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Abstract In this paper, we extend some methods for obtaining the Wald, score and likeli-
hood ratio confidence intervals for the mean of the Takacs (generalized negative binomial)
distribution. Also, we present these confidence intervals for the mean of the binomial and
negative binomial distributions as the special cases of the Takacs distribution. The Takacs
distribution is a member of the natural exponential family with cubic variance function
(NEF-CVF). The coverage probabilities for these confidence intervals are estimated by
means of a simulation study. The results show that the score and likelihood ratio intervals
are better than Wald interval, and the Wald interval has the poorest performance.
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1. INTRODUCTION

Interval estimations for natural exponential family (NEF) are the important top-
ics that discussed in many references such as Santner (1998), Agresti and Coull
(1998), Brown et al. (2001, 2002), Cai (2005), Sun et al. (2008), Arefi et al.
(2008), and Cai and Wang (2009). In these references, we can study some confi-
dence intervals such as: Wald, score, Agresti-Coull, likelihood ratio, and Jefferys.
Also, Brown et al. (2003) investigated these intervals and their coverage probabil-
ities for natural exponential family with quadratic variance function (NEF-QVF).
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The NEF-QVF contains six distributions as: normal, gamma, generalized hyper-
bolic secant (GHS), binomial, negative binomial and Poisson. The confidence in-
tervals for the parameters of the binomial distribution have garnered a substantial
amount of attention in recent years; for example, see Reiczigel (2003), Zhou et al.
(2004), Brown and Li (2005), Roths and Tebbs (2006), and Wang (2007). Also,
Arefi et al. (2008) studied some confidence intervals for the mean of an inverse
Gaussian distribution. This distribution is a member of the natural exponential
family.

In present work, some methods are investigated to obtain the confidence in-
tervals for the mean of the binomial, negative binomial, and Takacs distributions.
Note that the Takacs distribution is an important member of the NEF, whose the
variance is a cubic function of the mean µ . Also, we estimate the coverage prob-
abilities for these confidence intervals by means of a simulation study.

This paper is organized as follows: In Section 2, we introduce the NEF. In
Section 3, the confidence intervals for the means of the binomial, negative bino-
mial and Takacs distributions are studied. In Section 4, the coverage probabilities
of the proposed intervals are estimated by means of a simulation study. In Section
5, we apply the proposed intervals for the mean of a Takacs distribution on a real
data set. A brief conclusion is provided in Section 6.

2. NATURAL EXPONENTIAL FAMILY

The natural exponential family (NEF) represents a very important class of dis-
tributions in probability and statistical theory. Excellent accounts of exponential
family theory are contained in Barndorff-Nielsen (1978) and Letac (1992). Here,
we present and study a special case of NEF. In this case, the variance of the dis-
tribution is a function of the mean.

Let X be a random variable with the probability (density) function f �x;ξ �. X
is said to have a distribution belonging to NEF if

f �x;ξ � � exp�ξ x�ψ�ξ ��h�x� �1�
where, ξ is the natural parameter and h�x� is a real valued (normalized) function
of x (see Bickel and Doksum, 1977). It is possible to show that, if f �x;ξ � is as
�1�, then µ � E�X� � ψ ��ξ � and σ2 �Var�X� � ψ ���ξ �. In a special case, if the
variance can be based on the mean µ as

σ 2 �Var�X� � a0 �a1µ �a2µ2�a3µ3 �2�
where a0, a1, a2, and a3 are suitable constants, then it is said to be a “NEF with
cubic variance function". Morris (1982, 1983) and Brown (1986) studied some
properties for the NEF with quadratic variance function (a3 � 0 in (2)). Nor-
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mal, gamma, generalized hyperbolic secant (GHS), binomial, negative binomial,
and Poisson distributions are the members of the natural exponential family with
quadratic variance function (NEF-QVF).

Also, Letac and Mora (1990) studied some properties for the natural expo-
nential family with cubic variance function (NEF-CVF). Ressel, inverse Gaus-
sian, Abel, Takacs, strict arcsine, and large arcsine distributions are the members
of NEF-CVF. In this paper, we study some confidence intervals for the mean of
the binomial, negative binomial, and Takacs distributions. Hence, we list some
necessary facts for these distributions as follows.

� Binomial: A binomial (Bernoulli) distribution Bin�1� p� has the probability
mass function

f �x� � px�1� p�1�x x � 0�1 0 � p � 1�

Here, µ � E�X� � p and Var�X� � p�1� p� � µ�µ2. Hence, a0 � a3 � 0,
a1 � 1, and a2 ��1.

� Negative Binomial: A negative binomial distribution NBin�1� p� has the proba-
bility mass function

f �x� � px�1� p� x � 0�1� ��� 0 � p � 1�

In this case, µ � p
1�p and Var�X� � p

�1�p�2 � µ � µ2. Hence, a0 � a3 � 0
and a1 � a2 � 1.

� Takacs (generalized negative binomial): A random variable X has a Takacs
distribution GNB�1�m� p�, if its probability mass function is

f �x��
1

1�mx

�
1�mx

x

�
px�1� p�1��m�1�x x� 0�1�2� ��� �3�

where, 0 � p � 1 and 0 � m � p�1. In this case, µ � p
1�mp and Var�X� �

µ�1�mµ��1��m� 1�µ�. Hence, a0 � 0, a1 � 1, a2 � 2m� 1, and a3 �

m�m�1�.

Note that, the binomial and negative binomial distributions are the special cases
of the Takacs distribution with m � 0 and m � 1 in �3�, respectively.
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3. CONFIDENCE INTERVALS FOR THE MEANS OF BINOMIAL,

NEGATIVE BINOMIAL, AND TAKACS DISTRIBUTIONS

Let X1�X2� ����Xn be a random sample of size n from f �x;ξ � given by (1). The
maximum likelihood estimation (MLE) for the mean µ is the sample mean µ̂ � X̄ .
Now, we want to obtain some confidence intervals for µ , at the confidence level
1�α (for more detail about these confidence intervals, see Brown et al., 2003 and
Arefi et al., 2008).

Definition 1 The Wald interval �CIW � is based on Slutsky’s statistic Wn �
n1�2��µ�µ�

σ̂
as follows:

CIW : �µ� k�σn�1�2 � �µ� k�a0�a1�µ �a2�µ2�a3�µ3�1�2n�1�2

where k � z1�α�2. Note that, Slutsky’s statistic converges to N�0�1� in distribution
(see Casella and Berger, 2002).

Definition 2 The score interval �CIS� is based on the central limit theorem with

the statistic Z � n1�2��µ�µ�
σ as follows:

�k � n1�2��µ�µ�
�a0�a1µ�a2µ2�a3µ3�1�2 � k �4�

where, k � z1�α�2. Note that, this interval is obtained by inverting Rao’s equal-
tailed score test of H0 : µ � µ0.

Remark 1 The score interval in �4� for the means of the binomial and negative
binomial distributions is summarized as follows:

CIS :
n�µ � k2�2
n� k2a2

�
kn1�2

n� k2a2

��µ �a2�µ2�
k2

4n

�1�2

�

Remark 2 For calculating the score interval for the mean of the Takacs dis-
tribution, we should solve some cubic equations in terms of µ . The theoretical
approach for calculating the score interval is difficult. Hence, we use LINGO
software for necessary calculations.

Definition 3 Let Λn �
L�µ0�

supµ L�µ� be the likelihood ratio. The likelihood ratio inter-

val �CILR� is obtained by solving the equation �2logΛn � χ2
α �1 � k2 in terms of

µ . It is obtained by inverting the likelihood ratio test under H0 : µ � µ0 (for more
detail, see Rao, 1973 and Serfling, 1980).
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In the following, we study these confidence intervals for the binomial, negative
binomial, and Takacs distributions.

� Binomial: Let X1�X2� ����Xn be a random sample of size n from a Bin�1� p�.
The above intervals for the mean p are calculated as follows (�p ��µ � X
and �q � 1� �p):
i) Wald interval: This confidence interval, at the confidence level 1�α , is
obtained as

CIW : �µ� k��µ�1� �µ��1�2n�1�2�

ii) Score interval: We calculate the score interval, at the confidence level
1�α , as follows

CIS :
n�µ � k2�2

n� k2 �
kn1�2

n� k2 ��µ�1� �µ�� k2

4n
�1�2�

iii) Likelihood ratio interval: The likelihood ratio is given by

Λn �

�
µ�µ
�n�µ �1�µ

1� �µ
�n�1��µ�

�

The equation �2logΛn � k2 in terms of µ has two roots. These roots are
the limits of the likelihood ratio interval. By substituting t � µ

�µ � 1 in the

equation �2log Λn � k2 and using Maclaurin series, we obtain the follow-
ing relation

1
2�1� �µ� t2�

2�µ �1
3�1� �µ�2 t3

�
1�3�µ�1� �µ�

4�1� �µ�3 t4
�

k2

2n�µ � O�n�2��

If we solve this equation in terms of b0, b1, b2, and b3 with t � b0 �

b1n�1�2
� kb2n�1�b3n�3�2, then we have:

b0 � 0� b1 ��k
�

�1��µ�
�µ

�1�2
�

b2 ��
k�1�2�µ�

3�µ � b3 ��
k3�1�13�µ�1��µ��
�µ3�2�1��µ�1�2 �

So the roots in term of t are approximated as follows:�
t � b0 �b1n�1�2

� kb2n�1�b3n�3�2 �O�n�2��

t � b0 �b1n�1�2� kb2n�1�b3n�3�2 �O�n�2��
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Thus, the likelihood ratio interval for µ , at the confidence level 1�α , is

�µ�t �1�� p� �µ�t �1��

� Negative binomial: Consider a random sample of size n from a negative bi-
nomial distribution NBin�1� p�. The different intervals for the mean µ � p

q ,
at the confidence level 1�α , are calculated as follows
i�) Wald interval: This confidence interval is obtained as follows

CIW : �µ� k��µ � �µ2�1�2n�1�2�

ii�) Score interval: The score interval for µ is calculated as follows

CIS :
n�µ � k2�2

n� k2 �
kn1�2

n� k2 ��µ�1� �µ�� k2

4n
�1�2�

iii�) Likelihood ratio interval: The likelihood ratio is given by

Λn �

�
µ�µ
�n�µ �1� �µ

1�µ

�n�1��µ�
�

The roots of equation �2logΛn � k2 are the limits of the likelihood ratio
interval. By substituting t � µ

�µ �1 in the equation �2logΛn � k2 and using
Maclaurin series, we obtain the following relation

1
2�qt2�

2�p�1
3�q2 t3

�
1�3�p�q

4�q3 t4
�

k2

2n�p � O�n�2��

where �p � �µ
1��µ and �q � 1� �p. If we solve this equation in terms of b0, b1,

b2, and b3 with t � b0�b1n�1�2� kb2n�1�b3n�3�2, then we have

b0 � 0� b1 ��k
�

1��µ
�µ

�1�2
�

b2 ��
k�1�2�µ�

3�µ � b3 ��
k3�1�13�µ�1��µ��
36�µ3�2�1��µ�1�2 �

So the roots in term of t are approximated as follows�
t � b0�b1n�1�2� kb2n�1�b3n�3�2�O�n�2��

t � b0�b1n�1�2 � kb2n�1�b3n�3�2�O�n�2��
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Thus, the likelihood ratio interval for µ , at the confidence level 1�α , is

�µ�t �1�� µ � �µ�t �1��

� Takacs Let X1�X2� ����Xn be a random sample of size n from a GNB�1�m� p�,
where m is a known parameter. In the following, Wald interval and the like-
lihood ratio interval for the mean µ � p

1�mp are calculated. Note that, the
score interval for the mean is based on a numerical method (see Remark 2).

i��) Wald interval: This confidence interval for µ , at the confidence level
1�α , is obtained as

CIW : �µ � kn�1�2�µ1�2�1�m�µ�1�2�1��m�1��µ�1�2
�

ii��) Likelihood ratio interval: The likelihood ratio is given by:

Λn �

�
µ�1�m�µ��µ�1�mµ�

�nx�1��m�1�µ
1��m�1��µ �

1�m�µ
1�mµ

�n�1��m�1�x�

�

�
p�p
�nx

�
1� p
1� �p�n�1��m�1�x�

�

where, �p � �µ
1�m�µ and �q � 1� �p. By substituting t � µ�1�m�µ�

�µ�1�mµ� � 1, the fol-
lowing function is a convex function of t

� lnΛn ��nx

�
ln�1� t��

q̂
p̂

ln
�

1�
p̂
q̂

t

��
�

Hence, the equation �2lnΛn � k2 has two roots. These roots are the limits
of the likelihood ratio interval for t. Now, we want to approximate this

limits. Based on Maclaurin series of ln�1� t� ��∑∞
i�1

��t�i

i , the equation
�2lnΛn � k2 can be changed as follows:

1
2�qt2 �

2�p�1
3�q2 t3�

1�3�p�1� �p�
4�q3 t4�

k2

2n�p � O�n�2��

If we solve this equation based on b0, b1, b2, and b3 with t � b0�b1n�1�2�

kb2n�1�b3n�3�2, then we have

b0 � 0� b1 ��k
�
�q
�p

�1�2
�

b2 ��
k�1�2�p�

3�p � b3 ��
k3�1�13�p�q�
�p3�2

�q1�2 �
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So the roots in term of t are approximated as�
t ��k��q��p�1�2n�1�2� 1

3 k2�1�2�p��n�p��1
�

1
36 k3�1�13�p�q��q�1�2�n�p��3�2�O�n�2��

t ��k��q��p�1�2n�1�2� 1
3 k2�1�2�p��n�p��1

�

1
36 k3�1�13�p�q��q�1�2�n�p��3�2�O�n�2��

Thus, the likelihood ratio interval for µ , at the confidence level 1�α , is

�p �t �1�
1�m�p�t �1�

� µ �
�p �t �1�

1�m�p�t �1�
�

Remark 3 If m is an unknown parameter of the Takacs distribution, then a point
estimator should be substituted instead of m in the above relations (for example,

the moment estimator for m is obtained as �m � 1
2

��
1� 4S2

X3 �1
�
� 1

X
, where

s2 � 1
n ∑n

i�1�Xi�X�2).

4. ESTIMATED COVERAGE PROBABILITY VIA A SIMULATION STUDY

In this section, the coverage probability for the confidence intervals is estimated
by means of a simulation study.

Definition 4 let �L�x��U�x�� be a confidence interval for the mean µ , at the con-
fidence level 1�α , and based on a random sample of size n. The process (cal-
culating the confidence interval) is repeated with w repetitions. The estimated
coverage probability (ECP) is defined as the proportion of confidence intervals
containing µ .

We simulate the ECP based on w � 10000 repetitions, and at the confidence
level 1�α � 0�95. Some results of ECP for the proposed intervals are shown
in Figures 1-3 based on n � 5�6� ����200 and the fixed parameters p (p � 0�2 in
binomial distribution, p � 0�75 in negative binomial distribution, and p � 0�25 in
Takacs distribution). Also, the results of ECP are shown in Figures 4-6 for the
different values of p, and the fixed values of the size of random sample. See also
Tables 1-4 for the other results of ECP based on some parameters of the binomial,
negative binomial, and Takacs distributions.
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Figure 1: ECP in binomial distribution with p � 0�2, and n from 5 to 200.

Figure 2: ECP in negative binomial distribution with p � 0�75, and n from 5 to 200.

Figure 3: ECP in Takacs distribution with �m� p� � �2�0�25�, and n from 5 to 200.

Figure 2: ECP in negative binomial distribution with p = 0.75, and n from 5 to 200.

Figure 3: ECP in Takacs distribution with (m, p) = (2, 0.25), and n from 5 to 200.

Figure 1: ECP in binomial distribution with p = 0.2, and n from 5 to 200.
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Figure 4: ECP in binoimal distribution with n� 25, and p� 0�01�0�02� ����0�99.

Figure 5: ECP in negative binoimal distribution with n� 25, and p� 0�01�0�02� ����0�99.

Figure 6: ECP in Takacs distribution with the values n� 150, m� 0�95, and p� 0�005�0�010� ����0�490.

Figure 5: ECP in negative binomial distribution with n = 25, and p = 0.01, 0.02, …,
0.99.

Figure 4: ECP in binomial distribution with n = 25, and p = 0.01, 0.02, …, 0.99.

Figure 6: ECP in Takacs distribution with the values n = 150,  m = 0.95, and p =
0.005, 0.010, …, 0.490.
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p� 0�1 p� 0�2 p� 0�3 p� 0�4 p� 0�5 p� 0�6 p� 0�7 p� 0�8 p� 0�9
ECPW 0.9159 0.8813 0.9502 0.9411 0.9538 0.9320 0.9463 0.8833 0.9218

n� 25 ECPS 0.9670 0.9242 0.9249 0.9411 0.9538 0.9320 0.9218 0.9258 0.9650
ECPLR 0.8916 0.9542 0.9502 0.9411 0.9538 0.9320 0.9463 0.9564 0.8971
ECPW 0.8762 0.9395 0.9370 0.9405 0.9358 0.9429 0.9340 0.9386 0.8798

n� 50 ECPS 0.9650 0.9516 0.9574 0.9405 0.9358 0.9429 0.9572 0.9543 0.9705
ECPLR 0.9347 0.9516 0.9574 0.9405 0.9358 0.9429 0.9572 0.9543 0.9417
ECPW 0.9361 0.9328 0.9494 0.9481 0.9418 0.9488 0.9497 0.9353 0.9319

n� 100 ECPS 0.9372 0.9405 0.9388 0.9481 0.9418 0.9488 0.9382 0.9419 0.9372
ECPLR 0.9579 0.9534 0.9494 0.9481 0.9418 0.9488 0.9497 0.9560 0.9557
ECPW 0.9288 0.9431 0.9468 0.9493 0.9399 0.9548 0.9444 0.9396 0.9260

n� 200 ECPS 0.9577 0.9617 0.9511 0.9493 0.9399 0.9548 0.9432 0.9577 0.9582
ECPLR 0.9425 0.9504 0.9511 0.9493 0.9399 0.9548 0.9432 0.9475 0.9427

Table 2: Some ECPs for the mean of negative binomial distribution.

p� 0�1 p� 0�2 p� 0�3 p� 0�4 p� 0�5 p� 0�6 p� 0�7 p� 0�8 p� 0�9
ECPW 0.9281 0.9298 0.9169 0.9280 0.9213 0.9185 0.9329 0.9282 0.9297

n� 25 ECPS 0.9718 0.9537 0.9527 0.9468 0.9504 0.9484 0.9493 0.9460 0.9516
ECPLR 0.9002 0.9573 0.9399 0.9563 0.9414 0.9435 0.9495 0.9437 0.9522
ECPW 0.9040 0.9445 0.9304 0.9323 0.9398 0.9360 0.9398 0.9410 0.9413

n� 50 ECPS 0.9599 0.9587 0.9530 0.9500 0.9530 0.9498 0.9510 0.9493 0.9521
ECPLR 0.9540 0.9549 0.9515 0.9484 0.9478 0.9492 0.9497 0.9483 0.9489
ECPW 0.9099 0.9378 0.9418 0.9498 0.9378 0.9416 0.9453 0.9470 0.9469

n� 100 ECPS 0.9395 0.9420 0.9524 0.9514 0.9504 0.9521 0.9490 0.9523 0.9540
ECPLR 0.9329 0.9374 0.9505 0.9506 0.9470 0.9522 0.9482 0.9494 0.9526
ECPW 0.9341 0.9351 0.9444 0.9428 0.9501 0.9456 0.9486 0.9448 0.9476

n� 200 ECPS 0.9448 0.9496 0.9487 0.9492 0.9547 0.9504 0.9473 0.9496 0.9525
ECPLR 0.9418 0.9492 0.9480 0.9524 0.9547 0.9513 0.9489 0.9497 0.9520

Table 3: Some ECPs for the mean of Takacs distribution with m� 2 (0 � p �
1
m ).

p� 0�05 p� 0�10 p� 0�15 p� 0�2 p� 0�25 p� 0�30 p� 0�35 p� 0�40 p� 0�45
ECPW 0.7187 0.7639 0.8315 0.8902 0.8977 0.8656 0.8704 0.8213 0.6918

n� 25 ECPS 0.9310 0.9671 0.9625 0.9558 0.9581 0.9559 0.9556 0.9664 0.9998
ECPLR 0.9761 0.9086 0.9699 0.9345 0.9501 0.9563 0.9490 0.9518 0.9444
ECPW 0.9229 0.9191 0.9064 0.8877 0.9016 0.8981 0.8949 0.8635 0.6854

n=50 ECPS 0.9657 0.9621 0.9573 0.9549 0.9504 0.9540 0.9581 0.9737 0.9843
ECPLR 0.9089 0.9526 0.9529 0.9582 0.9436 0.9510 0.9487 0.9539 0.9277
ECPW 0.8902 0.9369 0.9427 0.9270 0.9216 0.9269 0.9123 0.8951 0.6039

n=100 ECPS 0.9572 0.9487 0.9526 0.9559 0.9541 0.9565 0.9566 0.9749 0.9948
ECPLR 0.9441 0.9432 0.9454 0.9533 0.9417 0.9543 0.9465 0.9571 0.8833
ECPW 0.9031 0.9251 0.9412 0.9369 0.9456 0.9363 0.9332 0.9089 0.4248

n=200 ECPS 0.9501 0.9467 0.9512 0.9553 0.9505 0.9511 0.9523 0.9731 0.9313
ECPLR 0.9631 0.9451 0.9488 0.9475 0.9497 0.9465 0.9492 0.9576 0.7311

Table 4: Some ECPs for the mean of Takacs distribution with m� 0�5 (0 � p � 1
m ).

p� 0�1 p� 0�2 p� 0�3 p� 0�4 p� 0�5 p� 0�6 p� 0�7 p� 0�8
ECPW 0.9365 0.9185 0.9365 0.9145 0.9360 0.9295 0.9215 0.8600

n� 25 ECPS 0.9425 0.9715 0.9445 0.9610 0.9415 0.9365 0.9390 0.8945
ECPLR 0.9200 0.9550 0.9580 0.9405 0.9415 0.9365 0.9390 0.8945
ECPW 0.8946 0.9219 0.9266 0.9233 0.9389 0.9324 0.9155 0.8622

n=50 ECPS 0.9552 0.9556 0.9466 0.9500 0.9578 0.9433 0.9241 0.8903
ECPLR 0.9509 0.9516 0.9444 0.9336 0.9469 0.9433 0.9241 0.8903
ECPW 0.9456 0.9448 0.9419 0.9378 0.9455 0.9419 0.9209 0.8422

n=100 ECPS 0.9408 0.9455 0.9499 0.9515 0.9472 0.9488 0.9258 0.8634
ECPLR 0.9567 0.9455 0.9480 0.9438 0.9455 0.9488 0.9258 0.8422
ECPW 0.9525 0.9417 0.9438 0.9486 0.9446 0.9405 0.9184 0.7664

n=200 ECPS 0.9556 0.9521 0.9483 0.9424 0.9492 0.9371 0.9184 0.7888
ECPLR 0.9556 0.9503 0.9554 0.9485 0.9499 0.9371 0.9184 0.7888

Table 1: Some ECPs for the mean of binomial distribution

Table 2: Some ECPs for the mean of negative binomial distribution

Table 3: Some ECPs for the mean of Takacs binomial distribution with m=2 (0<p< 1
m

).

  Table 4: Some ECPs for the mean of Takacs binomial distribution with m=5 (0<p< 1
m

)
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Based on the above results (Fig. 1-6 and Tables 1-4), we can infer the follow-
ing information for the estimated coverage probability (ECP) in binomial, nega-
tive binomial, and Takacs distributions.

� The ECP of the proposed intervals are organized as ECPW � ECPLR � ECPS.

� In binomial distribution, when the parameter p goes to 0�5, the ECP of Wald
interval increases. Also, when the parameter p goes to 0 or 1, the ECP of
the score and likelihood ratio intervals increase (see Fig. 4 and Table 1).

� In negative binomial distribution, when the parameter p goes to 1, the ECP of
Wald interval increases. Also, when the parameter p goes to 0, the ECP of
score and likelihood ratio intervals increase. (See Fig. 5 and Table 2).

� In Takacs distribution with the known parameter m, the ECP of Wald inter-
val increases for a p about median of parameter space (p � min� 1

2m �0�5�).
Also, when the parameter p goes to 0, the ECP of score and likelihood ratio
intervals increase. (See Fig. 6 and Tables 3-4).

� When the size of random sample increases, the ECP of the proposed intervals
increases.

5. NUMERICAL ILLUSTRATION

The following data is provided by counts of the number of European red mites
on apple leaves (see Bliss and Fisher, 1953). On a day (July 18, 1951), a ran-
dom sample of 25 leaves were selected from each of 6 McIntosh trees in a single
orchard, and the number of adult females counted on each leaf. The frequency
distribution of mites on the 150 leaves is given in the first two columns of Table 5.

The MLE of µ is �µ � x � 172
150 . Also, based on Remark 3, the estima-

tion of m is �m � 0�95. Based on the goodness of fit test with the statistic Y �

∑k
i�1

� fi�ei�
2

ei
� 2�7957 and Y � χ2

0�95�3 � 7�81, we can fit a Takacs distribution
GNB�1� �m � 0�95� �p � 0�5488� to this data set.

Now, the confidence intervals for the mean µ , at the confidence level 1�α �

0�95, are obtained as follows:

��
�

CIW � �0�9062�1�3872��
CIS � �0�9385�1�4298��
CILR � �0�9185�1�3939��
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The lengths of these intervals are obtained as follows:

LLR � 0�4754 � LW � 0�4810 � LS � 0�4913�

Suppose that, µ � 172
150 (p� 0�5488) and β � 0�95. Based on the random samples

of size n � 150, the estimated coverage probabilities for Wald, score, and LR
intervals are obtained as follows

ECPW � 0�9472� ECPLR � 0�9480� ECPS � 0�9540�

Based on the above results, the score and likelihood ratio intervals are better than
Wald interval. The likelihood ratio interval has the least lengths, and the score
interval has the most ECPs.

Table 5. Fitting a Takacs model to counts of red mites on apple leaves.

No. of mites Number of leaves Expected

per leaf observed Probability frequency
� fi�ei�

2

ei

xi fi pi ei
0 70 0�4512 67�680 0�0795
1 38 0�2577 38�655 0�0111
2 17 0�1398 20�970 0�7516
3 10 0�0739 11�085 0�1062
4 9 0�0383 5�745 1�8442
5 3 �� 5� 0�0391 5�865 0�0031
6 2
7 1

Total n � 150 1 150 Y � 2�7957

6. CONCLUSIONS

In this paper, we present some confidence intervals (Wald, score, and likeli-
hood ratio intervals) for the mean of the binomial, negative binomial, and Takacs
distributions. Also, the estimated coverage probability (ECP) of these intervals
is provided by means of a simulation study. The simulation study shows that the
ECP of the proposed intervals is organized as ECPW � ECPLR � ECPS. Hence,
the Wald interval has the lowest ECP and the score interval has the upper ECP.

The results of the confidence intervals for the other distributions of NEF with
cubic variance function will be studied in further works.

Table 5: Fitting a Takacs model to counts of red mites on apple leaves
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