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Additional scaled solutions to Richards’ equation for infiltration and drainage
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A B S T R A C T

Warrick and Hussen developed in the nineties of the last century a method to scale Richards’ equation

(RE) for similar soils. In this paper, new scaled solutions are added to the method of Warrick and Hussen

considering a wider range of soils regardless of their dissimilarity. Gardner–Kozeny hydraulic functions

are adopted instead of Brooks–Corey functions used originally by Warrick and Hussen. These functions

allow to reduce the dependence of the scaled RE on the soil properties. To evaluate the proposed method

(PM), the scaled RE was solved numerically using a finite difference method with a fully implicit scheme.

Three cases were considered: constant-head infiltration, constant-flux infiltration, and drainage of an

initially uniform wet soil. The results for five texturally different soils ranging from sand to clay (adopted

from the literature) showed that the scaled solutions were invariant to a satisfactory degree. However,

slight deviations were observed mainly for the sandy soil. Moreover, the scaled solutions deviated when

the soil profile was initially wet in the infiltration case or when deeply wet in the drainage condition.

Based on the PM, a Philip-type model was also developed to approximate RE solutions for the constant-

head infiltration. The model showed a good agreement with the scaled RE for the same range of soils and

conditions, however only for Gardner–Kozeny soils. Such a procedure reduces numerical calculations

and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in

soils.

� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

After Miller and Miller (1956), who introduced the ‘‘similar
media’’ concept, scaling methods were invented and have been
frequently used in soil physics studies, for example, for describing
soils variability in terms of soil hydraulic properties (Warrick et al.,
1977; Ahuja and Williams, 1991; Kosugi and Hopmans, 1998;
Shouse and Mohanty, 1998; Tuli et al., 2001; Das et al., 2005; Nasta
et al., 2009; Oliveira et al., 2006; Vogel et al., 2010), or obtaining
generalized solutions to a variety of soil-water phenomena
(Simmons et al., 1979; Sharma et al., 1980; Shukla et al., 2002;
Rasoulzadeh and Sepaskhah, 2003; Kozak and Ahuja, 2005; Roth,
2008).

One important aspect of scaling methods is to scale Richards’
equation (RE) so that a single solution will suffice for numerous
specific cases of water flow in a wide range of unsaturated soils.
Abbreviations: RE, Richards’ equation; PM, proposed method; WHM, Warrick–

Hussen method.
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Hence, these methods considerably reduce the calculations
required for heterogeneous soils (Warrick and Hussen, 1993).
Some methods for scaling of RE were described by Reichardt et al.
(1972), Warrick and Amoozegar-Fard (1979), Warrick et al. (1985),
Sposito and Jury (1985), Vogel et al. (1991), Kutilek et al. (1991),
Warrick and Hussen (1993), Nachabe (1996), Wu and Pan (1997),
and Sadeghi et al. (2011). Using specific scaling factors, these
methods suggest linear transformations of RE variables to achieve
invariant solutions for a set of soils and/or conditions. However,
satisfying the ‘‘similarity condition’’ for the soils and conditions is a
necessity in all these methods. The similarity may be defined based
on microscopic-scale geometry (Miller and Miller, 1956), shape of
soil hydraulic functions (Simmons et al., 1979), or a linear
variability concept (Vogel et al., 1991).

The similarity condition is difficult to truly hold in reality and
will be a limitation for the application of scaling methods to real
soils. Focusing on this limitation, the main objective of this study
was to develop a method to scale RE applicable to dissimilar soils,
considering specifically the method of Warrick and Hussen (1993).
Adopting Brooks–Corey soil hydraulic models, Warrick and Hussen
(1993) developed scaled solutions of RE invariant to the saturated
and residual volumetric water contents, saturated hydraulic
conductivity, and air-entry pressure head, as well as boundary
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or initial conditions. However, the scaled solutions were still
dependent on the shape parameters of the Brooks–Corey hydraulic
functions, l and P. In other words, equality in l and P is a
requirement (i.e. the similarity condition) in this method and the
scaled solutions will be invariant only for soils having equal values
of l and P. In this paper, new scaled solutions are proposed in
addition to the method of Warrick and Hussen considering a wider
range of soils regardless of their dissimilarity.

2. Theory

Richards’ (1931) equation is obtained by combining Darcy’s
law, q = �K(@h/@z � 1), and the mass conservation law, @u/
@t = �@q/@z, which, in one-dimensional form, is written as:

@u
@t
¼ @

@z
K

@h

@z
� K

� �
(1)

where q [LT�1] is the water flux density, u [L3L�3] the soil water
content, h [L] the pressure head, K [LT�1] the unsaturated hydraulic
conductivity, t [T] the time, and z [L] the soil depth positive
downward.

2.1. Warrick–Hussen method (WHM) for scaling RE

Warrick and Hussen (1993) adopted Brooks and Corey (1964)
soil hydraulic functions as follows:

u ¼ ur þ ðus � urÞ
h

hb

� ��l

; ðh < hb < 0Þ (2)

K ¼ Ks
u � ur

us � ur

� �P

(3)

where us and ur are the saturated and residual volumetric water
contents, respectively, Ks is the saturated hydraulic conductivity,
hb is the air-entry pressure head, and l, commonly known as
pore size distribution index, and P are shape parameters. The
values of l and P are usually chosen to be related, for example,
as P = 3 + 2/l (Brooks and Corey, 1964). These parameters are
found to be correlated with some physical properties of soils. For
example, assuming a fractal pore structure for soil, Tyler and
Wheatcraft (1990) showed that l is related to soil fractal
dimension.

Considering a boundary or initial pressure head value of h0 and
defining jh0j as a length scaling factor, z0, Warrick and Hussen
proposed the following scaled functions and variables:

u� ¼ u � ur

u0 � ur
(4)

h� ¼ h

z0
(5)

K� ¼ K

K0
(6)

z� ¼ z

z0
(7)

t� ¼ K0t

z0ðu0 � urÞ
(8)

where u0 and K0 represent u(h0) and K(h0), respectively. Consider-
ing Warrick and Hussen definitions of h0 (boundary pressure head
in infiltration and initial pressure head in drainage — discussed in
detail later), in this method, h* ranges from �1 to �1 and u* and K*

range between 0 and 1.
Substituting the scaled functions and variables, Eqs. (4)–(8),
into Eq. (1) yields a scaled form of RE as follows:

@u�

@t�
¼ @

@z�
K�

@h�

@z�
� K�

� �
(9)

with the following reduced forms of Brooks–Corey hydraulic
functions:

u� ¼ ð�h�Þ�l
(10)

K� ¼ u�P (11)

Eq. (9) is expressed in a form independent of h0, us, ur, Ks, and hb.
However, l and P are the hydraulic properties remaining in
Eqs. (10) and (11) which make Eq. (9) dependent on the soil
properties. Therefore, the scaled solutions will be invariant only for
the similar soils with shapely similar hydraulic functions (i.e. equal
values of l and P).

2.1.1. Soil-dependency of the scaled RE of the WHM

Let us accept the relationship of P = 3 + 2/l. Then, combining
Eqs. (9)–(11) yields the governing partial differential equation of
the WHM, PDEWH, rearranged based on h* as follows:

PDEWH ¼ F1
@h�

@t�
� @

@z�
F2

@h�

@z�
� F2

� �
(12)

where F1 and F2 are two P-dependent functions as follows:

F1 ¼
2

P � 3
ð�h�Þð1�PÞ=ðP�3Þ

(13)

F2 ¼ K� ¼ ð�h�Þ2P=ð3�PÞ
(14)

The variation of PDEWH in terms of P is given as follows:

@ðPDEWHÞ
@P

¼ @F1

@P

@h�

@t�
� @

@P

@F2

@z�

� �
@h�

@z�
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@P
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þ @

@P

@F2
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(15)

Eq. (15) elucidates the dependency of the scaled solutions of the
WHM on P.

2.2. Proposed method (PM) for scaling RE

Here, Gardner’s (1958) model for the hydraulic conductivity
function is exploited:

K ¼ Ks exp � h

hcM

� �
(16)

where hcM is the effective capillary drive introduced by Morel-
Seytoux and Khanji (1974) as hcM ¼ 1=Ks

R1
0 KðhÞdh. To find a

proper water retention model corresponding to Eq. (16), we use
Eq. (3) which, in fact, is Kozeny’s equation (adopted from Mualem,
1976) and yields the following water retention model when
combined with Eq. (16):

u ¼ ur þ ðus � urÞ exp � h

PhcM

� �
(17)

Eqs. (16) and (17) may be referred to as Gardner–Kozeny
hydraulic functions (Bakker and Nieber, 2009). Assuming P = 1,
Gardner–Kozeny functions yield the functions widely used in the
literature for linearization of RE in order to analytically solve it
(Warrick, 1975; Chen et al., 2001; Tracy, 2007). However, the
assumption of P = 1 is difficult to hold in real soils (see values of P

for the soils studied here in Table 1), and considering the general
form of Gardner–Kozeny functions with P as a fitting parameter is
more realistic.



Table 1
Brooks–Corey and Gardner–Kozeny hydraulic parameters of the selected soils.

Soil name Pa ur us hb (cm) hcM (cm) Ks (cm/day)

Upland sand 7.66 0 0.305 �6.31 �6.33 186.0

Rubicon sandy loam 12.08 0 0.380 �6.39 �12.66 28.8

Fukushima loam 13.32 0 0.755 �9.23 �8.37 473.5

Yolo light clay 16.82 0 0.495 �7.52 �21.74 1.06

Columbia silt loam 19.00 0 0.401 �15.95 �40.00 5.04

a P was taken as 3 + 2/l.

M. Sadeghi et al. / Soil & Tillage Research 119 (2012) 60–6962
We assume in the PM that z0 = jhcMj. To scale RE for infiltration,
Nachabe (1996) used the macroscopic capillary length, ls, as the
length scaling factor which has a nearly similar definition
(ls ¼ 1=ðK0 � KiÞ

R h0
hi

KðhÞdh, where hi is the initial pressure head
and Ki is K(hi)). When h0 = 0 and hi! �1, ls approaches hcM.
However, hcM is a static property and constant for each soil, while
h0 and ls are dynamic properties of a soil and dependent on the
boundary and initial conditions.

We define in the PM the following scaled pressure head:

h� ¼ h � h0

z0
(18)

ranging from 0 to �1 (considering Warrick and Hussen definitions
of h0). Applying z0 = jhcMj, the other scaled functions and variables
are kept the same as defined in Eqs. (5)–(8). Substituting the
proposed scaled functions and variables into Eq. (1), the resulting
scaled RE remains in the form of Eq. (9), however; the following
reduced hydraulic functions are applied instead of Eqs. (10) and
(11):

K� ¼ expðh�Þ (19)

u� ¼ exp
h�

P

� �
(20)

2.2.1. Soil-dependency of the PM for the scaled RE

Combining Eqs. (9), (19), and (20) yields the governing partial
differential equation of the proposed method, PDEP, rearranged
based on h* as follows:

PDEP ¼ F3
@h�

@t�
� @

@z�
expðh�Þ @h�

@z�
� 1

� �� �
(21)

where

F3 ¼
1

P
exp

h�

P

� �
(22)
h*

F
p

Fig. 1. Description of the factors @F1/@P and @F3/@P of Eqs. (
The soil-dependency of the PM for the scaled RE can be
evaluated by differentiating PDEP with respect to P as follows:

@ðPDEPÞ
@P

¼ @F3

@P

@h�

@t�
(23)

Three terms containing F2 in Eq. (15) have been removed by
applying the PM. The only remaining term in Eq. (23) is analogous
to the first term of Eq. (15). The factors @F1/@P and @F3/@P in these
terms are obtained from Eqs. (13) and (22), respectively, as follows:

@F1

@P
¼ 6 � 2P þ 4 lnð�h�Þ

ðP � 3Þ3

" #
ð�h�Þð1� pÞ=ð p�3Þ

(24)

@F3

@P
¼ �P � h�

P3

� �
exp

h�

P

� �
(25)

The behavior of Eqs. (24) and (25) at different values of P and h*

has been depicted in Fig. 1. This figure shows that for identical
values of P and h*, @F1/@P is greater than @F3/@P particularly at
lower values of jh*j (i.e. near saturation). This means that the total
P-dependency of PDEp is lower than that of PDEWH due to the first
term of Eq. (15).

Fig. 1 also shows that @F3/@P generally increases as P decreases
indicating that the P-dependency of the PDEp is higher in coarser
textures (lower P) in comparison to those of finer textures (higher
P). In addition, @F3/@P decreases as jh*j increases (i.e. soil becomes
drier). When jh*j becomes greater than about 100, @F3/@P

approaches zero for most soils and thus, PDEp becomes approxi-
mately soil-independent.

3. Materials and methods

Five texturally different soils were selected from the literature
in order to cover a wide texture range especially with respect to P—
the only influencing parameter on the scaled solutions of RE in
both methods. The soil properties including Brooks–Corey and
Gardner–Kozeny hydraulic parameters, presented in Table 1, were
obtained by fitting the data presented in Figs. 1 and 4 of Kawamoto
et al. (2006).

To show the improvements of the PM to scale RE, Warrick and
Hussen (1993) evaluations were repeated for both methods. Eq. (9)
was solved numerically with the scaled hydraulic functions of (10)
and (11) for the WHM and (19) and (20) for the PM. The numerical
calculations were performed using the finite difference method
with the fully implicit scheme identical to that of HYDRUS-1D
(Simunek et al., 2005). To do so, a computer code was written in
MATLAB. Similar to Warrick and Hussen (1993), three test cases
were considered: (1) infiltration with a constant pressure head at
F
p|

h*
24) and (25) as a function of the scaled pressure head.



Table 2
Boundary and initial conditions in the three test cases.

Case Upper boundary Lower boundary Initial

Constant-head infiltration h = h0 h = hi h = hi

Constant-flux infiltration q = K0 h = hi h = hi

Drainage q = 0 Free drainage (q = K) h = h0 (z < L)
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the soil surface into a uniform dry soil, (2) infiltration with a
constant flux density at the soil surface into a uniform dry soil, and
(3) drainage of a uniformly wet soil with no flow at the soil surface.
Regarding boundary and initial conditions for each process, we
defined h0 in a similar way as Warrick and Hussen (1993) did. Table
2 summarizes the boundary and initial conditions in the three
cases. In this table, hi is the initial pressure head in infiltration, and
L is the length of the soil column in drainage.

Considering Darcy’s law, q = �K(@h/@z � 1), Eqs. (4), (6), and (7)
(for the WHM) or (18), (6), and (19) (for the PM) suggest the
following scaled flux density, q*, in both methods:

q� ¼ q

K0
(26)

Applying Eqs. (4), (6), (7), and (26), scaled boundary and initial
conditions as presented in Table 3 are attained. The scaled lower
boundary and initial conditions in infiltration, h�i , and the scaled
length of the soil column in drainage, L*, influence the scaled
solutions in both methods. However, other scaled boundary and
initial conditions are invariant.
Table 3
Scaled boundary and initial conditions in the three test cases.

Case Warrick–Hussen method 

Upper boundary Lower boundary Initi

Constant-u infiltration h* = 1 h� ¼ h�i h� ¼
Constant-flux infiltration q* = 1 h� ¼ h�i h� ¼
Drainage q* = 0 q* = K* h* =

a L* = L/z0.

z*

h*

a

Fig. 2. Scaled pressure head versus scaled depth obtained using the Warrick–Hussen (WH

(a) t* = 0.1 and (b) t* = 1.
4. Results and discussion

4.1. Constant-head infiltration

Scaled solutions of the WHM for the constant-head infiltration
with h�i ¼ �100 are presented in Fig. 2. The figure shows plot of the
scaled pressure head versus the scaled depth at two scaled times of
0.1 and 1 (For h0 = hb, the scaled time of 0.1 is corresponding to the
real time of 1.49 and 505.44 min for the Upland sand and Yolo light
clay, respectively). Due to the wide range of P for the selected soils,
the scaled solutions of the WHM are significantly different (Fig. 2).
This is confirmed by the high CV values appearing in the figure,
which represent an average of the variation coefficients of h* along
the wet zone.

Since the WHM is expected to give invariant scaled solutions for
similar soils (i.e. with equal values of P), these selected soils (with P

values having a coefficient of variation of about 32%) indicate a
high degree of dissimilarity. As expected, the scaled solutions are
nearly invariant for soils with close values of P (e.g. Rubicon sandy
loam and Fukushima loam) which approximately preserve the
similarity condition.

The high degree of dissimilarity of the selected soils gives an
opportunity to seriously evaluate the PM. Fig. 3 shows the scaled
solutions of the PM for the constant-head infiltration with
h�i ¼ �100. The scaled pressure head profiles are shown at two
scaled times of 0.1 and 1 (Assuming h0 = 0, the scaled time of 0.1
corresponds the real time of 1.49 and 1461.21 min for the Upland
sand and Yolo light clay, respectively). Although the soils are
completely dissimilar, Fig. 3 indicates that the scaled solutions are
nearly invariant for all the soils and show a unified curve. For the
Proposed method

al Upper boundary Lower boundary Initial

 h�i h* = 0 h� ¼ h�i h� ¼ h�i
 h�i q* = 1 h� ¼ h�i h� ¼ h�i

 1 (z* < L*a) q* = 0 q* = K* h* = 0 (z* < L*)

h*

b

M) method for constant-head infiltration with scaled initial pressure head of �100 at



z*

h* h*

a b

Fig. 3. Scaled pressure head versus scaled depth obtained using proposed method (PM) for constant-head infiltration with scaled initial pressure head of �100 at (a) t* = 0.1

and (b) t* = 1.

z*

h* h*

a b

Fig. 4. Scaled pressure head versus scaled depth obtained using proposed method (PM) for constant-flux infiltration with scaled initial pressure head of �100 at (a) t* = 0.1 and

(b) t* = 0.5.
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Upland sand, a slight deviation exists which is due to the greater P-
dependency of F3 (i.e. greater values of @F3/@P) for lower values of P

as shown in Fig. 1.

4.2. Constant-flux infiltration

Scaled solutions of the WHM for the constant-flux infiltration
(not presented here) also were significantly different for the five
soils (For the case of h�i ¼ �100, CV was 30.33% at t* = 0.5). In
contrast, for the same case, the scaled solutions of the PM except
for the Upland sand were close to each other as presented in Fig. 4
(by removing the Upland sand, CV becomes 7.44% and 5.72% for
Fig. 4a and b, respectively). CV decreases with time in this case.
Such a result can be due to the sudden decrease of @h*/@t* during
the constant-flux infiltration which decreases the soil-dependency
of the scales solutions according to Eq. (23).

4.3. Drainage

Scaled results of the WHM are presented in Fig. 5 for the
drainage in a profile with scaled depth of L* = 1. The scaled pressure
head profiles are shown at two scaled times of 1 and 10. The CV
values deal with the variations of the scaled solutions for the five
soils. Comparing this figure with the scaled solutions of the PM as
shown in Fig. 6, it can be seen that the PM significantly reduces the
CV values. As Fig. 6 indicates, the scaled solutions of the PM
become closer by passing the time. According to Eq. (23), this is
justified by the decrease of both @F3/@P (see Fig. 1) and @h*/@t*

during the drainage process.

4.4. Effect of the data quality

The fitting parameter P, which affects the scaled solutions, is not
only changed by soil texture, but also by measurement errors of the
hydraulic properties. Hence, the scaled solutions can be affected by
measurement accuracy. To evaluate this effect, we considered
Eq. (3) containing an error parameter, e, in the form of Kr = (Se + e)P,
where Kr is the relative hydraulic conductivity, and Se the effective
degree of saturation. We assumed e as a normally distributed
random error with the mean of zero and standard deviation of s.
Firstly, applying P = 13.32 (that of the Fukushima loam) to the
relationship of Kr ¼ SP

e , we generated a standard set of Kr � Se data



z*

h* h*

a b

Fig. 5. Scaled pressure head versus scaled depth obtained using Warrick–Hussen method (WHM) for drainage in a profile with scaled depth of 1 at (a) t* = 1 and (b) t* = 10.

z*

h* h*

a b

Fig. 6. Scaled pressure head versus scaled depth obtained using proposed method (PM) for drainage in a profile with scaled depth of 1 at (a) t* = 1 and (b) t* = 10.

Fig. 7. Effect of s (standard deviation of the normal distributions of the generated

errors) on CV of the scaled solutions (at t* = 1) calculated for each of the ten

replications of s.
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by changing Se from zero to unity. Then, by assuming different
values of s as 0.01, 0.02, 0.03, 0.04, and 0.05, and considering ten
replications for each s, we generated fifty sets of e values and
added them to the standard data set. Then, we refitted the
relationship of Kr ¼ SP

e to each data set and obtained fifty new P

values (ranging from 11.77 to 14.37). Applying these values of P,
we solved the scaled RE of both methods for the case of constant-
head infiltration into the Fukushima loam assuming h�i ¼ �100.

The solutions (not presented here) showed significant
variations for the WHM, while they were invariant for the PM
(CV of the fifty solutions at t* = 1 was obtained 15.29% for the
WHM and 0.84% for the PM). An insight to the effect of the data
quality on the scaled solutions can be achieved by the results
presented in Fig. 7. This figure shows the effect of the error
magnitudes (in terms of s) on the CV of the scaled solutions
calculated for each of the ten replications of s. For both methods,
CV almost linearly increases as s increases. However, the rate of
this increase for the WHM is much (almost twelve times) more
than that of the PM.

Note that we assumed here that the measurement error is a
random variable around the Brooks–Corey or Gardner–Kozeny
hydraulic models. If this condition is not met for any soil (i.e. the
errors show a correlation with the hydraulic variables), that soil



z*

h* h*

a b

Fig. 8. Scaled pressure head versus scaled depth obtained using proposed method (PM) for constant-head infiltration with scaled initial pressure head of (a) �1000 and (b)

�10 at t* = 1.

z*

h* h*

a b

Fig. 9. Scaled pressure head versus scaled depth obtained using proposed method (PM) for constant-flux infiltration with scaled initial pressure head of (a) �1000 and (b) �10

at t* = 0.5.
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cannot be considered as a Brooks–Corey or Gardner–Kozeny soil
and the scaling methods will not work in such condition.

4.5. Effect of the initial conditions

As mentioned earlier, the scaled solutions of the PM are
dependent on the initial conditions. In other words, the primary
requirement for invariance of the scaled solutions for a group of
soils is that the scaled initial conditions should be identical. Here,
the effects of the initial conditions on the scaled solutions are
discussed.

Showing the PM results for the constant-head infiltration, Fig. 8
reveals that the scaled solutions results deviate when the initial
head represents a wet condition. This result is expected in
accordance to Fig. 1 in which @F3/@P gets its maximum value when
jh*j reaches less than 10.

The effect of the initial conditions for the constant-flux
infiltration can be evaluated by comparing Figs. 9a, 4b, and 9b
in which h�i of �1000, �100, and �10 were considered,
respectively. The lowest CV is for the case of h�i ¼ �100 and the
h* profiles diverge in both drier and wetter conditions. The increase
of the CV for the wetter profile is expected as discussed above for
Fig. 8b, and for the drier profile in Fig. 9b was found to be due to the
factor @h*/@t* which is greater in this case than that of Fig. 4b.

Effect of the scaled depth of the soil profile in the drainage
process is evaluated in Fig. 10. The h* profiles are shown at t* = 10
where two scaled depths were considered; 0.1 and 5. Based on this
figure together with Fig. 6b, it can be concluded that the scaled
solutions are more dependent on the soil properties for longer soil
columns. The reason is that when the soil profile is more deeply
wetted, the drainage process will be slower. Thus, at a specific
scaled time, the soil profile will be wetter and both of the
influencing factors (@F3/@P and @h*/@t*) will be greater.

4.6. Approximate solutions of RE for constant-head infiltration

It was found that, for the constant-head infiltration, the scaled
cumulative infiltrated water curves using the PM were invariant



z*

h* h*

a b

Fig. 10. Scaled pressure head versus scaled depth obtained using proposed method (PM) for drainage in a profile with scaled depth of (a) 0.1 and (b) 5 at t* = 10.
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for all values of h�i smaller than �100 (i.e. initially dry soils). This
gave an opportunity to approximate RE solutions for the constant-
head infiltration.

The following definition of cumulative infiltrated water, I [L],
was considered:

I ¼
Z t

0
q0 dt (27)

where q0 is the surface flux (infiltration rate). Substituting Eqs. (8)
and (26) into Eq. (27), a scaled cumulative infiltrated water, I*, was
calculated for the PM as:

I� ¼ I

z0ðu0 � urÞ
(28)

We solved the scaled RE (Eq. (9)) for the five soils and for various
h�i (�100, �500, �1000 and �5000). The solutions were invariant
I*

t*

I* t* t* t*

Fig. 11. Scaled cumulative infiltrated water versus scaled time obtained using

proposed method (PM) for constant-head infiltration withscaled initial pressure heads

of �100, �500, �1000 and �5000. Solid line shows the presented fitted curve, Eq. (30).
for all the 20 cases as shown in Fig. 11. To describe the solutions by
a single curve, Philip’s (1969) infiltration solution for Eq. (9) was
considered in a scaled form as follows (Warrick et al., 1985):

I� ¼ At�
0:5 þ Bt� þ Ct�

1:5 þ . . . (29)

where A, B, and C and any additional term are dimensionless forms
of the Philip’s original solution parameters. Choosing the first three
terms of the series, the following model was obtained using the
least squares fitting (R2 = 0.999):

I� ¼ 1:383t�
0:5 þ 0:328t� þ 0:113t�

1:5
(30)

Therefore, a single set of A, B, and C could adequately describe
the scaled solutions. This can give an insight to the generality of
the PM when compared with the nearly similar procedure of
Warrick et al. (1985). They introduced a scaled form of Philip’s
solution so that A, B, and C could be tabulated for various soils and
conditions.

Substituting Eqs. (8) and (28) into Eq. (30), the following model
was achieved:

I ¼ at0:5 þ bt þ ct1:5 (31)

with

a ¼ 1:383½K0jhcMjðu0 � urÞ�0:5 (32)

b ¼ 0:328K0 (33)

c ¼ 0:113K1:5
0 ½jhcMjðu0 � urÞ��0:5 (34)

Eq. (31) introduces a Philip-type infiltration model. In this
model, K0 = K(h0) and u0 = u(h0) can be calculated by Eqs. (16) and
(17), respectively. Therefore, h0 appears implicitly in Eq. (31)
through K0 and u0. However, it is limited to the values smaller than
zero, because Eqs. (16) and (17) cannot account for positive heads.
Therefore, Eq. (31) is valid for Gardner–Kozeny (Eqs. (16) and (17))
soils, non-positive values of h0, and h�i approximately smaller than
�100 (i.e. an initially dry soil).

It should be noted that for large times, the infiltration process is
dominated by gravitational force and the series of Eq. (29) will
diverge. Philip (1969) suggested the series is valid for t < tg where

tg ¼ ½a=ðK0 � KiÞ�2 (35)
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Fig. 12. Cumulative infiltration versus time obtained using Eq. (31) and numerical solution of Richards’ equation with constant head of 0 (the upper curve) and �20 cm (the

lower curve) and initial pressure head of �10,000 cm for (a) Upland sand and (b) Columbia silt loam.
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For t > tg, the infiltration rate will be K0 (i.e. scaled infiltration
rate will be unity) and I will be:

I ¼ IðtgÞ þ ðt � tgÞK0 (36)

To evaluate the accuracy of Eq. (31), for t < tg, we compared the
values of cumulative infiltrated water as approximations of Eq. (31)
to RE (Eq. (1)) solutions for the Upland sand, and Columbia silt loam
(as two extremely different soils regarding P) each for h0 = 0 and
�20 cm, and hi = �10,000 cm (by which the condition h�i � �100 is
met). The comparisons can be seen in Fig. 12. The figure shows a good
agreement between Eq. (31) and RE which is indicated by the Root
mean squared error (RMSE) values appearing in the figure. The
degree of accuracy in the Columbia silt loam is higher than that of the
Upland sand. The larger errors of this soil are due to the fitting error
of Eq. (30). Although this error is very small, it is magnified when the
scaled infiltrated water is converted to the real scale.

5. Conclusions

Warrick and Hussen (1993) developed a method to scale
Richards’ equation (RE) for similar soils. Here, additional scaled
solutions have been developed. The advantage of the proposed
method over Warrick–Hussen method is that the proposed scaled
solutions are invariant for a wider range of soils regardless of their
dissimilarity. The disadvantage of the proposed method is that it
applies for Gardner–Kozeny functions which have a more limited
applicability to soils relative to Brooks–Corey functions used in the
Warrick–Hussen method. Perhaps, future studies can involve other
forms of the hydraulic functions.

Using the proposed method, a Philip-type model, Eq. (31), has
been developed to approximate constant-negative head infiltra-
tion. The model showed a good agreement with RE for a wide range
of soils (from sand to clay) and various boundary conditions, but
only for Gardner–Kozeny soils. The method is promising to reduce
complicated numerical calculations and opens a new window to
easily obtain approximate solutions of the highly nonlinear RE for
water flow in unsaturated soils, within prescribed levels of error.
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