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Abstract – A novel method of parametric active contours 

with geometric shape prior is presented in this paper. The 
main idea of the method consists in minimizing an energy 
function that includes additional information on a shape refer-
ence called a prototype. Prior shape knowledge is introduced 
through a complete family of Euclidean invariants, computed 
from the similarity between shape of evolving contour and the 
prototype. This similarity is measured by full Procrustes dis-
tance. This extra knowledge enhances the model robustness to 
noise, occlusion and complex background. We use genetic al-
gorithm to minimize energy function of this new type of snake 
that we call it Procrustes snake. The variational formulation of 
the proposed approach is described in details. We obtain 
promising results with synthetic and real images which show 
the power of our method for segmentation tasks. 

Index Terms – Parametric active contours, Snake, Shape 
prior, Procrustes shape analysis, Genetic algorithm. 

 

I. INTRODUCTION 

An important problem in image analysis is object seg-
mentation. Snake was proposed by Kass et al. [1] for solv-
ing this problem. Snake is a deformable contour on image 
plane that deforms to seek minimum value of its energy 
function. This energy function was defined so cleverly that 
takes its minimum value when is fitted on a closed bound-
ary of an object in image plane. Hence, snake converts the 
segmentation problem to minimization of an energy func-
tion. So far different algorithms are used for solving this 
minimization problem. Calculus of variations (gradient de-
scent) and random search algorithms are two main proce-
dures. Main drawbacks of gradient descent minimization 
are trapping in local minimum due to noise and pseudo-
edges, and numerical instability. In an effort for overcome 
these difficulties, many researchers have been used random 
search algorithms for solving this minimization problem. 
Simulated annealing [2], genetic algorithm [3] and particle 
swarm optimizer [4] are more convenient algorithms for 
this purpose. These algorithms are capable of detecting 
global minimum while escaping local ones.  

Another critical problem is how to add shape prior in-
formation to energy function of snake that drives it toward 
boundary of desired object in image. During the last two 
decades, several approaches incorporating shape prior in-
formation have been presented. First, Duncan and Staib [5] 
propose to determine the parameters of a Gaussian prob-
ability distribution that associates the object boundaries to a 

range of shapes. If the prior is not available, a uniform dis-
tribution is used. Prior distributions can be estimated from a 
sample shape by decomposing the model parameters and 
collecting statistics. The optimization problem is then per-
formed by the maximum a posteriori using Bayesian rule. 
Zhong & al. present an affine-invariant deformable contour 
[6] in a Bayesian framework. They introduce a new internal 
energy to define the global and local shape deformation of 
the contours between the shape domain and the image do-
main. Diffusion-snakes presented in [7] use a modified 
Mumford-Shah functional to allow the incorporation of 
statistical shape prior in a single energy function. A varia-
tional method is then used to minimize the snake energy. 

For adding shape prior information to energy function of 
snake, we use full Procrustes distance [8]. This distance 
measures the similarity of two shapes, independent of their 
position, scale and rotation (Euclidean Transformations) in 
image plane. Consequently, we propose a modified energy 
function with shape prior information that the boundary of 
desired object in image is its global minimum. Noise, oc-
clusion and complex background can not change location of 
this global minimum severely. Then we minimize this 
modified energy function by genetic algorithm, to obtain a 
global minimum for it. So by this method, we have found 
the boundary of desired object in image independent of its 
position, size and orientation in image plane.  

This paper organized as follows: section 2 describes Pro-
crustes shape analysis. In section 3 we add an extra energy 
term to usual energy function of parametric active contours 
based on full Procrustes distance. In section 4 we minimize 
this modified energy function by genetic algorithm. Ex-
perimental results are presented and discussed in section 5.  
Conclusion is presented in section 6. 

   

II. PROCRUSTES SHAPE ANALYSIS 

Procrustes shape analysis is a particularly popular 
method in direction statistics and is intended to cope with 2-
D shapes. A shape in 2-D space can be described by a vec-
tor of n complex numbers: 
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),( ii yx  are the Cartesian coordinates of the ith landmark of 
shape, vector z is called a configuration (We will represent 
vectors by using bold letters). Fig. 1 shows a prototype and 
its n landmarks. For two shapes z1 and z2, if their configura-
tions are equal through a combination of translation, scaling 
and rotation, i.e.:  
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We may consider z1, z2 represent the same shape. In (2)  n1  
is a 1×n  vector with entries 1, nR 1×α  translates z2 by Rα  
units in the horizontal axis direction and nIj 1××α  trans-
lates z2 by Iα  units in the vertical axis direction, |β| and 
β∠  scale and rotate z2, respectively. It is very convenient to 

center shapes by defining the centered configuration 
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Procrustes distance between two configurations u1, u2 can 
be defined as [8] (we suppose that correspond points on two 
contours have similar indices in two configurations): 
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Minimizing the above objective function with respect to α 

and β  we have: ,0=α  
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* represents the complex conjugation transpose. Substitut-
ing α and β  in (3), we have: 
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Figure 1 - A prototype and its n landmarks. 

Based on Cauchy-Schwarz inequality )|(| 2
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we can show that 1),(0 21 ≤≤ uuFd . When 
0),( 21 =uuFd , two configurations u1, u2 represent the 

same shape and when 1),( 21 =uuFd , two configurations u1, 
u2 represent two shapes that have no resemblance to each 
other. We conclude that smaller ),( 21 uuFd  means that 
two configurations u1, u2 represent two shapes that have 
more resemblance to each other. Consequently, full Pro-
crustes distance measures the degree of resemblance of two 
shapes independent of their position, scale and rotation 
(Euclidean transformations) in image plane. For using full 
Procrustes distance in snake energy, we need a mean shape 
(prototype) of desired object, to measure resemblance of 
evolving contour with it. Given a set of k sample shapes of 
an object )( k21 u,...,u,u , we can find their mean by find-
ing u that minimizes the objective function in (5) [8]: 
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Hence, u is the shape that all sample shapes can be fitted to 
closely by selecting appropriate values for αi and βi ,0( =iα  
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Where k is a constant that represents number of sample 
shapes and:  
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From (6) we conclude that: 
 

 
                     (8) 
 

 
If we suppose that λi and vi (||vi||=1) are corresponding ei-
genvalues and eigenvectors of matrix S, respectively, we 
will have: 
 

(9) 
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Comparing (8) and (9), we conclude that the Procrustes 
mean shape û  is the dominant eigenvector of S, i.e., the 
eigenvector that corresponds to the greatest eigenvalue of S. 
 

III. EMBEDDING SHAPE PRIOR TO ENERGY FUNTON OF SNAKE 

A traditional snake is a controlled continuity spline that 
moves and localizes onto a specified contour under the in-
fluence of its energy function minimization [1]. Let a snake 
be a parametric contour, ))(),(()( sysxsv = , where parame-
ter ∈s [0,1]. It moves around the image spatial domain to 
minimize the discretized energy function, defined by “[9], 
[10],” : 
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That: 

 
              (11)                       

 

In the above equation, v is the evolving contour with n 
points, ),( ii yx  are the Cartesian coordinates of ith point 
and ),(),( 00 nn yxyx = . iw s are constant weights that are 
used to tune the impact of each energy terms.  

 The first term in above energy function is called first 
order continuity. This term drives snake points into image 
plane because it tends to reduce the distance between adja-
cent points. Hence this term prevents of gaps in contour that 
are due to noise and pseudoedges. Existence of this term is 
essential, because when snake lies on homogeneous regions 
of image, the image energy is negligible and only minimi-
zation of this term can move the snake toward boundary of 
desired object. One important problem of this term is a ten-
dency for points to bunch up on a strong portion of an edge 
[9]. For solving this problem, we use the second term in 
energy function. This term encouraging even spacing of 
points, it tends to keep the distance between each pair of 
adjacent points equal and prevents of tendency for points to 
bunch up on a strong portion of an edge ( d is average dis-
tance between adjacent points in contour). 

The third term in above energy function is called second 
order continuity. If the ith point of snake pushed toward the 
middle of two adjacent points, this term will be minimized. 
Consequently, the shape of evolving contour will remain 
second order continuity i. e. without sharp corners that are 
usually due to noise and pseudoedges. 

 The fourth term (image energy) considers the gradient 
magnitude. It is normalized to measure the relative magni-
tude as [9]: 

                                             
(12) 

 
 

Where min and max denote the minimum and maximum 
gradients in the ),( ii yx  local m–neighbourhood, respec-
tively. Note that because the numerator in above equation is 
always negative, we can minimize this term for locating the 
largest gradient, which is the edge. Consequently, minimi-
zation of this term will move snake points toward edge 
points in image.  

To introduce shape prior information, we add fifth energy 
term (Eshape) to traditional energy function that guides the 
snake toward a given prototype (mean shape û ) independ-
ently of its pose, size and orientation in image.  
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That: 
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In the above equation, ),ˆ( vudF  is full Procrustes distance 
between evolving contour v and mean shape of desired ob-
ject )ˆ(u  that was computed in previous section based on a 
set of k sample shapes of desired object. We mention that 
parametrisation of the evolving contour (v) should match 
that of mean shape û  i. e., correspond points on two con-
tours have similar indices in two configurations. For this 
purpose, we reparametrize  v by changing the starting point 
(applying circular shift to v) and calculate ),ˆ( vud F  for 
each parametrisation. The minimum of ),ˆ( vud F over n 
possible parametrisation will be replaced in (14).  

Note that full Procrustes distance only depends on degree 
of resemblance of two shapes. Hence, minimization of this 
term drives the evolving contour to boundary of desired 
object in image, independent of its pose, size and orienta-
tion in image i.e., this term will be minimized if v and 
û represent the shape of a single object. The movement of 
this type of snake under the influence of full Procrustes 
distance between evolving contour and the mean shape of 
desired object inspired us to dub it Procrustes snake.  

IV. ENERGY FUNCTION MINIMIZATION USING GENETIC AL-
GORITHM 

In previous section we proposed a modified energy func-
tion for parametric active contours so that the boundary of 
desired object in image is its global minimum. In this sec-
tion, for probing this global minimum in image plane, we 
use genetic algorithm. Some benefits of GA for solving this 
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minimization problem are [2]: a low order of complexity, 
the ability to handle arbitrary constraints, operation in dis-
crete space and the ability to escape local minima and find-
ing global minimum. GA starts with a fixed population of 
candidate solutions and each of the candidates is evaluated 
with a fitness function that is a measure of the candidate 
potential as a solution to the problem. The fitness function 
maps an individual of the population in to a scalar. Genetic 
operators like selection, crossover and mutation are imple-
mented to simulate the natural evolution. A population, 
usually presented by a binary string is modified by the 
probabilistic application of the genetic operators from one 
generation to the next. The fitter individual has more 
chance for reproduction in next generation. However, the 
solutions with lower fitness are not always rejected from 
the population set to resist the loss of any otherwise useful 
genetic materials.  

Our candidate solutions are discrete contours with n 
points in image plane. For encoding these contours, we use 
chromosomes as: 

 
 

1x  1y  2x  2y  … nx  ny  

 
That ),( ii yx  are the Cartesian coordinates of ith snake 

point and their values are integer values in the range of im-
age domain. The fitness of this typical chromosome is com-
puted by substituting it in energy function of Procrustes 
snake (13).  

GA operators such as selection, crossover and mutation 
have various types. In this paper we use rank selection, uni-
form crossover with crossover rate PC and simple mutation 
with mutation rate PM. In rank selection, first we rank indi-
viduals according to their fitness (smaller fitness better 
rank), then we give chance to individuals for reproduction 
in next generation proportional to their rank. In uniform 
crossover, each gene of children comes with equal probabil-
ity from one of the parents. In simple mutation, each gene 
with probability PM will be replaced with a random positive 
integer in the range of image domain. 

 

V. EXPRIMENTAL RESULTS  

In the first example we perform segmentation of a circle 
overlapping a rectangle. First we extract the mean shape for 
a rectangle and a circle with 24 and 23 landmarks, respec-
tively. These mean shapes are depicted in Fig. 2 and Fig. 3.  

Fig. 4 depicts the image and initial contour at the border 
of image. This initial contour evolves under the influence of 
energy function minimization by GA. Fig. 5(a) depicts the 
final contour when we do not use shape prior information 

)0( 5 =w . Fig. 5(b) depicts final contour when we use shape 
prior information of a circle i. e. replacing û  with mean 
shape of a circle and )1( 5 =w . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Mean shape for a rectangle with 24 landmarks. 

 
 

 
 
 
 
 
 
 
 

 
Figure 3 - Mean shape for a circle with 23 landmarks. 

 
 

 
 
 
 
 
 

 
Figure 4 - Synthetic image and initial contour  

 
 

 
 
 
 
 
 
 
 
                    
Figure 5 – a) Final contour without using of shape prior. b) Final contour 

with using shape prior information for a circle. 
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In the second example we show the robustness of the 
method against heavy noise. We corrupt the previous image 
with heavy salt and pepper noise, then perform segmenta-
tion by adding shape prior information for a rectangle to 
energy function i. e. replacing û  with mean shape of a rec-
tangle. Fig. 6 represents that correct segmentation is ob-
tained despite the large amount of noise thanks to using of 
GA. 

In the third example, we use Procrustes snake for ship de-
tection. Fig. 7 depicts mean shape of one type of ship ex-
tracted from a set of 30 sample shapes with 31 landmarks. 
Fig. 8 depicts the initial contour at the border of image, Fig. 
9(a) depicts the final contour without shape prior )0( 5 =w  
(traditional snake model) and Fig. 9(b) depicts the final 
contour with adding shape prior for the ship i. e. replacing 
û  with mean shape of a ship and  )1( 5 =w , which is show-
ing that correct segmentation is obtained despite the occlu-
sion. 

In the last example we show the robustness of the method 
against the complex background and its independence of 
initial contour. Fig. 10 depicts the image and initial contour 
at the border of image. Fig. 11(a) depicts the middle con-
tour after 100 iterations of GA and Fig. 11(b) depicts the 
final contour after 147 iterations of GA. We see that bound-
ary of the ship is extracted properly thanks to using of GA 
and adding shape prior information for the ship into snake 
energy.  

Fig. 12 depicts the snake energy versus iterations. It is 
obvious that GA conflict with a strong local minimum after 
100 iterations (Fig. 11(a)), but escapes it and detects the 
global minimum of snake energy after 147 iterations. This 
global minimum corresponds to our desired ship’s bound-
ary in image plane (Fig. 11(b)).  

 
 

 
 

Figure 6 - Final contour in the presence of heavy noise.  

 
 
 

 

 
 

 

 

 

 

 

 

 

Figure 7 -  Mean shape for a ship with 31 landmarks. 

 
Figure 8 - Image of ship and initial contour.  

 
 
 

 
 
 
 
 

 

Figure 9 - a) Final contour without using of shape prior. b) Final contour 
with using shape prior information for a ship. 

 
 
 

 
 
 
 

 

Figure 10 - Image of ship and initial contour. 
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Figure 11 – a) Middle contour after 100 iterations of GA. b) Final contour 
after 147 iterations of GA. 

 
 

 

 

 

 

 

 

 

 

Figure 12 -  Snake energy versus iterations of  GA. 

VI. CONCLUSION 

A new method of parametric active contours based on 
geometrical shape prior was presented in this paper. It used 
information from a mean shape of desired object and gray 
levels to guide the active contour to boundary of desired 
object. Mean shape was extracted from a set of sample 
shapes and full Procrustes distance was used for measuring 
the degree of similarity between evolving contour and mean 
shape. We used GA for minimization energy function of 
this new type of parametric active contours. Main drawback 
of our scheme is due to using of GA because it is a time 
consuming process. But, some benefits of GA are: a low 
order of complexity, the ability to handle arbitrary con-
straints, operation in discrete space and the ability to escape 
local minima and finding global minimum. By using of 
suboptimum minimization algorithms such as greedy algo-
rithm, one can implement this minimization problem much 
faster. For using of suboptimum algorithms, one needs a 
good initialization contour near the boundary of desired 
object. The extension of the algorithm to more general 
geometrical transformations such as affine ones [11] is also 
an interesting perspective. 
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