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1. Introduction and motivation

In 2000, K. Eda and K. Kawamura [1] defined the n-dimensional Hawaiian earring, n = 1,2, . . . , as the following subspace
of the (n + 1)-dimensional Euclidean space R(n+1)

Hn =
{

(r0, r1, . . . , rn) ∈R(n+1)
∣∣∣ (r0 − 1/k)2 +

n∑
i=1

r2
i = (1/k)2, k ∈N

}
.

Here θ = (0,0, . . . ,0) is regarded as the base point of Hn , and Sn
k shows the n-sphere in Hn with radius 1/k.

In 2006, U.H. Karimov and D. Repovs̆ [3] defined a new notion, the n-Hawaiian group of a pointed space (X, x0) to
be the set of all pointed homotopy classes [ f ], where f : (Hn, θ) → (X, x0) is continuous, with a group operation which
comes naturally from the operation of nth homotopy group denoted by Hn(X, x0) which we call it the n-Hawaiian group
of (X, x0). This group is homotopy invariant in the category of all pointed topological spaces. One can see that Hn : hTop∗ →
Groups is a covariant functor from the pointed homotopy category, hTop∗ , to the category of all groups, Groups, for n � 1.
If β : (X, x0) → (Y , y0) is a continuous map between pointed spaces, then Hn(β) = β∗ : Hn(X, x0) → Hn(Y , y0) defined by
β∗([ f ]) = [β ◦ f ] is a homomorphism.

They also mentioned [3] some advantages of Hawaiian group functor rather than other famous functors such as ho-
motopy, homology and cohomology functors. There exists a contractible space C(H1), the cone over H1, with nontrivial
1-Hawaiian group, but trivial homotopy, homology and cohomology groups. In fact in [3], it is showed that H1(C(H1), θ) is
uncountable. Also, this functor can help us to get some local properties of spaces. In fact, if X has a countable system of
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neighborhood at x0, then countability of the n-Hawaiian group Hn(X, x0) implies n-locally simply connectedness of X at x0.
(see [3, Theorem 2]).

There is a relation between the Hawaiian group and the homotopy groups of a pointed space (X, x0) as follows.

Theorem 1.1. ([3, Theorem 1]) If the space X is n-locally simply connected at the point x0 and satisfies the first countability axiom,
then

ϕ : Hn(X, x0) →
w∏

i∈N
πn(X, x0) (I)

defined by ϕ([ f ]) = ([ f |Sn
1
], [ f |Sn

2
], . . .) is an isomorphism, where

∏w
i∈N πn(X, x0) is the weak direct product of countable copies of

πn(X, x0).

We use the following concepts frequently in the paper.

Definition 1.2. A space X is called:

(i) n-locally simply connected at the point x0 if for every neighborhood U ⊂ X of x0 there is a neighborhood V ⊂ U of x0
such that the homomorphism i∗ : πn(V , x0) → πn(U , x0) induced by inclusion is zero;

(ii) n-semilocally simply connected at the point x0 if there is a neighborhood U of x0 such that the homomorphism
i∗ : πn(U , x0) → πn(X, x0) induced by inclusion is zero;

(iii) locally strongly contractible at x0 if for every neighborhood U ⊂ X of x0 there exists a neighborhood V ⊂ U of x0 such
that the inclusion map V ↪→ U is null-homotopic to the point x0;

(iv) semilocally strongly contractible at x0 if there exists a neighborhood U of x0 such that the inclusion map U ↪→ X is
null-homotopic to the point x0 (see [1]).

The paper is organized as follows. In Section 2, we establish some more properties of Hawaiian groups. First we show
that n-Hawaiian groups are abelian for all n � 2. We also show that the map (I) is an isomorphism for semilocally strongly
contractible spaces. Second, we compute the n-Hawaiian group of a weak join of a countable family of (n − 1)-connected,
locally strongly contractible and first countable pointed spaces (see [6] for the definition of the weak join). As a consequence,
we can compute the m-Hawaiian group of an n-Hawaiian earring for all 1 � m � n. Moreover, we show that all Hawaiian
group functors preserve direct products. Third, we concentrate on Hawaiian groups of the cone of spaces. As a main result,
we show that the n-Hawaiian group of the cone of (X, x0), C(X), at the point (x0, t) except the vertex is the quotient group
of Hn(X, x0) by

∏w
i∈N πn(X, x0). Finally, we give an exact sequence of Hawaiian groups for a first countable locally trivial

bundle which gives more information about Hawaiian groups of covering spaces or Rn-bundles.
Karimov and Repovs̆ [4] generalized the Hawaiian earring to the infinite dimension, to be the weak join of all finite

dimensional Hawaiian earrings and denoted by H∞ . Then they followed it by the infinite dimensional Hawaiian group
similar to finite dimension to be the set of all pointed homotopy classes [ f ], where f : (H∞, θ) → (X, x0) is continuous,
endowed with group operation, which comes from the finite dimensional Hawaiian groups denoted by H∞(X, x0). One
can verify that H∞ : hTop∗ → Groups is a covariant functor with induced homomorphism similar to finite dimension cases.
Also they construct a Peano continuum with trivial homotopy, homology (singular, C̆ech and Borel–Moore), cohomology
(singular and C̆ech) and finite dimensional Hawaiian groups, which is not contractible and has nontrivial infinite dimensional
Hawaiian group [4].

In Section 3, we study the structure of the infinite dimensional Hawaiian group. We extend most of properties of finite
dimensional Hawaiian groups obtained in Section 2 to the infinite case.

2. Finite dimensional Hawaiian groups

We say that a pointed space (X, x0) has a local property if X has the property at point x0.

Definition 2.1. Let { f i : (X, x0) → (Y , y0) | i ∈ I} be a family of continuous maps. We say that { f i}i∈I is null-convergent if for
each open set U containing y0, we have Im( f i) ⊆ U for all i ∈ I except a finite number.

The following lemma will be used in several results.

Lemma 2.2. With the previous notations and assumptions, let (X, x0) be a pointed topological space, then the following statements
hold.

(i) Let { fk : (Sn
k ,a) → (X, x0)} be a sequence of continuous maps, then f : (Hn, θ) → (X, x0) defined by f |Sn

k
= fk is continuous if

and only if { fk} is null-convergent.
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(ii) Let { fk, f ′
k : (Sn

k ,a) → (X, x0)}k∈N be two sequences of continuous maps with fk 
 f ′
k rel{a} by null-convergent sequence

of homotopies {Hk : Sn
k × I → X}k∈N relative to the point a. Then H : f 
 f ′ rel{θ}, where H|Sn

k ×I = Hk, f |Sn
k

= fk and

f ′|Sn
k
= f ′

k.

(iii) Let f1, f2, . . . , fm and f ′
1, f ′

2, . . . , f ′
m be two finite sequences of continuous maps with fk, f ′

k : (Sn
k ,a) → (X, x0) and

fk 
 f ′
k for k = 1,2, . . . ,m and let g, g′ : (

∨̃
k�m+1 Sn

k ,a) → (X, x0) be two continuous homotopic maps relative to {θ},

where
∨̃

k�m+1 Sn
k is the weak join of the family of n-spheres {Sn

k | k � m}. Then f , f ′ : (Hn, θ) → (X, x0) defined by
f |Sn

k
= fk , f ′|Sn

k
= f ′

k, for k = 1,2, . . . ,m and f |∨̃
k�m+1 Sn

k
= g, f ′|∨̃

k�m+1 Sn
k

= g′ are continuous and homotopic relative

to {θ}.

Proof. (i) Let f : (Hn, θ) → (X, x0) be continuous, then for each neighborhood U of x0, f −1(U ) contains all the n-sphere’s
of the Hawaiian earring except a finite number, that is, there exists K ∈ N such that Im( f |Sn

k
) ⊆ U for all k � K . Hence if

k � K , then Im( fk) ⊆ U and so { fk} is a null-convergent sequence.
Now, let { fk} be a null-convergent sequence, then if U is an open set containing x0, there exists K ∈ N such that for

all k � K , Im( fk) ⊆ U . Since f |Sn
k
= fk , for k � K we have Im( f |Sn

k
) ⊆ U or equivalently Sn

k ⊆ f −1(U ). Using the topology of
weak join on the Hawaiian earring and continuity of the fk ’s, f is continuous.

(ii) Similar to the proof of part (i) one can prove that H is continuous and verify that H : f 
 f ′ rel{θ}.
(iii) Since g is continuous, then by (i) {g|Sn

m+1
, g|Sn

m+2
, . . .} is a null-convergent sequence and so is { f1, , f2, . . . , fm, g|Sn

m+1
,

g|Sn
m+2

, . . .}. Using again (i) implies that f is continuous. Now, let Fk : fk 
 f ′
k , G : g 
 g′ and define H|Sn

k ×I = Fk , for
k = 1, . . . ,m and H|

(
∨̃

k�m+1 Sn
k )×I = G . Using the topology of the Hawaiian earring, H is continuous and hence H : f 


f ′ rel{θ}. �
Theorem 2.3. Let (X, x0) be a pointed space, then Hn(X, x0) is an abelian group, for all n � 2.

Proof. If [ f ], [g] ∈ Hn(X, x0), then [ f ] ∗ [g] = [ f ∗ g] and ( f ∗ g)|Sn
k

= f |Sn
k
∗ g|Sn

k
. Since n � 2, we have a homotopy map

Hk : f |Sn
k

∗ g|Sn
k


 g|Sn
k

∗ f |Sn
k

rel{θ} with Im(Hk) = Im( f |Sn
k
) ∪ Im(g|Sn

k
) (see [2, p. 340] for further details). Since f , g are

continuous, by Lemma 2.2(i), for each open set U containing x0, there exist K f , K g ∈ N such that for k � K f , Im( f |Sn
k
) ⊆ U

and for k � K g , Im(g|Sn
k
) ⊆ U . Thus for k � max{K f , K g}, Im( f |Sn

k
) ∪ Im(g|Sn

k
) ⊆ U and so Im(Hk) ⊆ U which implies that

{Hk}k∈N is null-convergent. Use Lemma 2.2(ii) to prove that f ∗ g 
 g ∗ f rel{θ}. �
Lemma 2.4. If (X, x0) is a pointed space, then

∏w
i∈N πn(X, x0) can be embedded in Hn(X, x0).

Proof. Define β : ∏w
i∈N πn(X, x0) →Hn(X, x0) by

β
([ f1], [ f2], . . . , [ fm], e, e, . . .

) = [ f ],
in which f |Sn

k
= fk for k � m, and f |Sn

k
= cx0 for k > m, where cx0 is the constant loop at x0. Since the sequence

{ f |Sn
k
}k∈N is constant except a finite number, it is null-convergent and Lemma 2.2 implies that f is continuous. Let

β([ f1], [ f2], . . . , [ fm], e, e, . . .) = e, then the corresponding map f is null-homotopic relative to {θ} and so f |Sn
k

= fk 

cx0 rel{θ}. Hence β is injective. The operation of Hn(X, x0) implies that β is a homomorphism and hence it is a monomor-
phism. �
Theorem 2.5. Let (X, x0) be a semilocally strongly contractible pointed space, then

Hn(X, x0) ∼=
w∏

i∈N
πn(X, x0).

Proof. Consider the homomorphism ϕ : Hn(X, x0) → ∏
πn(X, x0) defined in (I). Since X is semilocally strongly con-

tractible at x0, there exists an open set U containing x0 with null-homotopic inclusion map i : U ↪→ X relative to the
point x0. For each continuous map f : (Hn, θ) → (X, x0), there exists K ∈ N such that if k � K , then Im( f |Sn

k
) ⊆ U and so

Im( f |∨̃
k�K Sn

k
) ⊆ U . Therefore i ◦ f |∨̃

k�K Sn
k

is null-homotopic in X relative to the point θ . Since i is the inclusion map and

Im( f |∨̃
k�K Sn

k
) ⊆ U , f |∨̃

k�K Sn
k

is null-homotopic in X relative to the point θ . Hence if k � K , then f |Sn
k

is null-homotopic

relative to the point θ and so ϕ maps f to an element of
∏w

i∈N πn(X, x0). Thus Im(ϕ) ⊆ ∏w
i∈N πn(X, x0) and easily seen that

the equality holds.
For injectivity, let [ f ] ∈ Hn(X, x0) with ϕ([ f ]) = (e, e, . . .), using the above technique, there exists K ∈ N such that

f |∨̃
k�K Sn

k
is null-homotopic in X relative to the point θ . Since ϕ([ f ]) = (e, e, . . .), f |Sn

k

 cx0 rel{θ}, for all k < K . Now,

Lemma 2.2(iii) implies that f is null-homotopic relative to the point θ . �
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Note that by the above theorem we can compute the Hawaiian group of some more spaces than Theorem 1.1. As an
example, the join space X = ∨

i∈NSn is not first countable but using Theorem 2.5 we have

Hn(X, x0) ∼=
w∏

i∈N
πn(X, x0).

Definition 2.6. Let (X, x0) be a pointed space and n � 1. We define Ln(X, x0) to be a subset of
∏

i∈N πn(X, x0) consisting of
all sequences of homotopy classes {[ f i]}, where { f i} is null-convergent.

Theorem 2.7. Let (X, x0) be a pointed space and ϕ : Hn(X, x0) → ∏
πn(X, x0) be the homomorphism (I), then Im(ϕ) = Ln(X, x0).

In particular, Ln(X, x0) is a subgroup of
∏

i∈N πn(X, x0).

Proof. Let f : (Hn, θ) → (X, x0) be a map and U be an open set in X containing x0. Since f is continuous by Lemma 2.2(i),
{ f |Sn

k
}k∈N is null-convergent. Therefore Imϕ ⊆ Ln(X, x0). Conversely, let { fk : (Sn

k , θ) → (X, x0)} be a null-convergent se-
quence. Put f |Sn

k
= fk , then by Lemma 2.2(i) f is continuous and we have ϕ([ f ]) = ([ f1], [ f2], . . .). Thus ϕ : Hn(X, x0) →

Ln(X, x0) is an epimorphism and the result holds. �
Lemma 2.8. Let (X, x0) be n-semilocally simply connected, then

Ln(X, x0) =
w∏

i∈N
πn(X, x0).

In particular, if n � 2 and ϕ is the homomorphism (I), then

Hn(X, x0) ∼=
w∏

i∈N
πn(X, x0) ⊕ Ker(ϕ).

Proof. Since X is n-semilocally simply connected at x0, there exists a neighborhood U of x0 such that the homomorphism
i∗ : πn(U , x0) → πn(X, x0) induced by the inclusion map i : U → X is trivial. If {[ fk]} ∈ Ln(X, x0), then there exists K such
that Im( fk) ⊆ U , for all k � K . Since i∗ : πn(U , x0) → πn(X, x0) is the trivial homomorphism, i ◦ fk and so fk is null-
homotopic in X , for all k � K . Hence Ln(X, x0) ⊆ ∏w

i∈N πn(X, x0), one can easily see the reverse inclusion.
Consider the following exact sequence

0 → Ker(ϕ) → Hn(X, x0)
ϕ−→

w∏
i∈N

πn(X, x0) → 0.

If n � 2, then by Theorem 2.3, Hn(X, x0) is abelian. It is routine to check that β ◦ ϕ = id, where β : ∏w
i∈N πn(X, x0) →

Hn(X, x0) is the monomorphism defined in the proof of Lemma 2.4. Hence we have Hn(X, x0) ∼= ∏w
i∈N πn(X, x0) ⊕

Ker(ϕ). �
Theorem 2.9. Let {(Xi, xi)}i∈N be a family of locally strongly contractible, first countable pointed spaces. If X = ∨̃

i∈N(Xi, xi) is the
weak join of the family {(Xi, xi)}i∈N and x∗ is the common point, then

Hn(X, x∗) ∼= Ln(X, x∗).

Proof. Let ϕ : Hn(X, x∗) → Ln(X, x∗) be the natural epimorphism and [ f ] be an element of Hn(X, x∗) so that ϕ([ f ]) =
(e, e, . . .). Then f |Sn

k

 cx∗ rel{θ} with a homotopy mapping Fk : Sn

k × I → X , for k ∈ N. Since Xi is locally strongly con-

tractible and first countable at xi , for i ∈ N, there exists a nested local basis {V i
j} j∈N at xi such that the inclusion map

J i
j : V i

j → V i
j−1 is null-homotopic to xi . Let {Um}m∈N be a local basis at x∗ obtained by Um = (

∨
i<m V i

m) ∨ (
∨̃

i�m Xi). For

each m ∈ N, there is Km such that if k � Km , then Im( f |Sn
k
) ⊆ Um . Let Rm : X → ∨̃

i�m Xi be the natural contraction. We

show that f |Sn
k

is homotopic to the map fk := Rm ◦ f |Sn
k

rel{θ} in Um . To prove this, let J i
m : V i

m → V i
m−1 be the inclu-

sion map which is null-homotopic with homotopy mapping Hi
m . Consider the inclusion map Jm : Um → Um−1 and define

Hm : Um × I → Um−1 by joining of all the mapping Hi
m ’s, for i < m, and identity map for the others. So Hm : Jm 
 Rm rel{x∗}

and hence Hm( f |Sn
k
,−) : Jm ◦ f |Sn

k

 Rm ◦ f |Sn

k
rel{θ}. We define f̃ |Sn

k
:= f |Sn

k
and Gk : Sn

k × I → X by Gk = Fk when k < K1.

For Km � k < Km+1, we define f̃ |Sn
k
= fk and Gk : Sn

k × I → ∨̃
i�m Xi by Gk = Rm ◦ Fk . Finally, we define G : Hn × I → X by

G|Sn×I = Gk . Using Lemma 2.2(ii), G is continuous and G : f̃ 
 c rel{θ}. Since f 
 f̃ rel{θ}, the result holds. �

k
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Eda and Kawamura [1, Theorem 1.1] proved the following result.

Let n � 2 and Xi be an (n − 1)-connected, Tikhonov space which is semilocally strongly contractible at xi , for each i ∈ I . If x∗ is the
common point, then

πn

(∨̃
i∈I

(Xi, xi), x∗
)

∼=
∏̃
i∈I

πn(Xi, xi), (II)

where
∏̃

i∈Iπn(Xi, xi) is a subgroup of
∏

i∈I πn(Xi, xi) consisting of all f ’s such that the set {i ∈ I: f (i) �= 0} is countable.

We can improve the above result as follows when the set of indexes is countable.

Theorem 2.10. Let n � 2 and {(Xi, xi)}i∈N be a family of (n − 1)-connected Tikhonov spaces which are locally strongly contractible
and first countable pointed spaces. If X = ∨̃

i∈N(Xi, xi) and x∗ is the common point, then

Hn(X, x∗) ∼=
∏
i∈N

w∏
k∈N

πn(Xi, xi).

Proof. Using Theorem 2.9 we have the monomorphism ϕ : Hn(X, x∗) → ∏
k∈N πn(X, x∗) and by (II) there exists an isomor-

phism h : πn(X, x∗) → ∏
i∈N πn(Xi, xi) defined by h([g]) = {[ri ◦ g]}i∈N when ri : X → Xi is the natural contraction. Also, there

is a natural isomorphism
∏

k∈N
∏

i∈N πn(Xi, xi) ∼= ∏
i∈N

∏
k∈N πn(Xi, xi). Now, by the composition of these homomorphisms,

we obtain a monomorphism ψ : Hn(X, x∗) → ∏
i∈N

∏
k∈N πn(Xi, xi) with the rule ψ([ f ]) = {{[ri ◦ f |Sn

k
]}k∈N}i∈N . We show

that Im(ψ) ⊆ ∏
i∈N

∏w
k∈N πn(Xi, xi). Let [ f ] ∈Hn(X, x∗) and let {Um} be the local basis defined in the proof of Theorem 2.9.

By Lemma 2.2 there exists an increasing sequence {Ki}i∈N such that if k � Ki , then Im( f |Sn
k
) ⊆ Ui+1. So Im(ri ◦ f |Sn

k
) ⊆ V i

i+1
and hence ri ◦ f |Sn

k
is null-homotopic relative to {θ} in Xi . Thus for each i ∈ N, all terms of the sequence {[ri ◦ f |Sn

k
]}k∈N are

trivial except a finite number. Hence {[ri ◦ f |Sn
k
]}k∈N ∈ ∏w

k∈N πn(Xi, xi) and {{[ri ◦ f |Sn
k
]}k∈N}i∈N ∈ ∏

i∈N
∏w

k∈N πn(Xi, xi).

Now, let {{[ f i
k]}k∈N}i∈N ∈ ∏

i∈N
∏w

k∈N πn(Xi, xi) such that for each i ∈ N, the sequence f i
k is the constant map except a

finite number. Consider {{[ f i
k]}i∈N}k∈N ∈ ∏

k∈N
∏

i∈N πn(Xi, xi), use the convergent sequence {1/2i}i∈N to define a product
on infinite terms of n-loops. Let fk = f 1

k ∗ f 2
k ∗ · · · , then ri ◦ fk = cx1 ∗ · · · ∗ cxi−1 ∗ f i

k ∗ cxi+1 ∗ · · · ∼= f i
k , so h([ fk]) = {[ f i

k]}k∈N .
We claim that { fk}k∈N is null-convergent. Given an open set U containing x0, there exists Um defined in the proof of
Theorem 2.9 such that Um ⊆ U . For each i ∈N, there exists Ki such that if k � Ki , then f i

k = cxi . Now for each m ∈ N, define
K = max{K1,k2, . . . , Km−1}. For i � m − 1, if k � K , then f i

k = cxi and hence Im( f i
k) ⊆ Um . For i � m, we have Xi ⊆ Um and

so Im( f i
k) ⊆ Um . Since Im( fk) = ⋃

i∈N Im( f i
k), if k � K , then Im( fk) ⊆ Um . �

In [1, Corollary 1.2] Eda and Kawamura computed homotopy and homology groups of Hawaiian earring spaces as fol-
lows.

For the m-dimensional Hawaiian earring Hm, m � 2, πn(Hm, θ) is trivial for each n, 1 � n � m − 1 and πm(Hm, θ) ∼= Zω , where
Zω means the direct product of countably many the infinite cyclic group, Z.

The following corollary is a consequence of Theorem 2.10 and the above fact.

Corollary 2.11. Let n � 2, then Hn(Hn, θ) ∼= ∏
i∈N

∏w
k∈NZ and Hm(Hn, θ) is trivial, when 1 � m � n − 1.

Note that if θ ′ ∈ Hn and θ ′ �= θ , then by [1, Theorem 1.1] Hn(Hn, θ ′) ∼= ∏w
k∈N

∏
i∈NZ, for n � 2. Answering a question of

Fuchs’ problem 76, it is known that
∏

i∈N
∏w

k∈NZ �
∏w

k∈N
∏

i∈NZ (see [7]). Hence by Corollary 2.11 we have Hn(Hn, θ ′) �
Hn(Hn, θ), for n � 2.

Theorem 2.12. For any family of spaces {Xi}i∈I and n � 1, the following isomorphism holds

Hn

(∏
i∈I

Xi, x∗
)

∼=
∏
i∈I

Hn(Xi, xi),

where x∗ = {xi}i∈I ∈ ∏
i∈I Xi .

Proof. Consider projection maps p j : ∏
i∈I Xi → X j and induced homomorphisms Hn(p j) : Hn(

∏
i∈I Xi, x∗) → Hn(X j, x j),

and define
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ψ = {
Hn(pi)

}
i∈I : Hn

(∏
i∈I

Xi, x∗
)

→
∏
i∈I

Hn(Xi, xi)

by ψ([ f ]) = {Hn(pi)([ f ])}i∈I . It is easy to see that this homomorphism has an inverse ψ−1 : {[ f i]}i∈I �→ [ f ], where f is the
unique continuous map which comes from the universal property of the product. �

Note that if Hn(X, x0) is trivial, then so is πn(X, x0), but the converse is not true. The cone over the Hawaiian earring
[3, Remark 1] is a counterexample.

Theorem 2.13. Let (X, x0) be a pointed space and C(X) be the cone over X. Suppose that x̂t = (x0, t) is a point of C(X) except the
vertex (t �= 1). Then

Hn
(
C(X), x̂t

) ∼= Hn(X, x0)∏w
i∈N πn(X, x0)

.

Proof. Let it : X → C(X) be the natural inclusion by it(x) = (x, t). There exists a homomorphism μ = Hn(it) : Hn(X, x0) →
Hn(C(X), x̂t) by μ([ f ]) = [it ◦ f ], for each [ f ] ∈Hn(X, x0). Since X ×[0,1) is an open set in C(X), by the topology of Hn , for
any [g] ∈Hn(C(X), x̂t), there exists K in N such that Im(g|Sn

k
) ⊆ X ×[0,1), for k � K . We define g :Hn → C(X) by g|Sn

k
= cxt

for k < K and g|Sn
k
= g|Sn

k
otherwise. We show that [g] = [g]. Since πn(C(X), x̂t) is trivial, there exist homotopy mappings

Ak : g|Sn
k
∼= cx̂t

rel{θ}, for each k ∈ N. We define A : Hn × I → C(X) by A|Sn
K

× I = Ak , for k < K and A|Sn
K ×I (r, s) = g(r), for

k � K which is continuous by Lemma 2.2 and makes g and g homotopic relative to {θ}. Since Im(g) ⊆ X × [0,1), one can
consider [g] ∈ Hn(X × [0,1), x̂t). Theorem 2.12 states that Hn(p1) : Hn(X × [0,1), x̂t) ∼= Hn(X, x0) is an isomorphism with
an inverse which is induced by the injection jt : X → X × [0,1) by the rule jt(x) = (x, t). Thus there exists [ f ] ∈ Hn(X, x0)

such that Hn( jt)([ f ]) = [g]. Since jt(x) = it(x) for each x ∈ X , j ◦ jt ◦ f = it ◦ f , where j : X × [0,1) → C(X) is the inclusion
map. Therefore we have Hn(it)([ f ]) = [it ◦ f ] = [ j ◦ jt ◦ f ] = Hn( j)([ jt ◦ f ]) = Hn( j)([g]) = [g] = [g]. Hence μ([ f ]) = [g]
and μ is an epimorphism.

Moreover,
∏w

i∈N πn(X, x0) ⊆ ker μ. To prove this, let [ f ] ∈ Hn(X, x0) and β([ f ]) = ([ f1], [ f2], . . . , [ fk], e, e, . . .) ∈∏w
i∈N πn(X, x0). Since πn(C(X), x̂t) is trivial, the homomorphism it∗ : πn(X, x0) → πn(C(X), x̂t) is trivial and so [it ◦ f i]

is the identity element of πn(C(X), x̂t), for i � K . Hence it ◦ f1, it ◦ f2, . . . , it ◦ fk, cx̂t
, . . . is a sequence of null-homotopic

maps relative to {θ} which is constant except a finite number and by Lemma 2.2(ii) we have it ◦ f is null-homotopic relative
to {θ}. Hence μ([ f ]) =Hn(it)[ f ] is the identity element of Hn(C(X), x̂t) and thus [ f ] ∈ ker μ.

Now, let μ([ f ]) = e, then [it ◦ f ] = e. If it ◦ f is null-homotopic in C(X) with given homotopy H : it ◦ f 
 cx̂t
rel{θ}, then

since V = X ×[0,1) is an open set in C(X) containing x̂t and H is continuous, H−1(V ) is an open set that contains (θ, s), for
every s ∈ I . Therefore, there exists Us × J s ⊆ H−1(V ) for each (θ, s) such that s ∈ J s and θ ∈ Us . { J s} has a finite subcover
{ J sl | 1 � l � m} for I . Let U = ⋂m

l=1 Usl , since U × J sl ⊆ Usl × J sl ⊆ H−1(V ) and U × I = ⋃m
l=1 Usl , U × I ⊆ H−1(V ). Using the

form of open sets in the space Hn at the point θ , there exists K in N such that for k � K , Sn
k ⊆ U and then Sn

k × I ⊆ H−1 V
or equivalently Im(H|Sn

k ×I ) ⊆ V . We have Im(it ◦ f |Sn
k
) ⊆ V = X × [0,1), for k � K . If f |Sn

k
is not null-homotopic in X , then

it ◦ f |Sn
k

is not null-homotopic in X ×[0,1). But H|Sn
k ×I : it ◦ f |Sn

k

 c rel{θ} in X ×[0,1), thus for k � K , f |Sn

k
is null-homotopic

relative to {θ}. Hence ker(μ) ⊆ ∏w
i∈N πn(X, x0) and then ker(μ) = ∏w

i∈N πn(X, x0). �
The following corollary is a consequence of Theorem 2.13 and [3, Theorem 1].

Corollary 2.14. Let n � 1, (X, x0) be a pointed space, C(X) be the cone over X and x̂t = (x0, t), where t �= 1. Then Hn(C(X), x̂t) is
trivial if one of the following conditions holds:

(i) (X, x0) is n-locally simply connected and first countable.
(ii) (X, x0) is semilocally strongly contractible.

Example 2.15. Let S = ∨̃
n∈NSn and a be the common point, then by Corollary 2.14, Hn(C S,a) is trivial, for each natural

number n.

In [3, Theorem 1] it is proved that for a first countable pointed space (X, x0) and n � 1, ϕ : Hn(X, x0) → ∏w πn(X, x0)

is an isomorphism if X is n-locally simply connected at x0. The following result gives us more information.

Corollary 2.16. Let (X, x0) be a first countable pointed space and n � 1, then the following statements are equivalent.

(i) X is n-locally simply connected at x0 .
(ii) ϕ :Hn(X, x0) → ∏w πn(X, x0) is an isomorphism.

(iii) Hn(C(X), x̂t) is trivial, where C(X) is the cone over X, t �= 1 and x̂t = (x0, t).
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Proof. (i) ⇒ (ii). If X is n-locally simply connected at x0, then by [3, Theorem 1] ϕ : Hn(X, x0) → ∏w πn(X, x0) is an
isomorphism.

(ii) ⇒ (iii). Let ϕ : Hn(X, x0) → ∏w πn(X, x0) be an isomorphism, then by Theorem 2.13 the n-Hawaiian group of the
cone over the space X is trivial.

(iii) ⇒ (i). Let Hn(C(X), x̂t) be trivial, then by [3, Theorem 2] C(X) is n-locally simply connected at x̂t = (x0, t) (t �= 1)
and we show that so is (X, x0). By contrary, suppose that there exists a neighborhood U of x0 such that for each open set
V containing x0 the inclusion map V ↪→ U does not induce trivial homomorphism and so is V × J ↪→ U × J , for every
subinterval J of the unit interval I . This contradicts to the n-locally simply connectedness of C(X) at x̂t = (x0, t). Therefore
(X, x0) is n-locally simply connected. �
Corollary 2.17. Let (X, x0) be a first countable pointed space, t �= 1 and x̂t = (x0, t), then Hn(C(X), x̂t) is trivial or is uncountable.

Proof. Let Hn(C(X), x̂t) be a countable set, then C(X) is n-locally simply connected at x̂t by [3, Theorem 2]. So X is n-locally
simply connected at x0. Hence ϕ is an isomorphism and then Hn(C(X), x̂t) is trivial. �

We need the following lemma to study the behavior of Hawaiian groups on locally trivial bundles.

Lemma 2.18. Let p : E → B be a locally trivial bundle, y0 ∈ B, x0 ∈ p−1(y0) = F and (E, x0) be first countable. Let α̃ : (Hn, θ) →
(E, x0) lift α : (Hn, θ) → (B, y0) and F be a pointed homotopy with F (−,0) = α, then there exists a pointed homotopy F̃ that lifts F
and so F̃ (−,0) = α̃.

Proof. Let {Ui} be a countable basis at x0 in E . Since the projection map is open, {V i = p(Ui)} is a countable collection
of open sets which is a local basis for B at y0. Similar to the proof of Theorem 2.13, one can see that there exists an
increasing sequence K1, K2, K3, . . . such that for k � Ki , Im(F |Sn

k ×I ) ⊆ V i . Homotopy lifting property of locally trivial bundles

which holds on pointed homotopies implies that for each k < K1, we can define F̃k : Sn
k × I → E to be the lifting of F |Sn

k ×I

such that F̃k(−,0) = α̃|Sn
k
. The map p|Ui : Ui → V i is again a locally trivial bundle and if Ki � k < Ki+1, then we have

Im(F |Sn
k ×I ) ⊆ V i . So for each pointed homotopy F |Sn

k×I there exists a lifting F̃k such that F̃k(−,0) = α̃|Sn
k

and Im( F̃k) ⊆ Ui .

We define F̃ |Sn
k×I = F̃k which is continuous by Lemma 2.2 and it is a lifting for F such that F̃ (−,0) = α. Since all F̃ |Sn

k ×I

may be chosen pointed homotopies with F̃ |Sn
k ×I (−,0) = α̃|Sn

k ×I , then so is F̃ . �
It is known that for each locally trivial bundle there exists an exact sequence of homotopy groups as follows

· · · → πn(F , y0) → πn(E, y0) → πn(B, x0) → πn−1(F , y0)

→ πn−1(E, y0) → ·· · → π1(F , y0) → π1(E, y0) → π1(B, y0).

In the following theorem we gives a similar exact sequence of Hawaiian groups with some conditions.

Theorem 2.19. Let p : E → B be a locally trivial bundle and E be first countable at x0 ∈ p−1(y0) = F , where y0 ∈ B. Then there exists
an exact sequence of Hawaiian groups as follows

· · · → Hn(F , y0) → Hn(E, y0) → Hn(B, x0) → Hn−1(F , y0)

→ Hn−1(E, y0) → ·· · → H1(F , y0) → H1(E, y0) → H1(B, y0).

Proof. The inclusion map j : F → E induces the homomorphism Hn(F , y0) → Hn(E, y0) and the projection p : E → B
induces the homomorphism Hn(E, y0) → Hn(B, x0). Let n � 2, then we define ∂ : Hn(B, x0) → Hn−1(F , y0) and we prove
that the sequence is exact. Let α : (Hn, θ) → (B, x0) be an arbitrary continuous map, there exists an increasing sequence of
natural numbers K1, K2, K3, . . . such that for each k � Ki , Im(α|Sn

k
) ⊆ V i . Consider αk = α|Sn

k
and Sn

k = Σ Sn−1
k . Applying the

Homotopy Lifting Theorem for pointed homotopies and Sn−1
k , we can deduce that there exists a lifting for αk . Similar to

the proof of Theorem 2.18, we construct a lifting α̃ for α such that if Ki � k < Ki+1, then α̃|Sn−1
k

(−,1) : Sn−1
k → F ∩ Ui . Put

ᾱ : H(n−1) → F by ᾱ|Sn−1
k

= α̃|Sn−1
k

(−,1) which is continuous by Lemma 2.2. Define ∂([α]) = ᾱ, then similar to the proof of

[5, Theorem 15], one can verifies that the sequence is exact. �
The following corollary is an immediate consequence of the above theorem.

Corollary 2.20. Let p : X̃ → X be a covering, X̃ be first countable at x̃0 and n � 2. Then Hn( X̃, x̃0) ∼=Hn(X, x0), where x̃0 ∈ p−1(x0).
Moreover, p∗ :H1( X̃, x̃0) →H1(X, x0) is a monomorphism.
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Theorem 2.21. Let p : E → B be a locally trivial bundle, y0 ∈ B and x0 ∈ p−1(y0) = F . If πn(E, x0) and πn(B, y0) are trivial, then

Hn(E, x0) ∼= Hn(B, y0) ×Hn(F , x0).

Proof. Let [ f ] ∈ Hn(E, x0) and σ0 : U → V × F be the local trivialization at x0. There exists K ∈ N such that if k � K , then
Im( f |Sn

k
) ⊆ U . Consider p1 : B × F → B , p2 : B × F → F as the projection maps on first and second components, respectively,

i : V → B as the inclusion map and R K : Hn → Hn as the natural contraction on
∨̃

k�K Sn
k . We define ψ : Hn(E, x0) →

Hn(B, y0)×Hn(F , x0) by ψ([ f ]) = ([p1 ◦ i ◦σ0 ◦ f ◦ R K ], [p2 ◦σ0 ◦ f ◦ R K ]). We first show that ψ is independent of the choice
of K . To prove this, let K1, K2 be two natural numbers such that Im( f |∨̃

k�K1
Sn

k
) ⊆ U and Im( f |∨̃

k�K2
Sn

k
) ⊆ U . We prove that

[ f ◦ R K1 ] = [ f ◦ R K2 ]. Without loss of generality, let K1 < K2. Since πn(E, x0) is trivial, f |Sn
k

is null-homotopic relative to {θ},
for each k ∈ N, in particular K1 � k < K2. By Lemma 2.2(iii) we have f ◦ R K1

∼= f ◦ R K2 rel{θ}, so p1 ◦ i ◦ σ0 ◦ f ◦ R K1
∼=

p1 ◦ i ◦ σ0 ◦ f ◦ R K2 and p2 ◦ σ0 ◦ f ◦ R K1
∼= p2 ◦ σ0 ◦ f ◦ R K2 rel{θ}. Thus ψ([ f ]) is unique and hence ψ is well defined.

We show that ψ is a homomorphism. Let [ f ], [g] ∈ Hn(E, x0) and for K we have Im( f |∨̃
k�K Sn

k
)
⋃

Im(g|∨̃
k�K Sn

k
) ⊆ U .

Then

ψ
([ f ∗ g]) = ([

p1 ◦ i ◦ σ0 ◦ ( f ∗ g) ◦ R K
]
,
[

p2 ◦ σ0 ◦ ( f ∗ g) ◦ R K
])

= ([
p1 ◦ i ◦ σ0 ◦ ( f ◦ R K ∗ g ◦ R K )

]
,
[

p2 ◦ σ0 ◦ ( f ◦ R K ∗ g ◦ R K )
])

= ([p1 ◦ i ◦ σ0 ◦ f ◦ R K ] ∗ [p1 ◦ i ◦ σ0 ◦ g ◦ R K ], [p2 ◦ σ0 ◦ f ◦ R K ] ∗ [p2 ◦ σ0 ◦ g ◦ R K ])
= ψ

([ f ]) ∗ ψ
([g]).

We show that ψ is an epimorphism. Let ([h1], [h2]) ∈ Hn(B, y0) × Hn(F , x0), there exists K ∈ N such that
Im(h1|∨̃

k�K Sn
k
) ⊆ V . Let h : Hn → V × F be the unique map with p1 ◦ h = h1 ◦ R K and p2 ◦ h = h2. Since πn(B, y0)

is trivial, h1 ◦ R K ∼= h1. We have Im(σ−1
0 ◦ h) ⊆ U , so ψ([σ−1

0 ◦ h]) = ([p1 ◦ i ◦ σ0 ◦ (σ−1
0 ◦ h)], [p2 ◦ σ0 ◦ (σ−1

0 ◦ h)]) =
([h1], [h2]).

Finally, since (p1∗, p2∗) and σ0∗ are isomorphisms, we can easily see that ψ is injective and hence it is an isomor-
phism. �
3. Infinite dimensional Hawaiian groups

Theorem 3.1. Let (X, x0) be a first countable, locally strongly contractible pointed space, then the following isomorphism holds

H∞(X, x0) ∼=
w∏

n∈N

w∏
k∈N

πn(X, x0).

Proof. We define a homomorphism φ : H∞(X, x0) → ∏
n∈NHn(X, x0) by φ([α]) = ([α|H1 ], [α|H2 ], . . .). Similar to the

proof of [3, Theorem 1] we can prove that Im(φ) = ∏w
n∈NHn(X, x0). Also, we can see that φ is injective and hence

it is an isomorphism onto
∏w

n∈NHn(X, x0). Using [3, Theorem 1], we obtain an isomorphism from H∞(X, x0) onto∏w
n∈N

∏w
k∈N πn(X, x0). �

Definition 3.2. We call a pointed space (X, x0) to be locally infinite-connected if for each open set U contains x0, there
exists a neighborhood V of x0 such that the inclusion map V ↪→ U , induces trivial homomorphism on nth homotopy group,
for all n ∈N.

Theorem 3.3. Let (X, x0) be a first countable locally infinite-connected pointed space, then

H∞(X, x0) ∼=
w∏

n∈N

w∏
k∈N

πn(X, x0).

Proof. Consider the homomorphism φ : H∞(X, x0) → ∏
n∈NHn(X, x0) defined in the proof of Theorem 3.1. Similar to the

proof of [3, Theorem 1] we can show that φ : H∞(X, x0) → ∏w
n∈NHn(X, x0) is an isomorphism. Using [3, Theorem 1], we

obtain an isomorphism from H∞(X, x0) onto
∏w

n∈N
∏w

k∈N πn(X, x0). �
Theorem 3.4. For every family of pointed spaces {(Xi, xi)}i∈I the following isomorphism holds

H∞
(∏

i∈I

Xi, x∗
)

∼=
∏
i∈I

H∞(Xi, xi),

where x∗ = {xi}i∈I ∈ ∏
i∈I Xi .
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Proof. See the proof of Theorem 2.12. �
Lemma 3.5. If (X, x0) is a pointed space, then

∏w
i∈NHn(X, x0) can be embedded in H∞(X, x0).

Proof. Similar to the proof of Lemma 2.4 we define ρ : ∏w
n∈NHn(X, x0) →H∞(X, x0) by the rule

ρ
([ f1], [ f2], . . . , [ fm], e, e, . . .

) = [ f ],
where f |Hn = fn , for n � m, and f |Hn = cx0 , for n > m. By the topology of H∞ f is continuous and ρ is well defined. We
can easily see that ρ is a monomorphism. �

The following corollary is a consequence of Lemmas 3.5 and 2.4.

Corollary 3.6. If (X, x0) is a pointed space, then
∏w

n∈N
∏w

k∈N πn(X, x0) can be embedded in H∞(X, x0).

Theorem 3.7. Let (X, x0) be a pointed space and C(X) be the cone over X. Suppose that x̂t = (x0, t) is a point of C(X) except the
vertex (t �= 1). Then

H∞
(
C(X), x̂t

) ∼= H∞(X, x0)∏w
n∈N

∏w
k∈N πn(X, x0)

.

Proof. Let μ = H∞(it) : H∞(X, x0) → H∞(C(X), xt) be defined by μ([ f ]) = [it ◦ f ], where it is defined in the
proof of Theorem 2.13. Similar to the proof of Theorem 2.13, we can prove that μ is an epimorphism with kernel∏w

n∈N
∏w

k∈N πn(X, x0). �
Example 3.8. Let S = ∨̃

n∈NSn be the weak join of the family {Sn | n ∈N} with the common point η. Then H∞(C S, η̂) is not
trivial, where η̂ = (η,0).

Proof. Consider the map ν : H∞ → S which is defined as follows. If r ∈ Sn
n , then ν(r) = r and ν(r) = η̂ otherwise. If the

equivalence class of this map belongs to
∏w

n∈N
∏w

k∈N πn(S, η), then the identity map idSn is null-homotopic for some n ∈ N

which is a contradiction. Thus by Theorem 3.7 H∞(C S, η̂) is not trivial. �
Theorem 3.9. Let {(Xi, xi)}i∈N be a family of locally strongly contractible, first countable pointed spaces. If X = ∨̃

i∈N(Xi, xi), then
H∞(X, x∗) can be embedded in

∏
n∈N

∏
k∈N πn(X, x∗).

Proof. Let φ : H∞(X, x∗) → ∏
n∈NHn(X, x∗) be the homomorphism defined in the proof of Theorem 2.9. To show the

injectivity of the φ, let [ f ] be an element of H∞(X, x∗) so that φ([ f ]) = (e, e, . . .). Therefore f |Hn 
 c rel{θ} with a homotopy
mapping Fn : Hn × I → X . Let {Um} be the countable basis at x∗ as in the proof of Theorem 2.9. For any m ∈ N, there is Km

such that if n � Km , then Im( f |Hn ) ⊆ Um . The proof of Theorem 2.9 implies that f |Hn is homotopic to a map fn relative to
{θ} in Um , where fn := Rm ◦ f |Hn and so Im( fn) ⊆ ∨̃

i�m Xi . Now Rm ◦ Fn makes fn to be null-homotopic (rel{θ}). Joining

these homotopies construct a pointed homotopy between f̃ (i.e. the join of the fn ’s) and the constant map. Since f is
homotopic to f̃ (rel{θ}), f is null-homotopic (rel{θ}), as required. Applying Theorem 2.9, H∞(X, x∗) is isomorphic to a
subgroup of

∏
n∈N

∏
k∈N πn(X, x∗). �
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