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Abstract The proposed methodology relies on the fuzzy
nine-intersection matrix which is a generalization of the
crisp four-intersection matrix for topological similarity
computing. The similarity computation between 3D fuzzy
matrix and 3D crisp nine-intersection matrix enables the
decision variables to be derived. Decision variables, which
are used for deducing and drawing conclusion, are
consisted of semantic parts and quantifiers (type and
strength of relations). Since these variables are dependent
on the boundary directly, it is essential to present an
efficient method for defining 3D fuzzy boundary. So, in this
paper, we complete the information about how we can
define fuzzy boundaries between two 3D phenomena and
present a new procedure for simulation of 3D spatial

topology in a deductive geographic information system
(GIS). Therefore, a fuzzy knowledge-base system and an
inference engine will be shown results for deduction in GIS
environment.

Keywords GIS . Fuzzy . Topology . Deduction

Introduction

In geographic information system (GIS) medium, usually
uncertain spatial features are revealed schematically. In this
manner, mathematical models and simulation techniques
are used in processing, analyzing, and in decision making
of uncertain data (Burrough 1996). This uncertainty maybe
is originated from different resources such as nature of
phenomena, human knowledge, and the limitations of the
meanings (Shi and Lui 2007). Despite this fact, crisp
solutions are widely used in GIS for modeling the natural
phenomena. These approaches impose some limitations in
different disciplines such as soil science (McBratney and
Odeh 1997), engineering (Kosko 1997), object-oriented
modeling (Cross 2001; Jonathan et al. 2001; Ma et al.
2001), and data mining (Clementini et al. 2000). Thus, the
concepts of classical set theory and crisp boundary may not
be suitable for handling the uncertainty inherent in such
problems (Wang et al. 1990).

The boundary, in simple words, is the outer limits of feature
that is defined for better understanding and recognizing of
objects. The kinds of feature boundaries depend on their
material and their functional and temporal properties. Yet,
other difficulties such as complexity of boundaries, large
storage volume of 3D spatial data, and dynamic (spatial-
temporal) entities arise. These problems caused GIS models to
be more complicated and ineffective (Couclelis 1996).
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There are attempts for defining topological relations
between non-exact features in the literatures (Bjorke 1995;
Clementini and Di Felice 1996; Cohn and Gotts 1996; Roy
and Stell 2001). Many researchers believe that the difficulty
lies in the selection of suitable generalization of the real
world.

Leung (1987) tried to formalize the meanings of
“boundary” and “core” for fuzzy regions. Other researchers
(Gaal 1964; Lipschutz 1965; Schurle 1979; Ying-Ming and
Mao-Kang 1997; Chang 1968) defined the boundary and
interior of objects using open set concepts. Fuzzy regions
were explained as a binary relation by Altman (1994).
Schneider (1999) proved that Altman’s method is not
acceptable, since different geometric anomalies will arise.
Others (Clementini and Di Felice 1996; Clementini et al.
2000; Cohn and Gotts 1996) defined three parts for each
fuzzy region which are kernel, boundary, and exterior. Zhan
(1998, 2001) proposed an approximate model for fuzzy
relation, using fuzzy set theory. Egenhofer and Al-Taha)
1992) presented a theory for gradual changes of topological
relations and proposed a measure to assess how far two
relationships are different from each other. Sharif et al.
(1998; Egenhofer and Herring 1991) refined the Egenhofer
nine-intersection model to capture the semantics of natural
language spatial terms based on the geometry of features.

Allen (1983) identified 13 topological relations between
two temporal intervals. Kainz et al. (1993) investigated the
topological relations from the perspective of poset and
lattice theory. Randell et al. (1992) described topological
relations using their Region Connection Calculus theory,
which is based on logic. De Hoop et al. (1993) investigated
possible relationships for 3D formal data structure. Based
on the theory of fuzzy topology, Tang (2004), Tang and
Kainz (2002; Tang et al. 2003), and Shi and Liu (2004)
presented fuzzy topological relations between fuzzy spatial
objects. Du et al. (2005a, b) work on computational
methods of fuzzy topological relations, as well as a fuzzy
nine-intersection model.

Fuzzy topological relations are needed to be modeled in
GIS, particularly for decision making and deducing. For
example, the boundaries of pollution cloud and residential
area are uncertain, and we should simulate topological
relations between them for deducing and deciding in a
fuzzy controller based on variable condition. Therefore, in
this research, our main purpose is to model 3D topological
relations between two fuzzy objects A and B (3DFT). Let’s
assume that 3D fuzzy object B is moving towards 3D fuzzy
region A. As B gets closer to A, the relation gradually
changes. Using of qualifiers like clearly, mostly, somewhat,
and slightly, the topological relations between two 3D fuzzy
regions can be described as clearly disjoint, somewhat
disjoint, slightly touch, etc. The relation between 3D fuzzy
objects can also be described by inclusion or similarity index

(Bouchon-Meunier et al. 1996). These variables are entered
to a knowledge-based system and analyzed using database,
inference engine, and GIS tools.

The overall structure of this article is as follows. In
“Definitions and concepts” section, several basic concepts
of 3D fuzzy sets are presented. In “Topological relations for
3D fuzzy regions” section, 3D spatial relations are defined
using binary and fuzzy concepts and the intersection matrix
of Egenhofer. In addition, fuzzy relations are extracted
using similarity model. In “Simulation experiment” section,
decision variables and inclusion indexes are determined and
entered into a knowledge-based system and deduced using
a fuzzy controller. The case study in “Implementation
results” section is to evaluate and demonstrate the results of
the proposed method. The conclusion section outlines the
final results and some possibilities for further work.

Definitions and concepts

Mathematically, point set topology can be applied as a
fundamental tool for modeling crisp spatial objects in GIS.
Based on this theory, each region (as A) consists of its
interior (A°) and boundary (∂A). The remaining space is
called exterior (Ae). The nine-intersection matrix of
Egenhofer uses these concepts for defining topological
relations between crisp regions. Here, we define a 3D fuzzy
region based on point set theory.

Definition 1 3D fuzzy region A is characterized by its
membership function as

A ¼ x; y; zð Þ;mA x; y; zð Þf g where x; y; zð Þ 2 R3

and mA : R3 ! 0; 1½ �
ð1Þ

Here µA(x, y, z) is the membership function of a set A
from the points in the continues 3D space to the real
numbers between 0 and 1.

Definition 2 Support of fuzzy region A, denoted by supp
(A), can be defined as

Supp Að Þ ¼ x; y; zð Þ;mA x; y; zð Þ > 0f g ð2Þ

Definition 3 α-cut of fuzzy region A, denoted by Aα, will
be defined as

Aa ¼ x; y; zð Þ;mA x; y; zð Þ � af g; 8a 2 0; 1½ � ð3Þ

Definition 4 In fuzzy set theory, an element may have
partial membership in several sets. For the fuzzy region
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A, the partial membership function of its interior is
defined as

mA� x; y; zð Þ ¼ mA x; y; zð Þ for x; y; zð Þ 2 supp Að Þ�
0 Otherwise

�
ð4Þ

where supp(A)° is the interior of support A.

Definition 5 If A is considered as a fuzzy region, the
partial membership function of ∂A can be defined as
follows (Tarres 1997):

m@A x;y;zð Þ ¼ 2 min mA x;y;zð Þ; 1� mA x;y;zð Þ½ �: ð5Þ
This boundary is extracted based on the following

conditions:

(a) The maximum amount of min[µA(x, y, z), 1−µA(x, y, z)]
is 0.5 and is at ∂A.

(b) If a point has a certain membership to interior or
exterior of fuzzy region A, then m@A x;y;zð Þ ¼ 0.

(c) The fuzzy boundary of Ae is equal to the fuzzy
boundary of A°.

Definition 6 The partial membership value of Ae can be
described as follows:

mA x;y;zð Þ for x;y;zð Þ 2 supp Að Þe
mA

e x;y;zð Þ ¼
0 Otherwise

8<
: ð6Þ

Topological relations for 3D fuzzy regions

Egenhofer’s nine-intersection matrix (Egenhofer and
Franzosa 1991) can be used for representing 3D topological
relations between two simple objects.

Crisp nine-intersection matrix

In 3D space, objects can be considered as of having different
dimension and, therefore, can be divided into points (P), lines
(L), surfaces (S), and bodies (B). Accordingly, different kinds
of relations may be defined between two spatial objects. Such
relations are related to topological dimension of objects and can
be denoted as R(P, L), R(L, S),…(Egenhofer and Herring 1990).
The intersection between two objects depends on the space
rank, topological dimension (0D, 1D, 2D, and 3D), and shape
of the boundary (continuous or not). For example, two regions
can not have intersection without considering their boundary.

In Fig. 1, topological elements can be defined as follows:

0DB={P1, P2, P3, P4} 0DA={P′1, P′2, P′3, P′4}

1DB={L1, L2, L3, L4, L5, L6} 1DA={L′1, L′2, L′3, L′4, L′5, L′6}

2DB={Γ1, Γ2, Γ3, Γ4} 2DA={Γ′1, Γ′2, Γ′3, Γ′4}

3DB={B} 3DA={B′}

Each elements of A can be related to any of the elements
of B. Therefore, we could create the nine-intersection
matrix and extract the number of possible relations among
the 512 predicted relations. This is shown on Table 1,
where the nDB denotes an n-dimension object.

Considering Table 1, most of the relations can not be
found in the real world. Using constraints and rules, real
relationships can be extracted. Regarding our application,
pollution cloud and residential area can be defined as two
simple bodies; consequently, among all 512 states of the
nine-intersection matrix, only eight are real (Egenhofer and
Franzosa 1991; Fig. 2).

Therefore, nine-intersection matrix can be defined using
characteristic function (χr) and a definite set (V9) as
follows:

V A;Bð Þ ¼
A� \ B� A� \ @B A� \ Be

@A \ B� @A \ @B @A \ Be

Ae \ B� Ae \ @B Ae \ Be

0
@

1
A ð7Þ

#rðvÞ ¼ 0 v ¼ 0
1 Otherwise:

�
ð8Þ

Fuzzy nine-intersection matrix

Fuzzy nine-intersection matrix (Bjorke 1995) is a general-
ization of the crisp nine-intersection matrix. If Fuzzy nine-

Fig. 1 3D topological relation between two simple objects

Table 1 Number of possible topological relations between two simple
3D objects

512* 0DB 1DB 2DB 3DB

0DB 16 24 16 4

1DB 24 36 24 6

2DB 16 24 16 4

3DB 4 4 4 1
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intersection matrix between A and B is shown by F9, then
(Yager 1982)

mF9ðvÞ ¼ HðvÞ for all v 2 V ð9Þ
where H is “height” or the maximum of the intersection
membership value for A and B. Then, the result will be the
following notation.

F A;Bð Þ ¼
H A� \ B�ð Þ H A� \ @Bð Þ H A� \ Beð Þ
H @A \ B�ð Þ H @A \ @Bð Þ H @A \ Beð Þ
H Ae \ B�ð Þ H Ae \ @Bð Þ H Ae \ Beð Þ

0
@

1
A

ð10Þ
Since the fuzzy nine-intersection matrix is based on

the interior, boundary, and exterior sets, each point of
the space has associated membership values regarding
A°, ∂A, and Ae. This idea of the fuzzy nine-intersection is
in accordance with the fundamental principles of fuzzy
sets.

Computing similarity

For any two objects having crisp and fuzzy topological
relations, the type and strength of the relationships can be
determined using the similarity concept. The type of
relations between two objects can be described using
nine-intersection matrix. To do this, it is necessary to detect
the set of spatial points that certainly belong to the boundary
set m@A ¼ 1ð Þ (Yager 1982).

The crisp relations can be associated with a characteristic
function χr(v), where r∈R8 possesses the properties of

fuzzy sets. Comparison between F9 and R8 can be
formalized as a fuzzy relation Ф(F9, r) for all r∈R8. Then,
the membership function mΦ F9; rð Þ can represent the
similarity between F9 and r.

mΦ F9; rð Þ ¼ g F9 ^ rð Þ _ F�9 ^ r�
� �� � ð11Þ

where ∧ and ∨ show the Fuzzy minimum and maximum
operators, F9− and r− are the complements of F9 and r, γ is
the minimum of memberships, and µ(F9, r) demonstrates
the amount of similarity between F9 and r1, r2, r3, r4, r5, r6,
r7, or r8. Consequently, µ(F9, r) can determine the strength
and type of 3D topological relations.

Simulation experiment

The following experiments were used as a guide in
examining the properties of the presented model between
3D fuzzy regions.

Decision variables

By computing the similarity between fuzzy nine-
intersection matrix and binary relations matrix, the two
closest relations are selected (based on experiments results)
and combined in a quad set characterized as:

Q ¼ q rið Þ; n rið Þ; q rj
� �

; n rj
� �� � ð12Þ

In which, n(ri) and n(rj) are the two closest relations and
are called the superior and the sub-superior relations, and q
(ri) and q(rj) are their quantifiers. If the quantifier of the
superior relation rj is “no”, only the sub-superior relation is
applied.

Classifying µФ(F9, r) and labeling each class with a natural
language term, the strength of relations will be defined using
“no”, “slightly”, “somewhat”, “mostly”, and “clearly” terms.

q rð Þ ¼

0clearly0 if 0:9 < mf F9;rð Þ
0mostly0 if 0:7 < mf F9;rð Þ � 0:9
0somewhat0 if 0:5 < mf F9;rð Þ � 0:7
0slightly0 if 0:02 < mf F9;rð Þ � 0:5
0no0 if mf F9;rð Þ � 0:02

8>>>><
>>>>:

ð13Þ

These classes are chosen arbitrarily. A spatial knowledge-
based system is designed for alarming in a control center using
decision variables and fuzzy “If–Then” rules. The center is to
analyze and decide on 3D fuzzy topological relations between
pollution cloud and a residential area, using a spatial
knowledge-based system.

The system works online and decides when to alarm
about air condition. The system is responsive to changes in
the values of decision variables with respect to the
conditions in the real world.

Fig. 2 Topological relations between two simple 3D bodies
(Egenhofer and Herring 1990)
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Inclusion index

Since decision variables represent only qualitative informa-
tion, an inclusion measure can be defined to add quantitative
information to the topological descriptions. There are several
measures proposed in the literatures (Bouchon-Meunier et al.
1997; Young 1996). In this paper, we define an inclusion
measure II* for fuzzy raster regions as:

II* A;Bð Þ ¼ Aj j= B*j j ð14Þ
In which |A| and |B*| are the cardinality values for fuzzy

sets A and B*, which are defined as follows:

mIIðuÞ ¼ 1 mBðuÞ � mAðuÞ
0 otherwise

:

�
ð15Þ

mB*ðuÞ ¼
1 mBðuÞ > 0
0 otherwise

:

�
ð16Þ

in which u is a non-overlapped raster pixel, and II is an
inclusion index calculated by Eq. 14.

Fuzzy spatial deductive system

Fuzzy spatial deductive systems work based on spatial
controllers. Such systems along with proper spatial inference
engines can be very useful for decision makers. Topological
decision variables and quantifiers that are described conceptu-
ally can be used for recording spatial alteration in knowledge-
based systems. In this regard, topological relations and
decision variables should be represented as If–Then rules in a
knowledge-based system. In both control theory and the theory
of approximate reasoning, much of the knowledge about
system behavior and system control can be stated in the form
of If–Then rules. Finally, the interactive relation will be created
using 3D fuzzy topology and expert knowledge (Fig. 3).

In a spatial proposition of knowledge, a component
statement can be modeled by a fuzzy set. A single spatial
fuzzy IF–Then rule, which relates several components, can be
regarded as a fuzzy relation. This fuzzy relation can be
interpreted as the strength of relation between two fuzzy
variables. Denoting the degree of memberships in fuzzy
relations, they are combined using fuzzy implications by
inference engines.

Inference engine can infer based on fuzzy implication
operators such as Mamdani, Max–Min, Zadeh, Larson,

Arithmatic, Boolean, Bonded product, Drastic product,
Gogen, and Godlin. Mamdani proposed a fuzzy implication
rule for fuzzy control. It is a simplified version of Zadeh
(1979) operator in the form of fuzzy implication (relation
(shortly R(A,B)) between the so called rule premise: x is A
and rule consequence: y is B. Let x be from universe X, y
from universe Y, and let x and y be linguistic variables.
Fuzzy set A in X is characterized by its membership
function μ. In engineering applications, the Mamdani
implication is widely used and is given as:

R A;Bð Þ ¼ mAðxÞ ^ mBðyÞ ð17Þ

where ∧ is fuzzy minimum operator.
The other important part of the fuzzy logic controllers is

the inference mechanism. One of the widely used methods
is the generalized modus ponens, in which, the inference “y
is B′” is obtained.

B0ðyÞ ¼ _ A0ðxÞ ^ RAi Bi x;yð Þð Þ ð18Þ

In this relation, Ai(x) is the “If” part and Bi(y) is the
“Then” part of the rule. A′(x) is a real condition, RAi_Bi(x, y)
is the Mamdani implication, and ∨ is the fuzzy supremum
operator. Generally speaking, the consequence (rule output)
is provided by fuzzy set B′(y), which is derived from rule
consequence B(y), as a cut of the B(y).

Implementation results

The methodology is implemented using VB and Matlab
programming languages. This fuzzy system models uncer-
tainty of the input and output parameters by defining fuzzy
numbers and sets as linguistic variables. Fuzzy rule-based
systems are performed based on If–Then verbal rules that
are overlapped through the space for handling the non-
linear relations. If–Then rules, which are conditional state-
ments, consisted of a set of conditions that are satisfied (If)
and a set of consequents that can be inferred (Then).The
schematic diagram of fuzzy rule-based system is shown in
Fig. 5, which is composed of five operational layers
including input linguistic nodes, input term nodes, rule
nodes, output term nodes, and output linguistic nodes. In
this structure, fuzzy linguistic node represents a fuzzy
variable, term node indicates mapping degree of a fuzzy
variable, and rule node demonstrates a rule that decides on
severity of firing during inference. First and second layers
are called premise layers, and the last two layers are called
consequential layers. For more clarifying layers, they are
described as follows:

Layer1 In this layer, nodes can directly transfer input values
to layer2. If input vector for tth mode is It=(It1, It2,…, Itm)Fig. 3 Overall view of spatial controller system

Appl Geomat (2009) 1:121–129 125



with Itm input value of mth fuzzy variable for tth mode, then
tth output vector of this layer will be:

m : I ! ½0; 1�
mt
Layer1 ¼ ð It11; It12; . . . ; It1n1ð Þ; ðIt21; It22; . . . ; It2n2Þ; . . . ;

Itm1; Itm2; . . . ; ItmnmÞÞ
� ð19Þ

where Itmk is input value of kth linguistic term in mth
fuzzy variable for tth mode, and a fuzzy linguistic term
is represented by membership function μ. The great
advantage of these linguistic terms is that they can
model what experts are actually thinking about the
application.

Layer2 In layer 2, outputs of fuzzy variables are linked to
the third layer’s nodes to create lawful conditions, consid-
ering some specified rules. These outputs should be
obtained from linguistic nodes that are specified in fuzzy
rules. Consequently, this layer carries out the first step of
reasoning for calculating matching degrees of conditional
nodes in the premise part of rules. So, if the input vector of

this layer is mt
Layer1, then the output vector can be obtained

as follows:

mt
Layer2 ¼ ððMt11;Mt12; . . . ;Mt1n1Þ;

ðMt21;Mt22; . . . ;Mt2n2Þ; . . . ; ðMtmn1 ;Mtmn2 ; . . . ;MtmnmÞÞ

MTriangular xð Þ ¼

0

x� x1
x2 � x1
x3 � x

x3 � x2

1

x < x1

x1 � x < x2

x2 � x < x3

x3 � x

x1 < x2 < x3

8>>>>>>>><
>>>>>>>>:

ð20Þ
where M2

tmk is membership degree of kth linguistic term in
mth fuzzy variable for tth mode. Membership functions can
classify an input variable into varying degrees of different
labels rather than “0” or “1” used in binary logic. In this
paper, trapezoidal functions are used for membership
functions of linguistic terms. For example, fuzzy variables
of smoke persistency and wind direction are designed and
introduced in the knowledge-base system.

Fig. 4 Decision variables for
pollution cloud A moves to
residential area B
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Layer3 In this layer, each rule node represents a fuzzy If–
Then rule. These 20 rules are experimentally introduced to the
knowledge base as initial preconditions using expert ques-
tionnaires. In the following, calculation of matching degrees
of preconditions, mt�rnode1

Layer3 , and weight of output link,
Wt�rnode1

Layer3 , is provided for rule node 1 in tth mode.

mt�rnode1
Layer3 ¼ min Mt11:::Mtmn1ð Þ

Wt�rnode1
Layer3 ¼ Qm

o¼1
Mto1

ð21Þ

Where, min is a fuzzy minimum operator and Π
multiplies membership degrees M.

Layer4 Output fuzzy variable of fuzzy rule base is a risk
value, ranging between zero and one. In Fig. 5, this output
variable has been specified with five terms: “very high”,
“high”, “medium”, “low”, and “very low”. Then, the output
of the fourth layer can be calculated as follows:

Table 2 The variation of inclusion index

Relation Inclusion index

Minimum Mean Maximum

Disjoint 0.00 0.00 0.00

Disjoint/touch 0.00 0.02 0.07

Touch/disjoint 0.01 0.04 0.16

Touch/overlap 0.06 0.11 0.28

Overlap/touch 0.09 0.32 0.68

Overlap 0.18 0.50 0.83

Overlap/inside 0.60 0.69 0.89

Inside/overlap 0.87 0.89 0.95

Inside 0.92 0.96 1

Overlap/covers 0.13 0.20 0.59

Fig. 5 General view of the
spatial deductive system

3max{ } ) max{ } ) max{ } )( ( , ( , ( ,

max{ } ) max{ } )( , ( )

tPVL tPL tPMt verylow low mediumC C CLayer3 Layer3 Layer3Layer4
PVL Verylow PL low PM Medium

tPH tPVHhigh veryHighC CLayer3 Layer3
PH High PVH Veryhigh

µ µµ µ

µ µ

× × ×=

∈ ∈ ∈

× ×

∈ ∈

1tS
2tS 3tS

4tS 5tS

(22)
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Where C (Centroid) means the center of gravity
function, which is used for defuzzyfying, and max is fuzzy
maximum operator. In our case, the fuzzy reasoning method
is the classical Mamdani, playing the role of the implication
and conjunctive operators, and the center of gravity
weighted by the matching strategy acting as defuzzification
operator.

Layer5 In this layer, considering Eq. 4, yt is calculated
using Eq. 5:

yt ¼
P5

h¼1 wth � sthP5
h¼1 wth

ð23Þ

where Wth is the aggregated weights of rule nodes for each
output linguistic term.

The case study of Fig. 4 shows how pollution cloud A
moves to residential area B and topological relations
change from clearly disjoint to clearly inside. The amount
of inclusion indexes which sorted in Table 2 are derived
from the variation of topological relation between A and B.
The means of the values for “touch/overlap” and “overlap/
touch” are 0.11 and 0.32, respectively. The range of
inclusion index is the broadest in overlap relationship
(0.18–0.83), and the narrowest in inside and disjoint
relationships.

The resulted system installed in the control center for
online warning and making decision using fuzzy spatial
knowledge-base system and entered real-time satellite data.
The inputs of this system are satellite images, collected
knowledge, and different GIS layers. Digital terrain model
is one of the important input data for extracting relation
from the map.

As shown in Fig. 5, a spatial fired rule is saved in the
knowledge-base system and connected to the interface
interactively.

Conclusions

The main result of this study was to provide a spatial
deductive system for modeling 3D topological relations of
fuzzy spatial objects in GIS environment. The system
includes a spatial knowledge-base system and is capable of
making decision on dynamic 3D fuzzy features.

One significant step here was the extraction of 3D fuzzy
topological relationships between two spatial regions. This
can be done by computing the similarity between the 3D
fuzzy nine-intersection matrix and crisp matrix. The
decision variables, extracted from similarity computation,
provide an intuitive, informative, and generalized descrip-
tion to be entered to the knowledge rules in a deductive
system.

A topic for further study is to investigate how lattice
theory algebra can be applied in further development of the
3D fuzzy nine-intersection.
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