6 Uðxi; yiÞ < T3

0 T3 6 Uðxi; yiÞ

8>>>><
>>>>:

ð6Þ

where lZ(U(xi, yi)) is the membership degree of U(xi, yi), and
T = {T1, T2, T3} is the set of predefined threshold values. Higher val-
ues of PM10 cause a higher rate of disease in a given location. Thus,
the membership function is defined by Eq. (7) (Fig. 2).

lT¼fT1 ;T2 ;T3gðUðxi; yiÞÞ ¼
0 0 6 Uðxi; yiÞ < T1
Uðxi ;yiÞ�T1

T2�T1
T1 6 Uðxi; yiÞ < T2

1 T2 6 Uðxi; yiÞ

8><
>: ð7Þ
Fig. 1. A trapezoidal fuzzy membership function.
With respect to the above, Eqs. (2) and (3) can be made fuzzy as
with Eqs. (8) and (9).

cðd; TÞ ¼ 1
2Nd

Xn

j¼1

½lTðUðxi; yiÞ þ dÞ � lTðUðxi; yiÞÞ�
2 ð8Þ

Xn

i¼1

Wi ¼ 1 ð9Þ

cððxl; ylÞ � ðxi; yiÞ; TÞ ¼
Xn

j¼1

Wjcððxi; yiÞ � ðxj; yjÞ; TÞ þ e i ¼ 1; . . . ;n

PðlT ; CÞ ¼
Xn

i¼1

WilTðUðxi; yiÞÞ

where T = {T1, T2, T3} is the threshold set and P(lT, C) is a fuzzy set
that determines fuzzy membership values for each unknown
ðxl; ylÞ crisp location. Eqs. (7)–(9) show that the definition of the fuz-
zy membership function can directly affect the prediction process of
fuzzy membership kriging. Therefore, adjusting the thresholds of
membership functions in an evolutionary procedure to find opti-
mum grading is an essential requirement for validating predictions.

3.3. Genetic algorithms

GAs are a family of computational techniques inspired by evo-
lutionary theory. These algorithms can encode a solution to a spe-
cific problem such as a chromosome and apply some selection and
recombination operators (such as crossover and mutation) to pre-
serve critical information. This algorithm is often used to optimize
functions in various geocomputational applications (Chang et al.,
2005).

To implement a GA, you need to begin with a population of ran-
dom chromosomes. In each generation, the ‘‘goodness” of a solu-
tion is typically defined with respect to the current population.
Selection and recombination operators can generate new sample
points within a search space. The ‘‘search space” refers to some col-
lection of candidate solutions with a notion of distance between
them. Recombination operators can generate progressively better
offspring within the search space; crossover and mutation are
the most common such operators (Tung, Hsu, Liu, & Li, 2003).
The objective function is a mathematical formula that assigns a
score of fitness to each chromosome in the current population.
The fitness of a chromosome depends on how well that chromo-
some solves the problem at hand.

In our study, we used a GA to adjust the fuzzy membership
function of fuzzy linear membership kriging. For this purpose,
the important questions were how to encode each solution, how
to evaluate the solutions and how to create new solutions from
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existing ones (Lee & Pan, 2004). Thresholds are the main compo-
nent of the membership function that was encoded in our applica-
tion. Thus, the desired chromosome comprised T1, T2, and T3 genes.
In this case, the encoding restriction was defined by Eq. (10). This
restriction preserved the meaning of fuzzy sets.

C ¼ fT1; T2; T3g T1 6 T2 6 T3 ð10Þ

The initial population comprised original and randomized C
parts. The GA initialized the population by encoding schemata
and restrictions and then setting the current population to be the
initial population (Fig. 3). The objective function evaluated a chro-
mosome in the current population. If the chromosome did not sat-
isfy the objective function, then the algorithm applied the elitism
mechanism to it and selected a new population using the selection
mechanism.

Then, the algorithm applied the single-point crossover opera-
tion to the chromosomes to form the offspring with a probability
between 0.6 and 1. After that, the mutation operator altered each
offspring individually with a probability of less than 0.1. Finally,
the new population was converted to the current population and
evaluated by the objective function. The probability of crossover
and mutation depended on the objective function, which was de-
fined based on the mean square error (MSE) as follows:

MSE ¼ 1
N

XN

I¼1

ðUTðxk; ykÞ � Ud
Tðxk; ykÞÞ

2 ð11Þ

where N denotes the number of training sample data, UT(xk, yk) rep-
resents the result of fuzzy genetic linear membership kriging on
training datum (xk, yk) and Ud

Tðxk; ykÞ denotes the desired output at
training datum (xk, yk).

4. Study area

Our study area, the city of Tehran, which is located in northern
Iran (between 35.56–35.83N and 51.20–51.61E), is a polluted Mid-
dle Eastern city. Tehran is bordered by the Alborz mountain range
to the north, and it lacks perennial winds. Thus, smoke and other
particulate materials cannot escape from the city. Atmospheric
pollution in Tehran is primarily due to motor vehicles and heavily
polluting industries. Therefore, this area is affected by anthropo-
genic emissions, and a thick layer of particulate matter is usually
found in the atmosphere. Atmospheric pollution, one cause of
which is PM10, can affect people’s health in many forms. Concen-
Fig. 3. GA flowchart.
tration of PM10 causes deep-lung diseases and directly affects
quality of life, so it is important for residents and municipal man-
agers to know which areas of Tehran are safe and which are unsafe.

PM10 concentration data have been reported by several air pol-
lution monitoring sample stations in Tehran, and were recorded at
52 locations as positive crisp values (Fig. 4). The measurements of
particulate matter were made in urban and suburban sites in the
greater region of Tehran. Both kinds of sites were affected by local
emissions, and measurements were performed based on surrogate
mass collection and simultaneous sampling. In our study, the aver-
age of 1-year trajectories of emissions was computed for the year
2007. Thus, the methods mentioned above can be evaluated based
on data recorded at the monitoring stations. To evaluate the per-
formance of each model, the mean square error (MSE) was adopted
in the implementation phase.

5. Implementing results

This section presents the implementation results of applying
the proposed geostatistical methods. For this purpose, a graphical
user interface was developed to assist the GIS analysts in evaluat-
ing PM10 concentrations using indicator kriging, fuzzy member-
ship kriging and fuzzy genetic membership kriging functions. The
interface performs advanced algorithms written in VB.NET and
Arcobjects programming languages, and allows users to access dif-
ferent spatial layers.

PM10 sample data, which are stored in ASCII format, were en-
tered into a designed spatial database. A spatial data engine
(SDE) allowed the user interface to connect and formulate queries
in the spatial database. Therefore, users were able to evaluate all
analyzed information, see the required reports and summarize
the data in various output forms.

To predict the surface map of PM10 concentrations, the 2007
annual records, which were reported as real positive crisp values
at each location, were connected to the interface using an SDE.
Then, the ordinary, indicator, fuzzy and genetic kriging algorithms
were applied and evaluated on these data. Here we evaluate the
usability of 2007 annual records for predicting PM10 concentra-
tions and determining high hazard levels of PM10 in Tehran. These
data were preprocessed and corrected based on the accuracy of the
measurement tool used before entering them in the prediction pro-
cess. It is important to know that only 42 sample points were in-
volved in the prediction process, and the others were considered
for residual checking using the MSE function we mentioned previ-
ously (Eq. (11)).

5.1. Applying ordinary kriging

This prediction method is a classical kriging estimator, which
can be applied directly to the spatial observations for modeling lin-
ear treatments by linear predictors. Using this method with large
smoothing parameters can help to even out some potential errors
in the original information. Ordinary kriging is a stochastic interpo-
lation technique that considers two sources of information regard-
ing the attribute: the variation and the distance between points
(Alsamamra, Ruiz-Arias, Pozo-Vazquez, & Tovar-Pescador, 2009).
This paper focuses on the simple ordinary kriging method for com-
parison with the proposed models. In this method, we assume
{U(x, y) = l(x, y) + e(x, y), (x, y) e D}, where ‘‘(x, y)” is a spatial loca-
tion, l(x, y) is the simulation output mean over the experimental
data and e(x, y) is the additive noise with zero mean that repre-
sents the variation around the mean. Then, we can say that the ex-
pected difference (E) for two sample points (x, y) and (x, y) + d is
zero. Accordingly, at an unsampled location (x0, y0), ordinary kri-
ging can estimate data values by expressing U(x0, y0) as a linear
combination of U(xi, yi) as follows:



Fig. 4. PM10 data collected in Tehran.

Fig. 5. The semivariogram obtained based on PM10 data.
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Uðx0; y0Þ ¼
Xn

i¼1

WiUðxi; yiÞ þ eðx0; y0Þ
Xn

i¼1

Wi ¼ 1 ð12Þ

where U(x0, y0) is the random variable to predict at location (x0, y0)
and e(x0, y0) is the noise at position (x0, y0) such that E[e(x0, y0)] = 0.
In Eq. (12), kriging minimizes the mean square prediction error of
sample variations to select weights Wi. For this purpose, the varia-
tion between points is measured using semivariograms (Eq. (2)).
Fig. 5 demonstrates the semivariogram obtained based on PM10
data for ordinary kriging. In this figure, c is the semivariogram value
plotted on the dependent axis, and h is the separation distance be-
tween a pair of points. Ordinary kriging makes use of the best-fit
line in the semivariogram (the yellow line in Fig. 51) to predict attri-
bute values at locations where the attribute has not been measured.
The equation for this line is the empirical relationship between sep-
aration distance and attribute difference. A spherical model (Bur-
rough & McDonnell, 1998) has been used to fit the sample
semivariogram in our study.

According to Martin-cob (1996) and Cressie (1993), the
assumption needed to perform the spatial prediction and fitting
of the theoretical model to the experimental semivariogram is
based on how the nugget, range and sill affect the predictor. The
nugget effect as an estimate of noise was approximately 0.45, the
range value or the distance where the model first flattens out
was determined to be 0.34 KM and the sill value or the value at
which the semivariogram model attains the range was set 3.28
for the spatial variability of PM10 data. Here, the nugget effect
1 For interpretation of color in Figs. 4–9,11, the reader is referred to the web version
of this article.
was attributed to measurement errors or spatial sources of varia-
tion at distances smaller than the sampling interval.

Based on the ordinary kriging prediction map in Fig. 6, we can
analyze the high hazard levels of PM10 in Tehran. In Fig. 6, the last
two classes, which are higher than the threshold value for health
concerns (about 50), are considered hazard areas. Actually, the
darkest areas in the map, which shows the center of Tehran and
some areas to the east, indicate the highest PM10 concentrations
and are considered to be hazardous to public health. The popula-
tion density is high in these areas; thus, quantities of polluting
sources have increased dramatically. The lightest parts of the pre-
diction map (i.e., the north, the west and the northwest areas of
Tehran), probably due to their higher altitude, are protected from
contamination, and thus are the safest areas. The blue text boxes



Fig. 6. Map of PM10 concentrations estimated by traditional ordinary kriging.

Table 1
MSEs obtained by applying classic ordinary kriging.

ID Observed data Predicted data

3 52.78460 57.41290
4 35.69730 30.73152
5 17.75438 22.85381

10 30.94040 33.90613
12 47.92727 48.66592
14 56.51600 54.31720
24 27.23726 30.41053
25 33.45690 35.59161
33 40.17762 44.81093
50 14.79440 15.56910

MSE = 12.295455
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present the predicted values of ordinary kriging in the control
points examined. Ten control points, scattered all over the city,
are sorted in Table 1 for MSE calculation and residual checking.
These points were selected based on various parameters such as
the following:

� Uniform distribution of control points, which is a function of the
sample size and the configuration of the sampling location of the
observed data.

� Different criteria that are used based on expert knowledge, such
as wind direction, water condensation, weather variation,
humidity and the position of local anthropogenic pollution
sources, influence the accuracy of the 10 control points. For
example, in the selected locations, dust particles can be depos-
ited on the measuring device and impact the quality of observa-
tions, or wind directions can strongly influence the transport of
particulate matters at required points.
The MSE (12.295455) shows less accuracy when applying or-
dinary kriging for predicting PM10 concentrations in Tehran. This
may be a result of vagueness, imprecision of information and insuf-
ficient hypothesis-testing issues for modeling nonlinear treat-
ments. It is necessary to point out that modeling vagueness and
imprecision in this prediction technique is difficult to implement
in spatial environments because of complex mathematical
operations.
5.2. Applying fuzzy membership kriging

Applying kriging to indicator data opened a different way to
perform spatial predictions. Indicators characterize the spatial var-
iability of categorical variables (Goovaerts, 1997). To use indicator
kriging in the prediction process, the information collected from
the samples is converted to binary data, with the value 1 assigned
to safe areas and the value 0 assigned to unsafe areas. Fig. 7 shows
the result of applying indicator kriging (with threshold value of
50 lg/m3) on PM10 data for predicting air pollution in Tehran.
The blue boxes show the predicted values of indicator kriging at
the control points.

Fig. 7 demonstrates significant clustering around the mean,
with a smoothing of the results. This indicator map indicates that,
in general, the areas where the prediction levels are above the
threshold are smaller than those in the result obtained from ordin-
ary kriging. Thus, the distinction of the hazardous regions in Fig. 7
is more evident. In this map, the uncertain zones are associated
with the values within the interval of the threshold value around
the mean. Therefore, there is not enough confidence in the data
to determine whether a location is polluted. However, indicator
kriging lacks practical application to the threshold ranges in the
prediction process. For example, the hazardous impact of PM10



Fig. 7. Map of PM10 concentrations estimated by crisp indicator kriging.
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on the human body can start at a very low level, for example, 30,
and evolve to a very severe level, 50 and above (Guo et al.,
2007). For this uncertain and indeterminate threshold value indi-
cator, kriging transformation is not an effective method because
of its crisp properties. Fuzzy membership kriging, which is used
in this paper, is a direct extension of indicator kriging, which can
extend the {0, 1} of a Cantor set into membership function on
[0, 1]. To apply the algorithm of fuzzy membership kriging, it is
essential to define a fuzzy membership function. It is easy to find
the linear behavior of this membership function in the studied
phenomenon that the higher PM10 content in the air, the higher
the degree of membership in the fuzzy set of hazardous impact
of PM10 on the human body. Then, based on the work of Guo
et al. (2007), threshold values for the linear membership function
can be defined as follows:

T ¼ 0;9;90:3lTðUðxi; yiÞÞ ¼
0 0 6 Uðxi; yiÞ < 9
Uðxi ;yiÞ�9

81:3 9 6 Uðxi; yiÞ < 90:3
1 90:3 6 Uðxi; yiÞ

8><
>: ð13Þ

Eq. (13) fuzzifies the observed PM10 values for the fuzzy predic-
tion process. In this function, the PM10 membership value at
U(xi, yi) = 0 is designated as 0, and at U(xi, yi) = 90.3 is designated
as 1. The membership function, introduced using expert knowl-
edge, has the large middle bin because of inaccurate resources in
the sample data. Raw PM10 data, monitored in 2007, were dis-
turbed by water condensation, weather variation and high abso-
lute humidity. Analyzing the time series based on the total
number of trajectories reveals the large variation of PM10 values
during different series. The features of each station were quite dis-
tinct; the average PM10 concentrations over the period studied
exhibited a seasonal variation. Therefore, a broad middle bin is
considered for defining linear membership function in Eq. (13).
Fig. 8 indicates the result of applying fuzzy linear membership kri-
ging based on Eq. (13). The class divisions show different levels of
safety regarding PM10 concentration. In the orthogonal axes of
Fig. 8, the darker colored zones represent higher membership val-
ues and hazardous PM10 concentrations, and the lighter areas rep-
resent lower membership grades and safer PM10 concentrations.
Areas of higher PM10 concentrations are located in the middle
and northeast of Tehran, and the safest PM10 concentration zones
are located in the northwest of Tehran. It is obvious that the inter-
pretation of fuzzy values in this map is a difficult task for users.
Therefore, the predicted values were converted back to PM10 to
calculate MSE based on control points using membership function.

For this purpose, we need to use a single � – cut level to link be-
tween fuzzy membership sets and Cantor sets of 10 predicted
points as follows:

Caðxi; yiÞ ¼ fUðxi; yiÞ : lTðUðxi; yiÞÞ ¼ ag ð14Þ

where a e [0, 1] determined by the fuzzy prediction process and
Ca(xi, yi) is a Cantor set at location (xi, yi). Table 2 represents the esti-
mated results of MSE for 10 checkpoints.

The calculation of the total MSE (8.9404) presents more accu-
rate performance of fuzzy membership kriging than the traditional
ordinary kriging algorithm. This shows that the spatial variation of
PM10 is closer to the mathematical function used in this method
for modeling uncertain behaviors of sample data. However, use
of this method is limited because thresholds are defined using ex-
pert knowledge. To solve this problem, genetic optimization is ap-
plied and proposed in the next section.

5.3. Applying fuzzy genetic membership kriging

In this part of the study, we applied a GA to generate fuzzy lin-
ear membership kriging to check and evaluate the accuracy of final
PM10 prediction results. Then, the proposed GA was implemented
for optimum threshold determination. This algorithm can learn
and adapt to different components of the defined membership



Fig. 8. Map of PM10 concentrations estimated by fuzzy linear membership kriging.

Table 2
MSEs obtained by applying fuzzy membership kriging.

ID Observed data Predicted data

3 52.78460 56.97919
4 35.69730 31.12254
5 17.75438 21.35679

10 30.94040 33.57862
12 47.92727 49.35813
14 56.51600 54.47282
24 27.23726 30.21361
25 33.45690 34.59893
33 40.17762 43.92567
50 14.79440 15.50888

MSE = 8.9404
Fig. 9. Convergence curve obtained by applying a GA.

Table 3
MSEs obtained by applying fuzzy genetic membership kriging.

ID Observed data Predicted data

3 52.78460 55.54401
4 35.69730 32.00700
5 17.75438 20.79013

10 30.94040 31.94052
12 47.92727 47.47245
14 56.51600 55.69023
24 27.23726 28.00983
25 33.45690 32.04716
33 40.17762 41.05380
50 14.79440 13.46640

MSE = 3.74528
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function by optimizing the parameters. For this purpose, it was
necessary to encode thresholds using Eq. (10). Then, the initial
population was constructed and the algorithm continued to apply,
using the designed GA flowchart in Fig. 3. For formation of off-
spring, some parts of two adjacent chromosomes were exchanged.
In this mode, the probability rate between 0.6 and 1 was imple-
mented as the optimum crossover probability. Finally, a mutation
operator randomly modified each gene with a probability of less
than 0.1. Fig. 9 shows the convergence curve of learning T1, T2

and T3 from a population of eight items, and Table 3 represents re-
sults of computing the MSE for data from 10 checkpoints.

The results of the GA showed that Tg = {0, 11.25, 86.98} is the
best threshold set, with a crossover probability of 0.95 and a muta-
tion rate of 0.1. Implementing fuzzy genetic linear membership
kriging using Tg provided the PM10 spatial concentration shown
in Fig. 10. In Fig. 10, the last two classes are hazardous areas. The
areas of higher PM10 concentration are located in the middle re-
gion of Tehran (near Azadi Square) and the northeast of Tehran
(near Tehran-pars Square). This method shows the minimum
MSE (3.74528), compared with the others.
6. Discussion and conclusion

The proposed fuzzy genetic membership kriging develops the
fuzzy linear membership kriging method and traditional indicator
kriging to predict air pollution based on PM10 data. This algorithm
improves prediction efficiency and makes it easier to choose and



Fig. 10. Map of PM10 concentrations estimated by fuzzy genetic membership kriging.
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generate an optimum membership function to find areas where
PM10 levels are of high hazardous impact for humans in urban
areas. In addition, to define a suitable membership function, the
expert’s role is reduced, and the user interface is freed from the
limitation of different case studies. This approach makes it easy
Fig. 11. Investigated ho
to implement and run the algorithm in a GIS environment and
can suggest a flexible way to perform spatial predictions in auto-
matic fuzzy genetic systems. In this way, automatic fuzzy genetic
intelligent systems can predict hazardous levels of PM10 data
effectively, based on online reports of monitoring stations. This
spitals and clinics.



Table 4
Number of investigated patients (lung diseases).

ID Name Annual patients

120 Emamkhomeini(Near Tehranpars) 3290
121 Nader(Near Tehranpars) 1207
122 Arash(Near Tehranpars) 1505
123 Kadus(Near Tehranpars) 2146
125 Taminejtemaei(Near Tehranpars) 1630
127 Tehranpars(Near Tehranpars) 2403
129 Shahidsamarghandi(Near Tehranpars) 970

68 Farmanfarma(Near Azadi) 2190
70 Pastor(Near Azadi) 3128

102 Azadi(Near Azadi) 2602
104 Babak(Near Azadi) 2210
105 Lola(Near Azadi) 1094
106 Karoon(Near Azadi) 1100
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ability to predict enables planners to warn the population against
potentially dangerous atmospheric conditions; in addition, it en-
ables decision-makers to examine the possibility of reducing
PM10 concentrations in hazardous areas or to improve areas with
poor air quality.

Here, fuzzy genetic membership kriging with crossover proba-
bility of 0.95 and mutation rate of 0.1 was implemented on 42 re-
corded PM10 data in Tehran and compared with ordinary and
fuzzy membership kriging methods using an MSE calculation of
10 control points. From the data in Tables 1–3, we can determine
that the final MSE of 10 control points of GA (0.95, 0.1) was less
accurate than ordinary and fuzzy linear membership (with prede-
fined thresholds) for predicting PM10 concentrations. This shows
that the spatial variation and treatment of PM10 are closer to the
mathematical function used in this method for modeling inaccu-
rate and imprecise behaviors. Furthermore, the uncertainty about
spatial variability of PM10 data can be reduced by generating a fuz-
zy membership function. Therefore, it is reasonable to say that the
fuzzy membership relation, which reflects an expert’s opinion, can
be learned from data sets using genetic algorithms.

From the total MSE shown in Table 1, we can argue that less
accuracy of ordinary kriging corresponds to both indeterminate
properties of information and insufficient hypothesis-testing is-
sues (the auxiliary information is not spatially exhaustive) for
modeling nonlinear relations. Therefore, modeling uncertainty in
ordinary kriging is computationally demanding and difficult to
implement using GIS. However, this algorithm with large smooth-
ing parameters can help even out some of the potential errors.

Table 2 shows the result of implementing fuzzy membership
kriging with linear membership function on PM10 data. The final
MSE in Table 2 presents lower rates of error than that in Table 1.
This subject indicates higher efficiency, compared to ordinary kri-
ging methods, and suggests the potential of using the fuzzy mem-
bership kriging method to predict hazardous areas based on
specifying a suitable membership function. The membership func-
tion, which plays a key role in the fuzzy membership kriging algo-
rithm, is hypothesized based on an expert’s knowledge of sample
data. This subject creates a limitation of using different parameters
for diverse case studies.

GA makes it easier to find the optimum parameters of member-
ship functions and makes the uncertain prediction process more
precise. Moreover, we have shown that the GA can flexibly opti-
mize threshold values and extract optimized membership func-
tions. This is evinced by the high rate of deep-lung diseases
among people who live or work in the study areas. In Fig. 10,
implementing the GA using Tg indicates that the central part of
Tehran (near Azadi Square) and some eastern parts of Tehran (near
Tehran-pars Square) are the most dangerous areas for public
health. This result is confirmed by statistics on lung diseases from
hospitals and clinics around these areas. The spatial distribution of
investigated clinics and hospitals (see Fig. 11) and the annual num-
ber of lung disease patients (see Table 4) confirms the result of the
fuzzy genetic membership kriging for identifying the PM10 con-
centrations in Tehran. Consequently, the presented fuzzy genetic
membership kriging is determined to be ideal for handling uncer-
tainty that depends on vague specification of fuzzy membership
function for predicting PM10 data.

In future research, we will adopt various genetic methods for
more effective and efficient learning of membership functions,
and thereby propose to health scientists an automatic fuzzy genet-
ic system based on predicting PM10 data. In this system, the mem-
bership functions will be defined for data and semivariogram
parameters. Then, we will use GAs to develop various uncertain
kriging methods such as fuzzy ordinary, fuzzy Bayesian and fuzzy
indicator to determine the membership functions of data and
semivariograms.
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