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Abstract

The interval estimation of the survival function of the two-parameter exponential distribution
on the basis of the progressively Type-II censored samples is investigated. Toward this end, the
concept of the generalized confidence intervals (GCIs) is used and the lower and upper generalized
confidence limits (GCLs) are obtained. It will be shown that the coverage probabilities of the GCLs
are satisfactory using a simulation study. Finally, some concluding remarks are presented.
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1 Introduction

It is well-known that the exponential distribution is one of the commonly used models in several areas of
statistical practice, including survival and reliability analysis. It is used to model data with a constant
failure rate; for more details concerning the exponential model and related topics, one may refer to the
book by Balakrishnan and Basu [2]. A random variable X is said to have a two-parameter exponential
distribution if its cumulative distribution function (cdf) is

F (x;μ, σ) = 1− e−(x−μ)/σ, x ≥ μ, σ > 0, (1)

where μ and σ are the location and scale parameters, respectively. A problem of interest in the reliability
analysis is to investigate the confidence intervals (CIs) for the survival function at a specified point τ ,
which for the two-parameter exponential distribution is defined by

R(τ ;μ, σ) = e−(τ−μ)/σ, τ ≥ μ. (2)

Engelhardt and Bain [5] suggested an approximate method based on Type-II censored data. See also, Roy
and Mathew [7] and Fernández [6]. In this paper, we study the problem of constructing GCIs forR(τ ;μ, σ)
on the basis of the progressively Type-II censored order statistics. The model of progressive Type-II
censoring is of importance in the field of reliability and life testing. Suppose n units are simultaneously
placed on a lifetime test. At the time of the ith failure, Ri surviving units are randomly censored from
the experiment, 1 ≤ i ≤ m. Thus, if m failures are observed, then R1 + · · ·+Rm units are progressively
censored; here, R = (R1, . . . , Rm) denotes the progressive censoring scheme. The interested readers may
refer to the book by Balakrishnan and Aggarwala [1]. See also, Balakrishnan et al. [3] and Burkschat et
al. [4].

The rest of the paper is as follows: In Section 2, some preliminaries are presented. In Section 3, the
GCIs for the survival function of the two-parameter exponential distribution are derived on the basis of
the progressively Type-II censored order statistics. In section 4, some concluding remarks are stated.

2 Preliminaries

Let {Y1, . . . , Yn} be a random sample of size n from the two-parameter exponential distribution with cdf
in (1). Denote the first m progressively Type-II censored order statistics by Y R

1:m:n ≤ · · · ≤ Y R
m:m:n (1 ≤
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m ≤ n), where R = (R1, . . . , Rm) stands for the corresponding progressive censoring scheme. The
likelihood function of the parameters of the two-parameter exponential distribution with cdf in (1) based
on the progressively Type-II censored order statistics can be written as

L(μ, σ) = cσ−m exp

{
−

m∑
i=1

(Ri + 1)
yi − μ
σ

}
,

where c = n(n−R1−1) · · · (n−R1−R2−...−Rm−1−m+1) and yi is the observed value of Y R
i:m:n. Assuming

m ≥ 2, the maximum likelihood estimators (MLEs) of μ and σ based on Y = {Y R
1:m:n, ..., Y

R
m:m:n} are

given by

μ̂ = μ̂ (Y) = Y R
1:m:n and σ̂ = σ̂ (Y) =

1
m

m∑
i=2

(Ri + 1) (Y R
i:m:n − Y R

1:m:n). (3)

Let us take
Z1 = (μ̂− μ)/σ and Z2 = σ̂/σ, (4)

where μ̂ and σ̂ are as defined in (3). It can be shown that 2nZ1 ∼ χ22 and independently 2mZ2 ∼ χ22(m−1),
where χ2m stands for a chi-square distribution with m degrees of freedom (see, Balakrishnan et al., [3]).

3 Generalized confidence interval

In this section, we use the concept of the GCI to arrive the exact CIs for R(τ ;μ, σ). Let X be a random
vector whose distribution depends on γ and ξ, a scalar parameter of interest and a nuisance parameter,
respectively. Furthermore, let x denote the observed value of X. The random variable U(X;x, γ, ξ) is
called a generalized pivotal quantity if it satisfies in the following two conditions:

(i) The distribution of U(X;x, γ, ξ) is free of unknown parameters, for fixed x,
(ii) The observed value of U(X;x, γ, ξ), i.e., U(x;x, γ, ξ), is equal to γ. (5)

The CIs for γ obtained using the percentiles of U(X;x, γ, ξ) are referred to as the GCIs. Therefore, the
Uα(x) is a 100(1− α)% lower GCL for γ if

P (U(X;x, γ, ξ) ≥ Uα(x)) = 1− α. (6)

The quantiles Uα(x) and U1−α(x) are the lower and upper 100(1 − α)% GCLs for γ, respectively,
whereas [Uα/2(x), U1−α/2(x)] is the two-sided equi-tailed 100(1− α)% GCI for γ based on U(X;x, γ, ξ).
Notice that the coverage probability of such a confidence interval could depend on unknown parameters
and hence it may not be exactly 1− α (see, for details, [8] and [9]).
To construct a GCI for R(τ ;μ, σ), we first look for generalized pivotal quantities for μ and σ, denoted
by Uμ and Uσ, respectively, satisfying the properties in (5). That is, the distribution of (Uμ, Uσ) is free
of any unknown parameters, and the observed value of (Uμ, Uσ) is (μ, σ). Toward this end, let μ̂0 and
σ̂0 denote the observed values of μ̂ and σ̂, respectively, where μ̂ and σ̂ are as defined in (3). Consider a
choice of Uμ and Uσ as follows

Uμ = μ̂0 − Z1
Z2
σ̂0 and Uσ =

σ̂0
Z2
. (7)

Note that a generalized pivotal quantity for any function of μ and σ, say h(μ, σ), is given by h(Uμ, Uσ).
Here, the function h(μ, σ) can be quite arbitrary and could be rather complicated. Therefore, using the
pivots in (7), a generalized pivotal quantity for R(τ ;μ, σ) in (2) is given by

UR = UR(Y;y, μ, σ) = exp{−τ − Uμ

Uσ
} = exp{−Z1 − τ − μ̂0

σ̂0
Z2}. (8)

Since a confidence limit (CL) for R(τ ;μ, σ) must be restricted to be 1, it is reasonable to use an alternative
generalized pivot for R(τ ;μ, σ) as follows

U∗ = U∗(Y;y, μ, σ) = min{1, UR(Y;y, μ, σ)}, (9)

where UR(Y;y, μ, σ) is as defined in (8). Clearly, the distribution of U∗ is independent of (μ, σ) and
U∗(y;y, μ, σ) = R(τ ;μ, σ). The exact cdf of U∗ is derived in the following subsection.
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3.1 Distribution of the generalized pivot

To find the cdf of U∗, we consider two different cases if τ ≤ μ̂0 or τ > μ̂0. Notice that in the case of
τ ≤ μ̂0, the U∗ defined in (9) is a mixed random variable with probability function

fU∗(x) =
{
fUR

(x), 0 < x < 1,
π, x = 1,

such that

π = P(UR ≥ 1) = P
(
Z1 +

τ − μ̂0
σ̂0

Z2 ≤ 0
)
, (10)

where Z1 and Z2 are as defined in (4). So, by some algebraic calculations, we get π = 1−
(
1− n(τ−μ̂0)

mσ̂0

)1−m

.

Therefore, the cdf of U∗ is given by

FU∗(x) =

⎧⎪⎨⎪⎩
0, x ≤ 0,

xn
(
1− n(τ−μ̂0)

mσ̂0

)1−m

≤ 1− π, 0 < x < 1,
1, x ≥ 1.

(11)

It is obvious that in the case of τ > μ̂0, the U∗ defined in (9) is a continuous random variable; that is,
U∗ = UR. Hence, by performing some algebraic calculations, the cdf of U∗ in this case is given by

FU∗(x) =

⎧⎨⎩
0, x ≤ 0,
φ(x; τ, μ̂0, σ̂0), 0 < x < 1,
1, x ≥ 1,

(12)

such that

φ(x; τ, μ̂0, σ̂0) =
Γ
(
m− 1,−mσ̂0 log x

τ−μ̂0

)
Γ(m− 1)

+
xn

Γ(m− 1)
ψ

(
−mσ̂0 log x

τ − μ̂0 ,

(
1− n

m

τ − μ̂0
σ̂0

)
,m− 1

)
,

where Γ(α) stands for the complete gamma function, Γ(α, t) represents the incomplete gamma function
(i.e.,Γ(α, t) =

∫∞
t
e−yyα−1dy) and

ψ(t, β, α) =

{
tα

α , if β = 0, t > 0, α > 0,
Γ(α)−Γ(α,βt)

βα , if β �= 0, t > 0, α > 0.

3.2 Interval estimation for survival function

As previously mentioned, the percentiles of U∗ construct the GCIs for the survival function at τ . Using
(6), for given α, a 100(1−α)% lower GCL for R(τ ;μ, σ) is defined by inf{x : FU∗(x) ≥ α}. To derive the
exact lower GCLs for R(τ ;μ, σ), we consider two cases whether τ ≤ μ̂0 or τ > μ̂0.
Case I) Suppose that τ ≤ μ̂0, then using (11), the α-quantile of U∗ is defined by F−1U∗ (α) if α < 1 − π
and coincides with 1 otherwise. Hence, a 100(1− α)% lower GCL for R(τ ;μ, σ) is given by

R1(τ ;α) = min

{
1, α1/n

(
1− n(τ − μ̂0)

mσ̂0

)m−1
n

}
. (13)

Case II) Now, suppose that τ > μ̂0, then a 100(1− α)% lower GCL for R(τ ;μ, σ) is given by

R2(τ ;α) = F−1U∗ (α), (14)

where FU∗(x) is as defined in (12). The lower GCLs for R(τ ;μ, σ) can be obtained by FindRoot command
in Mathematica, using (14).
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To illustrate the performance of the proposed procedure in this paper, we simulate the values of 95% lower
GCLs for survival function at τ for n = 10, m = 5 and some selected choices of the progressive censoring
schemes R = (R1, . . . , Rm). Furthermore, the values of μ and σ have been chosen to be μ = 0.5, 1
and σ = 0.4, 1.1. The results are presented in Table 1. Similar results are tabulated in Table 2 for the
associated coverage probabilities. The lower GCLs and the coverage probabilities are obtained using 5000
times simulations.

Table 1. Values of 95% lower GCLs for R(τ ; μ, σ) for n = 10 and m = 5.

μ = 0.5 μ = 1
τ τ

σ R 1 1.5 2 5 1.5 2 5
0.4 (1,1,1,1,1) 0.1017 0.0181 0.0042 0.0000 0.1030 0.0186 0.0000

(0,0,0,0,5) 0.1015 0.0183 0.0044 0.0000 0.1030 0.0184 0.0000
(0,5,0,0,0) 0.1050 0.0194 0.0047 0.0000 0.1028 0.0187 0.0000
(5,0,0,0,0) 0.1053 0.0193 0.0047 0.0000 0.1031 0.0188 0.0000
(0,0,3,2,0) 0.1037 0.0191 0.0046 0.0000 0.1041 0.0191 0.0000

1.1 (1,1,1,1,1) 0.3940 0.1760 0.0859 0.0031 0.3992 0.1797 0.0052
(0,0,0,0,5) 0.3920 0.1747 0.0851 0.0031 0.3986 0.1790 0.0052
(0,5,0,0,0) 0.3978 0.1789 0.0874 0.0032 0.3954 0.1777 0.0050
(5,0,0,0,0) 0.3940 0.1752 0.0855 0.0031 0.3935 0.1753 0.0048
(0,0,3,2,0) 0.3972 0.1779 0.0867 0.0031 0.3985 0.1783 0.0050

Table 2. Coverage probabilities of the lower GCLs for R(τ ; μ, σ) for n = 10 and m = 5.

μ = 0.5 μ = 1
τ τ

σ R 1 1.5 2 5 1.5 2 5
0.4 (1,1,1,1,1) 95.30 95.48 95.44 95.48 95.04 94.90 94.90

(0,0,0,0,5) 95.00 95.06 95.06 94.90 94.90 95.12 95.04
(0,5,0,0,0) 94.54 94.50 94.58 94.62 95.22 95.36 95.18
(5,0,0,0,0) 94.72 94.58 94.70 94.76 95.36 95.28 95.30
(0,0,3,2,0) 94.56 94.72 94.82 94.78 95.00 95.02 95.12

1.1 (1,1,1,1,1) 95.30 95.39 95.06 94.80 94.96 95.02 94.84
(0,0,0,0,5) 95.62 95.54 95.22 94.96 95.16 94.72 94.54
(0,5,0,0,0) 94.58 94.82 94.78 94.88 95.22 95.32 95.48
(5,0,0,0,0) 95.16 95.20 94.98 95.04 95.08 95.16 95.38
(0,0,3,2,0) 94.98 94.98 95.00 95.10 94.64 94.60 95.12

From Table 2, it is observed that the coverage probabilities of the GCLs are satisfactory.

4 Concluding remarks

The interval estimation of the survival function of the two-parameter exponential distribution on the basis
of the progressively Type-II censored samples was studied in this paper. Toward this end, we obtained
the GCI on the basis of a generalized pivotal quantity for the survival function. One may also derive
a GCI which the associated expected width is minimum. The interval (L,U) is called a 100(1 − α)%
CI with the shortest expected width for unknown parameter θ on the basis of the pivotal quantity Q, if
FQ(U)−FQ(L) = 1−α and E(U−L) is minimum. Since the probability function of U∗ defined in (9), for
the case of τ ≤ μ̂0, is increasing, the 100(1− α)% GCI with the shortest expected width for R(τ ;μ, σ) is
[R1(τ ;α), 1], where, the R1(τ ;α) is as defined in (13). Now, suppose that τ > μ̂0, then using (12), it can
be shown that fU∗(0) = fU∗(1) = 0 and that the probability density function of U∗ defined in (9) has a
unique mode in (0, 1). Therefore, by some algebraic calculations it is deduced that the interval (ζα, ξα) is
a 100(1− α)% GCI with the shortest expected width for R(τ ;μ, σ) on the basis of the generalized pivot
U∗, if

fU∗(ζα) = fU∗(ξα) and FU∗(ξα)− FU∗(ζα) = 1− α.
The exact values of ζα and ξα can be easily obtained using the FindRoot command in Mathematica.
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