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Abstract

In some situations in reliability and survival analysis, the life times of the units in an experiment
depend on the number of times the units are switched on and off or the number of shocks they
receive. On the other hand, the experiment may not terminate on an adequate time under the normal
conditions. This paper proposes a Bayesian inference model for a simple step-stress model with Type-I
censored sample. Assuming a cumulative exposure model with lifetimes being geometric distributed,
the problems of point and interval estimation of studied in the Bayesian approach. Finally, an example
is presented to illustrate the proposed procedure in this paper.
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1 Introduction

There are situations in reliability and survival analysis for which the experiment may not terminate on
an adequate time under the normal conditions. In such situations, accelerated life-testing experiments
have been offered to obtain adequate life data. See, for example, Nelson (1990) and Bagdonavicius and
Nikulin (2002). Step-stress accelerated life testing (SSALT) is a special class of accelerated life-testing for
which the stress levels of the experiment change at some pre-specified times. Balakrishnan et al. (2009)
derived exact inference for simple step-stress model from the exponential distribution when there is time
constraint on the duration of the experiment. See also, Balakrishnan and Xie (2007, a) and Balakrishnan
and Han (2008). DeGroot and Goel (1979) proposed a Bayesian inference model for SSALT and an
criterion optimality for simple SSALT in the framework of Bayesian decision theory. See also, Van Dorp
et al. (1996) and Van Dorp and Mazzuchi (2004, 2005) and Erto, and Giorgio (2002). The classical
approach treats parameters of life distribution as fixed but unknown constants but Bayes approach
considers them as random variables whit a prior distributions for these parameters. Prior distributions
are constructed by existing information or subjective judgments.
In some situations, the life times of the units in an experiment depend on the number of times the units
are switched on and off or the number of shocks they receive. Let w be the number of switch on and off
or shocks the units receive until they fail, so, w is considered as the associated failure time. Here, the
life-testing experiment are investigated in a discrete set up. See, Nagaraja (1992) for more details about
the results on order statistics of a random sample taken from a discrete population. Censored samples
in discrete set up have been studied by some authors. See, for example, Rezaei and Arghami (2002),
Davarzani and Parsian (2011) and Balakrishnan et al. (2011). This paper proposes a Bayesian inference
model for a simple SSALT having only one change between two stress levels, when Type-I censoring is
used. We assume that the failure times at each stress level follow a geometric distribution.

The rest of the paper is as follows: In Section 2 some preliminaries are presented. In Section 3, the
Byesian estimation of the parameters of the geometric distribution is investigated for a simple step-stress
model with Type-I censored sample. Finally, in Section 4, an example is given to illustrate the results of
the paper.
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2 Preliminaries

Consider a simple step-stress scheme with only two stress levels S1 and S2 and assume that the associated
distributions at levels S1 and S2 are geometric with successive probabilities p1 and p2, respectively. The
probability mass function (pmf) and cumulative distribution function (cdf) are given by

Pj(Xj = x) = pjq
x−1
j , x = 1, 2, . . . ,

Fj(x; pj) = 1− qx
j , x = 1, 2, . . . (1)

The parameters of interest in this paper are:(i) the successive probability at level Sj , i.e.,pj , (j = 1, 2),
(ii) the mathematical expectation at level Sj ,i.e., μj = 1

pj
, (iii) the survival function of the level Sj at

x0 : F̄j(x0) = qx0
j .

Suppose that the normal conditions (level S1) of an experiment change to level S2 at point w1. Therefore,
using (1), the cumulative exposure distribution (ced) G(x) is

G(x) =
{

G1(x) = F1(x; p1), x = 1, 2, . . . , w1,
G2(x) = F2

(
x− (1− log q1/ log q2)w1; p2

)
, x = w1 + 1, w1 + 2, . . . ,

=
{

G1(x) = 1− qx
1 , x = 1, 2, . . . , w1,

G2(x) = 1− qw1
1 qx−w1

2 , x = w1 + 1, w1 + 2, . . .
(2)

and the corresponding pmf g(x) is as follows

g(x) =
{

g1(x) = p1q
x−1
1 , x = 1, 2, . . . , w1,

g2(x) = p2q
w1
1 q

x−(w1+1)
2 , x = w1 + 1, w1 + 2, . . . .

We now introduce some notations will be used throughout the paper: Xi:n denotes the ith smallest order
statistics in a sample of size n from the geometric distribution. N1 is the number of observations that
are less than or equal to w1 and N2 denotes the number of data points that are less than or equal to w2

and greater than w1, for which N1 + N2 ≤ n. Using these notation, we will observe the following data
set under Type-I censoring scheme:

X1:n ≤ X2:n ≤ · · · ≤ XN1:n ≤ w1 < XN1+1:n ≤ · · · ≤ XN1+N2:n ≤ w2. (3)

Notice that in the special case of N1 +N2 = n, the complete sample is observed. To study the estimation
problem of the parameter of interest based on the data set in (3), we need to obtain the joint distribution
of X1:n, . . . , XN1+N2:n. In order to provide explicit expression for the joint distribution of discrete-order
statistics, it is necessary to use the ‘tie- run” technique which is defined by Gan and Bain (1995) regarding
the number and lengths of runs of tied observations. A subchain ti1 ≤ ti2 ≤ · · · ≤ tin of real numbers is
said to have r tie-runs (1 ≤ r ≤ n) with length zk (1 ≤ k ≤ r) for the kth one, if

ti1 = · · · = tiz1
< tiz1+1 = · · · = tiz1+z2

< · · · < tin−zr+1 = · · · = tin ,

with
∑r

k=1 zk = n. Let X1, . . . , Xn be iid discrete random variables from the ced in (2). Using the
concept of tie-run, given p1 and p2, the joint pmf of X1:n, · · · , XN1+N2:n, N1, N2 is as follows

L(p1, p2) =
n!

(n− n1 − n2)!

( r∏
j=1

zj !
)−1 n1∏

i=1

g1(xi:n)

×
n1+n2∏
i=n1+1

g2(xi:n)
(
1−G2(w2)

)n−n1−n2

=
n!

(n− n1 − n2)!

( r∏
j=1

zj !
)−1

pn1
1 qd1

1 pn2
2 qd2

2 , (4)
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where r is equal to the number of tie-runs with length zk for the jth one, d1 and d2 are the observed
values of , D1 and D2, respectively, where

D1 =
N1∑
i=1

Xi:n −N1 + w1(n−N1), (5)

D2 =
N1+N2∑
i=N1+1

Xi:n − (w1 + 1)N2 + (w2 − w1)(n−N1 −N2). (6)

3 Baysian estimation

In this section we present and illustrate the methodology for obtaining the Bayes estimators.Toward this
end, we assume that the parameters p1 and p2 behave as independent random variables. Also, suppose
the random variable pj has Beta prior distribution with parameters αj and βj (j = 1, 2). That is, the
prior density function of pj , j = 1, 2, takes the following form

πj(pj) =
1

β(αj , βj)
p

αj−1
j (1− pj)βj−1, 0 < pj < 1. (7)

Therefore, by performing some algebraic calculations, it con be shown that, the joint posterior pdf of p1

and p2 is

π(p1, p2|data) =
pa1−1
1 (1− p1)b1−1pa2−1

2 (1− p2)b2−1∏2
j=1 B(aj , bj)

, (8)

where aj = Nj + αj . and bj = Dj + βj (j = 1, 2), for which D1 and D2 are as defined in (5) and (6),
respectively. Using (8), the marginal posterior of pj is

πj(pj |data) =
p

aj−1
j (1− pj)bj−1

B(aj , bj)
, j = 1, 2. (9)

3.1 Bayesian point estimation

To proceed the problem of Bayes estimation, we use the squared error loss (SEL) function. Let θ̂ be any
estimator for θ, then the SEL function is defined by L(θ̂ − θ) = (θ̂ − θ)2. Using the SEL function, the
Bayes estimate of the unknown parameter is simply the mean of the posterior distribution. It can be
shown that the Bayes risk is the variance of the posterior distribution. In the following results, the Bayes
estimators for the parameters of interest in this paper are presented. Under the of SEL function, we
have
(i) The Bayes estimator for pj(j = 1, 2) is given by

p̂j =
aj

aj + bj
; (10)

(ii) The Bayes risk associated with p̂j say Rp̂j , is

Rp̂j =
ajbj

(aj + bj + 1)(aj + bj)2
.

the Bayes estimator for μj , j = 1, 2 is

μ̂j =
aj + bj − 1

aj − 1
, (11)

Moreover the Bayes risk associated with μ̂j say Rμ̂j , is

Rμ̂j =
(aj + bj − 2)(aj + bj − 1)

(aj − 2)(aj − 1)
−

(
aj + bj − 1

aj − 1

)2

.
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For estimating the survival function of the level Sj at x0, we have (i) The Bayes estimator for F̄j(x0)(j =
1, 2) is

ˆ̄Fj(x0) =
b
[x0]
j

(aj + bj)[x0]
; (12)

where

b
[x0]
j = (bj + x0 − 1)(bj + x0 − 2) . . . (bj + 1) bj ,

(aj + bj)[x0] = (aj + bj + x0 − 1)(aj + bj + x0 − 2) . . . (bj + aj),

(ii) The Bayes risk associated with ˆ̄Fj(x0) say R ˆ̄Fj(x0)
, is

R ˆ̄Fj(x0)
=

b
[2x0]
j

(aj + bj)[2x0]
−

{
b
[x0]
j

(aj + bj)[x0]

}2

;

where
b
[2x0]
j = (bj + 2x0 − 1)(bj + 2x0 − 2) . . . (bj + 1) bj ,

(aj + bj)[2x0] = (aj + bj + 2x0 − 1)(aj + bj + 2x0 − 2) . . . (bj + aj).

3.2 Bayesian interval estimation

Once the posterior probability density function h(θ|data) of the unknown parameter θ is derived,the
interval is 100(1− α)% Bayesian confidence interval for θ, is

P (L ≤ θ ≤ U |data) = 1− α. (13)

Using (9) and (13), a 100(1 − α)% Bayesian confidence intervals for pj(j = 1, 2), say (Lj , Uj), can be
derived by solving the following two equations

α

2
=

∫ Lj

0

p
aj−1
j (1− pj)bj−1

B(aj , bj)
dpj ,

α

2
=

∫ 1

Uj

p
aj−1
j (1− pj)bj−1

B(aj , bj)
dpj . (14)

Let (Lj , Uj) be a 100(1 − α)% confidence interval for θj and S(·) be any increasing function, then{
S(Lj), S(Uj)

}
is a 100(1−α)% confidence interval for S(·), and if S(·) be any decreasing function then{

S(Uj), S(Lj)
}

is a 100(1 − α)% confidence interval for S(θj). Therefor, using (14), one may construct
a confidence interval for other parameters of interest in the paper.

4 Illustrative example

To illustrate the proposed procedure in this paper, we consider a numerical example. Assuming w1 = 15,
a random ample of size 30 has been generated from ced in (2) with p1 = 0.015 and p2 = 0.056. The
results are presented in Table 1.

Table 1. Generated sample of size 30 from ced in (2) with w1 = 15,
p1 = 0.015 and p2 = 0.056.

Parameter Failure times

p1 4 7 9 13 15
p2 16 17 18 18 19 19 20 20 21 23 24 25

26 28 29 31 32 35 36 40 40 43 48 58

Using the data in Table 1, we would obtain N1 = 5 is the number of units that fail at stress level s0.
To investigate the variety of inference, we use different choices of w2. From Table 1, for w2 = 20, 28 and
35, the number of units that fail at stress level s1 is given by N2 = 8, 14 and 18, respectively.

The values of the point estimation for pj , μj and F̄j(9) (j = 1, 2) have been obtained using (10), (11)
and (12), respectively. Similar results for the interval estimation have been derived using (14). Toward
this end, we consider the beta prior distributions with parameters (0.43, 23.4) and (2.17, 38.6) for p1 and
p2, respectively. The results are summarized in Table 2.



52 2th Workshop on Reliability and its Applications

Table 2. Values of Bayesian point and interval estimation for the parameters of interest based on the data in

Table 1 for w1 = 15 and some choices of w2.

w2 = 20 w2 = 28 w2 = 35

point interval point interval point interval
p1 0.0122 (0.0042, 0.0242)
p2 0.0666 (0.0328, 0.1110) 0.0604 (0.0352, 0.0918) 0.0608 (0.0377, 0.0889)
μ1 100.64 (41.310, 237.15)
μ2 16.5507 (9.0089, 30.441) 17.5854 (10.891, 28.437) 17.2546 (11.253, 26.504)

F̄1(9) 00.8859 (00.8021 0.9627)
F̄2(9) 00.5117 (00.3468, 0.7404) 0.5417 (0.4203, 0.7246) 0.5384 (0.4328, 0.7074)
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