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In this paper, the stiffness of a 3-PSP spatial parallel manipulator is investigated. Unlike traditional
stiffness analysis, themoving platform is assumed to be flexible. Two analytical methods are used
in finding the robot stiffness. In the firstmethod, robot ismodeled as lumped systemand principle
of virtual work is used. In the second method, the robot is modeled as a distributed system and
strain energy of robot main components as well as Castigliano's theorem are used. Force analysis
is also presented and reaction forces at the joints aswell as internal forces/moments are obtained.
For each of the main robot components, a matrix called Wrench Compliant Module Jacobian,
WCMJ, is introduced. Thesematriceswill allowmapping the applied externalwrench on themov-
ing platform to corresponding reaction forces for the corresponding compliant module. All anal-
ysis is presented using invariant form. To evaluate accuracy of the two methods, finite element
analysis is used. Finally, using the distributed method, maximum and minimum eigenvalues of
the stiffness matrix are obtained and values of kinematic stiffness index are presented.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Application of parallel robots in industry continues to increase [1]. Some of these applications are simulators, machine tools,
cutting and welding machines as well as CNC machines [2–5]. High precision and stiffness as well as good dynamic efficiency
of parallel robots give them the capability to be used as CNC machines [5]. Earlier parallel robots usually have six degrees of free-
dom [6–8]. However, today, with increased application of parallel robots, robots with fewer numbers of degrees of freedom are
needed [9,10]. These robots, in addition to having most of the capabilities of the parallel robots, can be made with less cost
[11–13]. The economical factor of parallel robots with lower degrees of freedom has expanded their use in manufacturing pro-
cesses [14,15]. In designing of parallel robots various criteria such as workspace, maximum capacity of load carrying, stiffness
and KSI (kinematic stiffness index) should be investigated [16–20]. When parallel robots are used as machine tool, stiffness is
considered one of the most important design parameters [4,15,21]. In fact, in parallel robots, accuracy has a direct relationship
with stiffness of the robot. Accuracy and stiffness are two important parameters considered when designing machine tools
[13,22]. Therefore, it is natural to consider use of inherently stiff parallel robots in machine tools and CNC machines. To study
the stiffness of robots, two methods may be used to find the stiffness matrix of robot. The first method uses theoretical formula-
tion while the second method uses actual experiments performed on robot [23]. Rezaei and Akbarzadeh [1] studied stiffness of a
spatial parallel robot by considering flexibility effect of the moving platform using a distributed approach. Also, Enferadi and
Akbarzadeh [24] investigated the stiffness of a spherical parallel robot by calculating strain energy of each component of the
robot. However, in most studies, stiffness model of the parallel robots is considered as lumped. Li and Xu [22] derived the stiffness
matrix of a 3-PUU PKM based on an alternative approach considering actuations and constraints. Kim and his coworkers
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investigated the stiffness analysis of a 3-DOF parallel robot with one constraining leg, which takes into account the elastic defor-
mations of joints and links. To obtained stiffness matrix, overall Jacobian matrix and principle of virtual work are used [25].

The stiffness analysis of general 6-DOF parallel manipulators has been extensively reported, specifically, Stewart–Gough platform
[26]. Gosselin used Jacobian matrix to study the stiffness of Stewart platform and the mapping between the driving force and the
platform deformation [27]. To evaluate the robot stiffness variations throughout the workspace and to obtain the effect of altering
the kinematics parameters in the structure, the eigenvalues of the stiffness matrix and KSI criteria are used [12,19,21,28]. In [20] a
general and semi analytical approach for formulation of the stiffnessmatrix of parallel robot and its comparisonwith FEA is presented.

The purpose of stiffness analysis is to obtain its related stiffness matrix. Stiffness matrix relates 6 dimensional vector of small
displacement for the end-effector and its corresponding 6 dimensional vector of applied static forces/torques (wrench). In robots,
stiffness has a direct relationship with precision andmaximum load carrying capacity [24]. It can be demonstrated that stiffness of
a robot is limited between maximum and minimum eigenvalues of its stiffness matrix [12,22,28]. One method used to evaluate
the stiffness is finding the maximum and minimum eigenvalues of the stiffness matrix and using KSI criterion [29]. Since the
stiffness is a 6×6 matrix, 6 eigenvalues can be found. The stiffness of robot in its workspace can be evaluated by finding the
maximum and minimum of its 6 eigenvalues throughout this space. For machine tool applications, the robot physical parameters
should be designed so that the minimum values of the stiffness matrix, in its workspace, is greater than a desired value
[3,22,19,28]. This will results in a desired accuracy for the machine. Therefore, determining low and high limits for stiffness of
a robot is considered an essential part of a machine design [12,30].

In this paper, two analytical methods for solving the stiffness of 3-PSP parallel robot are presented. The presented methods are
general and can be applied to most parallel robots. In the first method, stiffness of the robot is modeled as lumped and solved
using principle of virtual work. In this method all flexible components such as, Linear rods and motors are modeled using linear
springs. Jacobian analysis is first performed to find the relationship between displacement of the end-effector and the corre-
sponding displacement of the actuators. Next, using principle of virtual work, the relationship between deformations of the
end-effector and corresponding external wrench on the robot tip is obtained [13,22,25]. In the second method presented in
this paper, unlike the first, stiffness of the robot is modeled as distributed system. This method is based on Castigliano's theorem
and calculation of strain energy of the robot components. Traditional methods used for calculation of the robot stiffness, are based
on modeling of stiffness as lumped. There are many limitations and assumptions used for simplification of the lumped model.
However, when the robot is modeled as distributed system, there is no need to use any of the simplifying assumptions. Therefore,
this method will be more accurate in modeling the stiffness. Furthermore, this method allows us to model the star shapedmoving
platform as a flexible body and include the effect of bending in all components of the robot. The results of the twomethods, virtual
work and Castigliano's, are further compared with results from a commercial finite element analysis software.

This paper is organized as follows: In Section 2, structure of a spatial 3-PSP parallel robot is introduced and solution to inverse
kinematics of the robot is presented. In Section 3, a lumped stiffness model is presented using principle of virtual work. Next, the
second method is presented for solving robot stiffness based on Castigliano's theorem. Calculation of the strain energy for the
robot components assuming continuous model for the robot are presented. In Sections 4 and 5, the results of the two previous
models are each compared with results from the FEAmodel. The method with higher accuracy is used for the subsequent analysis.
In Section 6, the more accurate method is selected and the robot stiffness, using maximum and minimum eigenvalues of stiffness
matrix, in its workspace is evaluated. The kinematic stiffness index (KSI) is also calculated for several sections of the workspace.

2. Structural description and inverse kinematics analysis

In this paper, a special type of 3-PSP parallel robot is investigated. The solid and physical models of a 3-PSP parallel ma-
nipulator are illustrated in Fig. 1(a) and (b). This robot is a fully parallel mechanism with three degree of freedom. This robot
is composed of a moving platform which is shaped like a star and two fixed platforms. Selected tools may be placed in the
center of the moving platform also referred to as moving star (MS). The moving star and the fixed platforms are connected
together with three parallel legs with identical serial kinematic chains. Each of the three legs, consists of an active prismatic
joint (P-joint), actuated by a Linear rod (LR), and a passive spherical joint (S-joint), followed by a second passive prismatic
joint. Therefore, the MS is attached to the base by three identical serial PSP linkages. The three independent DOFs for the
robot may be selected among the six possible degrees of freedoms (x, y, z,θ,φ andλ). In the present paper, two rotational
and one translational variables θ, φ and z are selected as inputs for the inverse kinematics problem (see [2] for more details).
Fig. 1(c) shows geometry for one of the three kinematic chains.

The vectors and reference frames are also described in this figure. A fixed coordinate frame B{x, y, z} is arbitrarily embedded in the
top fixed platform and attached to the center point O of fixed triangle ΔA1A2A3. Likewise a moving coordinate frame T{u, v, w} is
attached to the tool, at point T. In this paper, vectors referenced in fixed base coordinate frame {B} are denoted by Bv, while vectors
referenced in moving coordinate frame {T} are denoted by Tv. The three spherical joints are denoted by Si. Three position vectors
Bqi, defined in {B}, connect corners of the fixed triangle, Ai, to the center of the spherical joints, Si. Position of the end-effector
(point T) with respect to {B} is given by vector BT. Three additional position vectors, Bai locate corners of the fixed base, Ai, in {B}.
The position vector Tbi, connects the end-effector, point T, to the ith spherical joint, Si, and is defined in {T}.

Consider Fig. 1(c). Three closed vector-loop equations can be written as,

Ba
i
þ Bq

i
¼ B

TR
Tb

i
þ BT for i ¼ 1; 2; 3 ð1Þ
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In inverse kinematics problem, a position vector for end-effector is given and vector specifying positions of actuators are deter-
mined. Therefore, upon specifying position vector of the end-effector,BT, the constraint equations, Eq. (1), can be solved. Therefore,
kinematic values of robot which are necessary for Jacobian and stiffness analysis are obtained (see [2] for more details).

3. Stiffness analysis of 3-PSP parallel robot

In this paper, stiffness analysis of a 3-PSP parallel manipulator is presented. Stiffness analysis measures small deflection of
robot's end-effector when external wrench is applied to this point. This relationship is expressed by stiffness matrix. Before
obtaining the stiffness matrix, we must first find the relationship between applied external wrench on MS and the resultant joints
forces. From forced analysis, several analytical expressions will be obtained. These analytical expressions will allow us to calculate
reaction forces for all 3-PSP manipulator configurations. To do this, the robot is considered to be comprised of three compliant
modules. First compliant module is the moving star. The second and third compliant modules are the linear rods and the motors,
respectively. In this paper, force analysis is performed for all three compliant modules. This is performed by introducing the

a

c

b

Fig. 1. (a) Solid model (b) physical model and (c) geometry of one kinematic chain of the 3-PSP parallel robot.
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Wrench Compliant Module Jacobian, WCMJ, matrices. These matrices will allow us to map the applied external wrench on MS to
corresponding reaction forces for that compliant module.

Most present methods used to find robot stiffness matrix use lumped model. The existing limitations in these methods require
a series of simplifying assumptions used in the process of modeling robot stiffness. The most important of these assumptions is
that the moving platform is assumed to be rigid. Also most articles do not consider the effect of bending of robot members.

In this paper, two methods for obtaining robot stiffness matrix are presented. In the first method, principle of virtual work is
used. The MS is assumed to be rigid and bending in all components of the robot is assumed to be negligible. In the secondmethod,
unlike traditional stiffness modeling methods, the MS is modeled as flexible. Furthermore, bending in all components of the robot
is considered. To do this, a continuous method is used for obtaining the manipulator stiffness matrix. This method is based on
strain energy and Castigliano's theorem. To obtain strain energy of all components, first, inverse kinematic and forced analysis
must be performed. Next, using Castigliano's theorem, stiffness matrix that maps small displacement of the end-effector to ap-
plied external wrench, is obtained.

3.1. Lumped modeling of stiffness matrix

In this subsection, the development of stiffness matrix for 3-PSP parallel robot is presented based on principle of virtual work.
To use a lumped model, the following assumptions must be made,

• The MS is assumed to be rigid.
• Bending in all compliant modules (MS, LR) is assumed to be negligible.
• Weights of all compliant modules of the robot are negligible.
• Passive joints are assumed to be rigid and all joints are frictionless.
• Rigidities of the ball screws and guide rods are infinite.
• Motors, linear rods are assumed flexible

3.1.1. Obtaining equivalent stiffness for motors and Linear rods
Themoving platform is supported by a total of six springs, in which three springs are related to the linear rods and the other three

are related to the motors. The values of spring constants are determined bymodeling the compliances in each leg. As shown in Fig. 2,
Kai is equivalent stiffness value of the ith LR and is equal to AbEb/qi. Additionally, stiffness for the ithmotor, Kmi, is modeled by a equiv-
alent linear spring. To obtain the value of qi, in different robot configurations, the inverse position analysis must be completed. First,
consider the reaction forces on S-joints are due to shear and axial forces at the endof LRs. The axial forcewill result in amoment on the
motor. Themomentwill further result in a rotational deformation onmotor shaft. The rotational deformation inmotor will result in a
linear displacement of the moving block along the z-direction.

The equivalent torsional stiffness of motor and applied moment on motor are denoted by Ktor and τm, respectively. Then,
rotational deformation of motor, Δθm, is expressed as,

Δθm ¼ τm=Ktor ð2Þ

Also, the relationship between linear displacement of the nut,Δq, and rotational deformation of motor is represented by,

Δq ¼ Nlb
2π

� �
Δθm ð3Þ

Fig. 2. Lumped model of a 3-PSP parallel robot.
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Where, lb is the lead of the ball screw and N represents the gearbox transmission ratio. Also, the relationship between axial reaction
force, f on LR and applied moment on motor due to gearbox transmission ratio is represented as,

f ¼ 2π
Nlb

τm ð4Þ

Using Eqs.(3) and (4), equivalent linear spring which models the stiffness of the ith motor can be determined. Since all three
motors are assumed to be equal, we can write,

Km ¼ f
Δq

¼ 2π
Nlb

� �2
Ktor ð5Þ

3.1.2. Determination of stiffness matrix
The overall Jacobianmatrix of robot is amatrix that expresses the relationship between velocities in Cartesian space and velocities

in joint space of a manipulator. The velocity relation for the 3-PSP parallel robot is written as (see [2] for more details),

_q ¼ Jt ð6Þ

Where J is a 3×6matrix called overall Jacobian matrix of the 3-PSP parallel manipulator. Let _q ¼ _q1 _q2 _q3½ �T and t ¼ vP ωs½ �T
be the vectors of the linear actuated joint rates and the MS velocities, respectively. Where vP ¼ _x _y _z½ �T andωs ¼ _θ _φ _λ

� �T,
represent translational and angular velocities of MS, respectively. Considering Eq. (6), we can write,

δq ¼ JδS ð7Þ

Where, δq is virtual infinitesimal displacement vector of LRs and δS is virtual infinitesimal twist vector of the end-effector. According
to the principle of virtual work, we have

WTδS ¼ τTδq ð8Þ

Where, τ is the vector of applied forces at the actuated joints and W is the vector of applied external wrench at the end-effector.
According to the Hook's law, the relation between virtual infinitesimal displacement vector of LRs and vector of applied forces at the
actuated joints can be written as,

τ ¼ κaδq ð9Þ

Where, κa is a diagonal matrix consisting of stiffness of the motors, represented by linear spring, and the equivalent stiffness of LRs.
This matrix can be defined as,

κa ¼ diag Keq1;Keq2;Keq3

� �
ð10Þ

As shown Fig. 2, we know that the two equivalents springs Kmi and Kai are in series with each other. Then, total equivalent
spring for each robot leg can be obtained as follows,

Keqi ¼
KaiKmi

Kai þ Kmi
for i ¼ 1; 2; 3 ð11Þ

Substituting Eq.(9) into Eq.(8) yields,

WTδS ¼ δqTκaδq ð12Þ

Considering Eq. (7), we have,

WTδS ¼ δST JTκaJ
� �

δS ð13Þ

Finally, Eq. (13) can be written as follows,

W ¼ KδS ð14Þ

Where,δS ¼ δχ δψ½ �T consists of δχ ¼ δx δy δz½ �T a translational displacement vector of MS center andδψ ¼ δθ δφ δλ½ �T a
rotational displacement vector of MS center. Matrix K is called overall stiffness matrix of the 3-PSP parallel robot. Using Eqs. (13)
and (14), the overall stiffness matrix is obtained by,

K ¼ JTκaJ ð15Þ
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3.2. Distributed modeling of stiffness matrix

In this subsection, the development of stiffness matrix for 3-PSP parallel robot is presented based on Castigliano's theorem and
strain energy. The following assumptions are made,

• The MS is assumed to be flexible
• Bending in all compliant modules (MS, LR, and Motors) is considered.
• Weights of all compliant modules are negligible.
• Passive joints are assumed to be rigid
• All joints are frictionless.
• Strain energy due to shear forces is negligible.

We presume that the listed assumptions result in stiffness modeling that is very realistic and should closely approximate the
stiffness of the actual robotic manipulator.

3.2.1. Determination of compliance matrix of robot's modules and force analysis
In this subsection, strain energy of all compliant modules of the 3-PSP parallel robot is calculated. For this purpose, force analysis

and inverse position analysis will be used. Generally, total strain energy of manipulator can be written as,

U ¼ UMS þ ULR þ UM ð16Þ

Where, UMS is strain energy of MS, ULR is strain energy of the three LRs and UM is strain energy of the three motors. The overall
stiffness matrix, K, is the mapping between applied external wrench and infinitesimal twist (rotational and translational displace-
ment) at the end-effector. Therefore, using Hooke's law, this mapping for the whole robot structure can be written as,

W ¼ KδS ð17Þ

WhereW and δS represent, external wrench applied to the center of MS and virtual twist of the MS center, respectively. δS contains
virtual translation, δχ, and virtual rotation, δψ, vector of MS center. Hence,

δS ¼ δx δy δz δθ δφ δλ½ �T ¼ δχ δψ½ �T ð18Þ

Using Castigliano's theorem, we can obtain overall virtual twist vector of MS as follow,

δχ ¼ ∂U
∂fext

¼ ∂UMS

∂fext
þ ∂ULR

∂fext
þ ∂UM

∂fext
¼ δχMS þ δχLR þ δχM ð19Þ

δψ ¼ ∂U
∂Mext

¼ ∂UMS

∂Mext
þ ∂ULR

∂Mext
þ ∂UM

∂Mext
¼ δψMS þ δψLR þ δψM ð20Þ

Therefore, the virtual twist vectors due to flexibility of MS, LRs and motors can be written as,

δSMS ¼ δχMS δψMS½ �T ¼ δχMSx δχMSy δχMSz δψMSx δψMSy δψMSz
� �T ¼ CMSW ð21Þ

δSLR ¼ δχLR δψLR½ �T ¼ δχLRx δχLRy δχLRz δψLRx δψLRy δψLRz
� �T ¼ CLRW ð22Þ

δSM ¼ δχM δψM½ �T ¼ δχMx δχMy δχMz δψMx δψMy δψMz
� �T ¼ CMW ð23Þ

Where CMS, CLR and CM are compliance matrices of the MS, LRs and motors, respectively. Therefore, the virtual twist vector of the
MS center, point T on end-effector, can be written as,

δS ¼ δSMS þ δSLR þ δSM ¼ CMS þ CLR þ CMð ÞW ¼ C6�6W ð24Þ

Where C is the overall compliance matrix of the 3-PSP robot. Eq. (17) can be rewritten as,

W ¼ C−1δS ð25Þ
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Comparing Eqs. (17) and (25), the stiffness matrix for the 3-PSP parallel robot can be obtained as,

K ¼ C−1 ð26Þ

Next, the compliance related to all robot compliantmodulesmust be determined. To do this, first force analysis for each compliant
module should be performed. The force analysis is presented by introducing theWrench CompliantModule Jacobianmatrices,WCMJ.

3.2.1.1. Compliance matrix of moving star (MS). In this subsection, first the relationship between the applied external wrench on
the end-effector, point T, and the resultant joints forces is determined. Assume that the MS experiences an external wrench
BW defined in the fixed coordinate {B} as follow,

BW6�1 ¼ ½ Bfext
BMext �T ;

Bfext ¼ ½ fx fy fz�T ;
BMext ¼ ½ Mx My Mz�T ð27Þ

Where Bfext denotes a force vector and BMext denotes a moment vector in {B}. As shown in Fig. 3, TF is a vector of reaction forces
between the ith prismatic passive joint and ith branch of MS in{T}. We also define three additional frames {Ti} which are attached
to the S-joints with their x-axis long the bi vectors. The overall vector of reaction forces is expressed as

TF6�1 ¼ ½ fv1 fw1 fv2 fw2 fv3 fw3 �T ð28Þ

Where fvi, fwi are values of reaction forces in ith prismatic passive joint.
For a given configuration of 3-PSP manipulator, directions of all unit vectors are determined by inverse kinematics problem.

The relation between these forces and applied external wrench on MS may be written as,

F ¼
X3
i¼1

B
TiR

�
fvi

Tiv i þ fwi
Tiw i

�
þ Bfext ¼ 0 ð29Þ

MT ¼
X3
i¼1

B
TiR
�
bifvi

Tib i � Tiv i

�
þ bifwi

Tib i � Tiw i

��
þ BMext ¼ 0

��
ð30Þ

Where, Tivi, Tiwi are unit vectors along the reaction forces in {Ti} and Tibi denote unit vectors along each branch of MS in {Ti}. By
simplifying above equations, we obtain a relation between external wrench and reaction forces in matrix form as,

W6�1 þ A6�6
TF6�1 ¼ 0 ð31Þ

Eq. (31) can be rewritten as,

TF6�1 ¼ B6�6W6�1 → B ¼ −A−1 ð32Þ

Matrix B is called Wrench Compliant Module Jacobian, WCMJMS, matrix for MS. Note, this matrix maps the applied external
wrench on MS to corresponding reaction forces for the compliant module under study, in this case, the MS. The components of

Fig. 3. Free body diagram (FBD) of the moving star (MS).
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the B matrix are referred to as bij. Next, to calculate the total strain energy of MS due to applied external wrench, the internal
bending moment in each branch of MS should be calculated. Consider Fig. 4. We can write,

Mvi ¼ fwiui fori ¼ 1; 2; 3 ð33Þ

Mwi ¼ fviui fori ¼ 1; 2; 3 ð34Þ

Strain energy of MS, UMS, can be written as follows,

UMS ¼
X3
i¼1

∫
bi

0

1
2EI

M2
vi þM2

wi

� �
dui; 0≤ui≤bi ð35Þ

Where bi is the length of ith branch of MS. The value of bi can be determined by solving the inverse kinematics problem at the
desired robot configuration. Using Castigliano's theorem and Eq. (35), the virtual twist vector due to flexibility of the moving star,
δSMS, can be expanded as follows,

i. Virtual translational displacement of MS, δχMS

δχMSx ¼ ∂UMS

∂fx
¼
X3
i¼1

∫
bi

0

1
EMSIMS

Mvi
∂Mvi

∂fx
þMwi

∂Mwi

∂fx

� �
dui ð36aÞ

δχMSy ¼ ∂UMS

∂fy
¼
X3
i¼1

∫
bi

0

1
EMSIMS

Mvi
∂Mvi

∂fy
þMwi

∂Mwi

∂fy

 !
dui ð36bÞ

δχMSz ¼
∂UMS

∂fz
¼
X3
i¼1

∫
bi

0

1
EMSIMS

Mvi
∂Mvi

∂fz
þMwi

∂Mwi

∂fz

� �
dui ð36cÞ

ii. Virtual rotational displacement of MS, δψMS

δψMSx ¼ ∂UMS

∂Mx
¼
X3
i¼1

∫
bi

0

1
EMSIMS

Mvi
∂Mvi

∂Mx
þMwi

∂Mwi

∂Mx

� �
dui ð37aÞ

δψMSy ¼ ∂UMS

∂My
¼
X3
i¼1

∫
bi

0

1
EMSIMS

Mvi
∂Mvi

∂My
þMwi

∂Mwi

∂My

 !
dui ð37bÞ

δψMSz ¼
∂UMS

∂Mz
¼
X3
i¼1

∫
bi

0

1
EMSIMS

Mvi
∂Mvi

∂Mz
þMwi

∂Mwi

∂Mz

� �
dui ð37cÞ

WhereδSMS ¼ δχMSx δχMSy δχMSz δψMSx δψMSy δψMSz
� �T is a 6×1 vector.Where, δχMSx, δχMSy and δχMSz are components

of virtual translational displacement and δψMSx, δψMSy and δψMSz are components of virtual rotational displacement about x-, y- and
z- axes in fixed coordinate frame {B}. The components of Bmatrix, Eq. (32), are substituted into Eqs. (33–34). Results are placed into

Fig. 4. FBD and section view of the ith branch of the MS.
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the above equations, Eqs. (36a–c)–(37a–c), and next integrated. Finally, external applied wrench,W, is factored which provides the
virtual twist vector due to flexibility of MS in terms of applied external wrench. For j=1, 2, ⋯, 6, we can write

δχMSx ¼ 1
3EMSIMS

b11b1j þ b21b2j

� �
b3
1 þ b31b3j þ b41b4j

� �
b3
2 þ b51b5j þ b61b6j

� �
b3
3

� �
W ð38aÞ

δχMSy ¼ 1
3EMSIMS

b12b1j þ b22b2j

� �
b3
1 þ b32b3j þ b42b4j

� �
b3
2 þ b52b5j þ b62b6j

� �
b3
3

� �
W ð38bÞ

δχMSz ¼
1

3EMSIMS
b13b1j þ b23b2j

� �
b3
1 þ b33b3j þ b43b4j

� �
b3
2 þ b53b5j þ b63b6j

� �
b3
3

� �
W ð38cÞ

and,

δψMSx ¼ 1
3EMSIMS

b14b1j þ b24b2j

� �
b3
1 þ b34b3j þ b44b4j

� �
b3
2 þ b54b5j þ b64b6j

� �
b3
3

� �
W ð39aÞ

δψMSy ¼ 1
3EMSIMS

b15b1j þ b25b2j

� �
b3
1 þ b35b3j þ b45b4j

� �
b3
2 þ b55b5j þ b65b6j

� �
b3
3

� �
W ð39bÞ

δψMSz ¼
1

3EMSIMS
b16b1j þ b26b2j

� �
b3
1 þ b36b3j þ b46b4j

� �
b3
2 þ b56b5j þ b66b6j

� �
b3
3

� �
W ð39cÞ

Where, b1j, …, b6j represent first through sixth row of the matrix B. Hence, we can write,

b1j ¼ b11 ⋯ b16½ �; ⋯;b6j ¼ b61 ⋯ b66½ � for j ¼ 1; 2;⋯;6 ð40Þ

Using Eq. (21), the virtual twist vector due to flexibility of MS can also be expressed as,

δSMS ¼ CMSW ð41Þ

Where CMS is called compliance matrix due to flexibility of MS and it can be written in matrix form as,

CMS ¼ BTbB ð42Þ

Where b is a 6×6 diagonal matrix and can be written as,

b6�6 ¼ 1
3EMSIMS

diag b3
1;b

3
1;b

3
2;b

3
2;b

3
3;b

3
3

� �
ð43Þ

Upon solving the inverse kinematics, the values of bi and angle λ are calculated. Next matrices b and B can be obtained. These
two matrices along with information on material modulus of elasticity, EMS, and area moment of inertia for MS branches, IMS, will
allow us to calculate the compliance matrix due to flexibility of MS, CMS.

3.2.1.2. Obtaining compliance matrix for linear rods (LRs). To calculate the strain energy related to LRs, reaction forces in ith S-joint
defined in {Ti} are transformed to the local fixed frame {Bi}. This step will result in two bending components and one axial force at
the end of each LR. See Fig. 5. Note that the local fixed coordinate frames {Bi}, attached to ith S-joint, all have the same direction as
the fixed coordinate frame {B}.

By combining all the reaction forces acting on the S-joints, the original reaction forces can be written as,

TF9�1 ¼
h

T1fs1
T2fs2

T3fs3
iT ð44Þ

Where Tif si ¼ −½ fui fvi fwi�T is the reaction force in ith S-joint defined in its local moving coordinate frame {Ti}. Also note, the
value of fui for all S-joint is equal to zero. This is because direction of this vector is in line with the direction of the corresponding
passive prismatic joint.

Eq. (32) can rewritten as follows,

TF9�1 ¼ − B9�6W6�1 ð45Þ

Where,

B9�6 ¼ 0 b1j b2j 0 b3j b4j 0 b5j b6j
� �T for j ¼ 1; 2;⋯;6 ð46Þ
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Where 0 is a 1×6 zero matrix and b1j is the first row of matrix B (see Eq. (40)). Next, the relationship between the reaction
forces in {Bi} and the original reaction forces in {Ti} can be written as,

BF9�1 ¼ D9�9
TF9�1 ð47Þ

Where,

BF9�1 ¼ ½ B1f1 B2f2
B3f3 �

T ð48Þ

Where Bif i ¼ ½ Bifxi Bifyi
Bifzi�T is the reaction force vector that is defined in the fixed local coordinate frame{Bi}. Further, ma-

trix D is defined as,

D9�9 ¼ diag B1
T1R
h i

B2
T2R
h i

B3
T3R
h i� �

ð49Þ

Where, TiBiR is a rotation matrix which rotates frame {Ti} to frame {Bi} and is obtained by solving the inverse kinematic. As
shown in Fig. 5 and considering Eqs. (45) and (47), the relationship between the external wrench and vector of the reaction forces
in S-joints can be written as follows,

BF9�1 ¼ E9�6W6�1 → E9�6 ¼ −D9�9B9�6 ð50Þ

Matrix E is called Wrench Compliant Module Jacobian, WMJLR, matrix for the LRs. Note, this matrix maps the applied external
wrench on MS to corresponding reaction forces for the compliant module under study, in this case, the LRs. The components of
the E matrix are referred to as eij. The internal bending moments, Mxi and Myi, as well as the axial force, Pi, in each LR are
shown in Fig. 6. Therefore, we can write,

Mxi ¼ Bif yi li for i ¼ 1; 2; 3 ð51Þ

Myi ¼ Bif xi li for i ¼ 1; 2; 3 ð52Þ

Pi ¼ Bif zi for i ¼ 1; 2; 3 ð53Þ

Strain energy of the three linear rods, ULR, can be written as,

ULR ¼
X3
i¼1

∫
qi

0

P2i
2ALRELR

þ 1
2ELRILR

M2
xi þM2

yi

� � !
dli; 0≤li≤qi ð54Þ

Fig. 5. FBD of the ith linear rod.
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Where, qi is the length of ith LR and is determined by solving inverse kinematic problem. Using Castigliano's theorem and
Eq. (54), the virtual twist vector due to flexibility of LRs,δSLR, can be expressed as,

i. Virtual translational displacement of LRs, δχLR

δχLRx ¼ ∂ULR

∂fx
¼
X3
i¼1

∫
qi

0

Pi
ALRELR

∂Pi
∂fx

þ 1
ELRILR

Mxi
∂Mxi

∂fx
þMyi

∂Myi

∂fx

 ! !
dli ð55aÞ

δχLRy ¼ ∂ULR

∂fy
¼
X3
i¼1

∫
qi

0

Pi
ALRELR

∂Pi
∂fy

þ 1
ELRILR

Mxi
∂Mxi

∂fy
þMyi

∂Myi

∂fy

 ! !
dli ð55bÞ

δχLRz ¼
∂ULR

∂fz
¼
X3
i¼1

∫
qi

0

Pi
ALRELR

∂Pi
∂fz

þ 1
ELRILR

Mxi
∂Mxi

∂fz
þMyi

∂Myi

∂fz

 ! !
dli ð55cÞ

ii. Virtual rotational displacement of LRs, δψLR

δψLRx ¼ ∂ULR

∂Mx
¼
X3
i¼1

∫
qi

0

Pi
ALRELR

∂Pi
∂Mx

þ 1
ELRILR

Mxi
∂Mxi

∂Mx
þMyi

∂Myi

∂Mx

 ! !
dli ð56aÞ

δψLRy ¼ ∂ULR

∂My
¼
X3
i¼1

∫
qi

0

Pi
ALRELR

∂Pi
∂My

þ 1
ELRILR

Mxi
∂Mxi

∂My
þMyi

∂Myi

∂My

 ! !
dli ð56bÞ

δψLRz ¼
∂ULR

∂Mz
¼
X3
i¼1

∫
qi

0

Pi
ALRELR

∂Pi
∂Mz

þ 1
ELRILR

Mxi
∂Mxi

∂Mz
þMyi

∂Myi

∂Mz

 ! !
dli ð56cÞ

Where δSLR ¼ δχLRx δχLRy δχLRz δψLRx δψLRy δψLRz
� �T is a 6×1 vector. And δχLRx, δχLRy δχLRz and δψLRx, δψLRy δψLRz are

components of virtual translational and virtual rotational displacement about x-, y- and z-axes in fixed coordinate frame {B}, respec-
tively. Similar to previous subsection, by substituting the components of Ematrix into Eqs. (55a–c)–(56a–c), integrating, expanding

Fig. 6. FBD and section view of the ith linear rod.
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and finally factoring the external appliedwrench,W, we can express the virtual twist vector due to flexibility of linear rods in terms of
the applied external wrench. For j=1, 2, ⋯, 6 we can write,

δχLRx ¼ 1
3ELRILR

e11e1j þ e21e2j
� �

q3
1 þ e41e4j þ e51e5j

� �
q3
2 þ e71e7j þ e81e8j

� �
q3
3

� �
þ 1
ALRELR

e31e3j
� �

q1 þ e61e6j
� �

q2 þ e91e9j
� �

q3

� �� �
W

ð57aÞ

δχLRy ¼ 1
3ELRILR

e12e1j þ e22e2j
� �

q3
1 þ e42e4j þ e52e5j

� �
q3
2 þ e72e7j þ e82e8j

� �
q3
3

� �
þ 1
ALRELR

e32e3j
� �

q1 þ e62e6j
� �

q2 þ e92e9j
� �

q3

� �� �
W

ð57bÞ

δχLRz ¼
1

3ELRILR
e13e1j þ e23e2j
� �

q3
1 þ e43e4j þ e53e5j

� �
q3
2 þ e73e7j þ e83e8j

� �
q3
3

� �
þ 1
ALRELR

e33e3j
� �

q1 þ e63e6j
� �

q2 þ e93e9j
� �

q3

� �� �
W

ð57cÞ
and,

δψLRx ¼ 1
3ELRILR

e14e1j þ e24e2j
� �

q3
1 þ e44e4j þ e54e5j

� �
q3
2 þ e74e7j þ e84e8j

� �
q3
3

� �
þ 1
ALRELR

e34e3j
� �

q1 þ e64e6j
� �

q2 þ e94e9j
� �

q3

� �� �
W

ð58aÞ

δψLRy ¼ 1
3ELRILR

e15e1j þ e25e2j
� �

q3
1 þ e45e4j þ e55e5j

� �
q3
2 þ e75e7j þ e85e8j

� �
q3
3

� �
þ 1
ALRELR

e35e3j
� �

q1 þ e65e6j
� �

q2 þ e95e9j
� �

q3

� �� �
W

ð58bÞ

δψLRz ¼
1

3ELRILR
e16e1j þ e26e2j
� �

q3
1 þ e46e4j þ e56e5j

� �
q3
2 þ e76e7j þ e86e8j

� �
q3
3

� �
þ 1
ALRELR

e36e3j
� �

q1 þ e66e6j
� �

q2 þ e96e9j
� �

q3

� �� �
W

ð58cÞ

Where, e1j,…,e9j represent first through ninth row of the matrix E. Hence, we can write,

e1j ¼ e11 ⋯ e16½ �; ⋯; e9j ¼ e91 ⋯ e96½ � forj ¼ 1; 2;⋯;6 ð59Þ

Using Eq. (22), the virtual twist vector due to flexibility of LRs can also be expressed as

δSLR ¼ CLRW ð60Þ

Where, CLR is called compliance matrix due to flexibility of LRs and it can be written in matrix form as,

CLR ¼ ETqE ð61Þ

Where, q is a 9×9 diagonal matrix and can be written as,

q9�9 ¼ 1
ELR

diag
q3
1

3ILR
;
q3
1

3ILR
;
q1

ALR
;
q3
2

3ILR
;
q3
2

3ILR
;
q2

ALR
;
q3
3

3ILR
;
q3
3

3ILR
;
q3

ALR

 !
ð62Þ

Upon solving the inverse kinematics, the values of qi and angle λ are calculated. Upon these calculations matrices q and E can
be obtained. These two matrices along with information on material modulus of elasticity, ELR, area moment of inertia, ILR, and
cross section area, ALR, for LRs will allow us to calculate the compliance matrix due to flexibility of LRs, CLR.

3.2.1.3. Obtaining compliance matrix for motors. To calculate compliance and virtual displacements of the motors, the relationship
between axial forces acting at the end of LRs and its resulting motor torque should be found. For this purpose, the ball screw lead
and gearbox transmission ratio are used to calculate the resistant torque on the motor. The motor and ball screw assembly are
shown in Fig. 7. The relation between ball screw torque and the axial force can be written as follows,

τbi ¼
lb
2π

Bif zi
� �

ð63Þ

Where, τbi is the resulting ball screw torque due to axial force, Bifzi, on the ith LR. Using gearbox transmission ratio, N, the
resistant torque in the motor is,

τmi ¼
Nlb
2π

Bif zi
� �

ð64Þ
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The gearbox transmission ratio for the 3-PSP is selected to beN=2. Strain energy of the threemotors, UM, can bewritten as,

UM ¼
X3
i¼1

τmi
2

2ktor;i

 !
¼ N2lb

2

8π2

X3
i¼1

Bif zi
� �2
ktor;i

ð65Þ

Where ktor,i is equivalent torsional stiffness of ith motor.
Using Castigliano's theorem and Eq. (65), the virtual twist vector due to flexibility of motor, δSM, can be expressed as,

i. Virtual translational displacement of motors, δχM

δχMx ¼ ∂UM

∂fx
¼ N2lb

2

4π2

X3
i¼1

Bif zi
ktor;i

∂Bif zi
∂fx

ð66aÞ

δχMy ¼ ∂UM

∂fy
¼ N2lb

2

4π2

X3
i¼1

Bif zi
ktor;i

∂Bif zi
∂fy

ð66bÞ

δχMz ¼
∂UM

∂fz
¼ N2lb

2

4π2

X3
i¼1

Bif zi
ktor;i

∂Bif zi
∂fz

ð66cÞ

ii. Virtual rotational displacement of motors, δψM

δψMx ¼ ∂UM

∂Mx
¼ N2lb

2

4π2

X3
i¼1

Bif zi
ktor;i

∂Bif zi
∂Mx

ð67aÞ

δψMy ¼ ∂UM

∂My
¼ N2lb

2

4π2

X3
i¼1

Bif zi
ktor;i

∂Bif zi
∂My

ð67bÞ

δψMz ¼
∂UM

∂Mz
¼ N2lb

2

4π2

X3
i¼1

Bif zi
ktor;i

∂Bif zi
∂Mz

ð67cÞ

WhereδSM ¼ δχMx δχMy δχMz δψMx δψMy δψMz
� �T is a 6×1 vector. Further, δχMx, δχMy, δχMz and δψMx, δψMy, δψMz are

components of virtual translational and virtual rotational displacement about x-, y- and z-axes in the fixed coordinate frame {B},

Fig. 7. FBD of the ith motor and ball screw assembly.
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respectively. Consider matrix E from Eq. (50) and assume ktor, 1=ktor, 2=ktor, 3=ktor. Then, by expanding Eqs. (66a–c) and (67a–c)
and next factoring the external applied wrench,W, the virtual twist vector due to flexibility of motors in terms of the applied external
wrench can be obtained. For j=1, 2, ⋯, 6 we can write,

δχMx ¼ N2lb
2

4π2ktor
e31e3j þ e61e6j þ e91e9j
� �

W ð68aÞ

δχMy ¼ N2lb
2

4π2ktor
e32e3j þ e62e6j þ e92e9j
� �

W ð68bÞ

δχMz ¼
N2lb

2

4π2ktor
e33e3j þ e63e6j þ e93e9j
� �

W ð68cÞ

and,

δψMx ¼ N2lb
2

4π2ktor
e34e3j þ e64e6j þ e94e9j
� �

W ð69aÞ

δψMy ¼ N2lb
2

4π2ktor
e35e3j þ e65e6j þ e95e9j
� �

W ð69bÞ

δψMz ¼
N2lb

2

4π2ktor
e36e3j þ e66e6j þ e96e9j
� �

W ð69cÞ

Using Eq. (23), the virtual twist vector due to flexibility of motors can be expressed as,

δSM ¼ CMW ð70Þ

Where, CM is called compliance matrix due to flexibility of the motors and it can be written in matrix form as,

CM ¼ Q TmQ ð71Þ

Where, Q is a 3×6 matrix called Wrench Compliant Module Jacobian, WMJM, matrix for the three motors and m is a 3×3
diagonal matrix. Matrix Q maps the applied external wrench on MS to corresponding resistant torque on the three motors.
This matrix can be written as,

Q 3�6 ¼ Nlb
2π

e31 … e36
e61 … e66
e91 … e96

2
4

3
5 ð72Þ

and,

m3�3 ¼ Nlb
2πktor

I3�3 ð73Þ

Where, I is 3×3 identity matrix. By adding compliance matrices of the robot compliant modules, and considering Eqs. (24)
and (26), the overall stiffness matrix of the 3-PSP parallel robot, K, can be calculated. Next, using Eq. (24), we can obtain
deflection of the end-effector by applying an external wrench at the MS center. In the next section, results of the two analytical
methods are compared with a FEA model and their accuracies are investigated. First, a FEA model of the 3-PSP parallel robot is
presented.

4. Finite element analysis

In the previous section, the stiffness matrix of the 3-PSP parallel robot with two analytical methods was presented. In this sec-
tion, a finite element commercial software is used to evaluate the correctness of the two analytical methods. In the present study,
influences of both bending and axial deflection are considered on LRs and MS. For this purpose, element type, BEAM4 is used to
develop FEA model for these compliant modules. Furthermore, the cross-sections of these two compliant modules are assumed to
be circular. The moving spherical and prismatic joints are assumed rigid and are modeled using MPC184 element type. Each of the
three motors is approximated with a linear spring with deformation along z-axis in the fixed coordinate frame {B}. Equivalent
stiffness for this linear spring, Km, determined from Eq. (5), is modeled by COMBIN14 element type. Once the FEA model is devel-
oped, it can be used to obtain deflection of the end-effector anywhere within its workspace. However, this requires that the FEA
model be re-meshed and re-solved for all points in the workspace [3,13]. This is a highly time consuming process. Therefore, to
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evaluate accuracy of the two analytical results, a few specific points in the workspace are selected. Results are compared with the
FEA solutions.

5. FEA and theoretical results — three case studies

The stiffness analysis process is shown in Fig. 8. This figure denotes relation between inverse kinematics and stiffness analysis
and their input/outputs.

In manipulators, in addition to physical parameters, stiffness is a function of its configurations. Therefore, it is necessary to first
solve inverse kinematics problem before performing stiffness analysis. In this paper, three examples for verifying the theoretical
stiffness model of 3-PSP parallel robot are presented. In these examples, first, a desired configuration for the MS, (θ, φ, zT) is con-
sidered. The inverse kinematic is solved and values for essential kinematics parameters of stiffness are obtained. These parame-
ters include, length of MS branches,bi, length of LRs, qi, and angle λ, related to MS. Next, an external wrench is applied to the end-
effector at point T and twist vector of the end-effector is obtained. To calculate the twist vector of the end-effector in FEA model, a
node that coincides with center of MS, point T, is considered. The deflection value of this node depends on applied external
wrench and configuration of the MS. Finally, results of FEA model is compared with the two analytical models. The values of
the three external wrenches are shown in Table 1. It is assumed that the wrenches are applied to the MS center and are defined
in the base coordinate frame {B}.

The physical and architectural parameters of the 3-PSP parallel robot are shown in Table 2. Where “a” denotes the length of
vector OAi (see Fig. 1-c), DMS is diameter of each branch of the MS, EMS and IMS denote elastic modulus and area moment of inertia
for each branch of MS, respectively. For LRs, DLR denotes diameter of LR. Furthermore, ELR, ILR and ALR denote elastic modulus, area
moment of inertia and cross section area for LR, respectively. Also, lb is lead of the ball screw and Ktor denotes equivalent torsional
stiffness of motor.

As stated earlier, three unique positions for the end-effector are considered and inverse kinematic is solved. Results are shown
in Table 3.

Fig. 8. Stiffness analysis process diagram.

Table 1
The values of the three external wrenches for the three examples.

Example #1 Example #2 Example #3

Bfext=[200–200 200]T (N) Bfext=[200 200 200]T (N) Bfext=[0 250 300]T (N)
BMext=[75 75 75]T (N.m) BMext=[−75 75 75]T (N.m) BMext=[0 150 150]T (N.m)

Table 2
Physical and architectural parameter values for the 3-PSP parallel robot.

Parameters Values Parameters Values Parameters Values

DMS 0.012 m DLR 0.02 m a 0.181 m
EMS=ELR 200×109 N/m2 ALR 3.1416×10−4 m2 lb 0.01 m
IMS 1.0181×10−9 m4 ILR 7.854×10−9 m4 Ktor 3×105 Nm/rad
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Configurations of the 3-PSP parallel robot for the three examples are shown in Fig. 9.
Results of the stiffness analysis are shown in Table 4. This table includes results for the FEA model, the two analytical models

and comparison of these results.
The FEA simulationmodels, for the three examples, with both deformed and un-deformed shapes of the 3-PSP parallel manipulator

are shown in Fig. 10.
As shown in Table 4, results of the distributed model and FEA, for all three example, are very close. Furthermore, results of the

distributed model are significantly more accurate than the corresponding lumped model. This is because the lumped model dis-
regarded the effect of bending in the compliant modules and assumedMS to be rigid. The distributed model using energy method
is clearly advantageous as it eliminates many of the simplifying assumptions. Additionally, the distributed approach allows
modeling robot having members with variable cross-sections as well as being under distributed loads. Therefore, in the remaining
part of this paper, distributed model is used to obtain the maximum and minimum values of stiffness within a specific part of the
workspace as well as the KSI value.

The advantage of the lumped model is its simplicity in deriving the stiffness matrix. Furthermore, if the effect of bending is
significant, then, the accuracy of the lumped model can be improved by modeling the bending effect using a torsional spring.

Table 3
Inputs/outputs values of inverse kinematic analysis for three configurations.

Inputs (deg or m) Outputs (deg or m)

Parameters θ φ zT xT yT λ q1 q2 q3 b1 b2 b3
Ex #1 −23 17 0.2 0.002 0.011 −3.48 0.145 0.169 0.302 0.187 0.175 0.217
Ex #2 23 17 0.2 0.002 −0.011 3.48 0.145 0.302 0.169 0.187 0.217 0.175
Ex #3 −28 −12 0.3 0.0086 −0.009 3 0.336 0.188 0.355 0.176 0.223 0.186

a b c

Fig. 9. Result of inverse kinematic analysis, (a) Example #1, (b) Example #2, (c) Example #3.

Table 4
Results of stiffness analysis (comparison between results of FEA and two analytical methods).

Parameter Theoretical models ×10−3 FEA result ×10−3 ||Δ|| with FEA

Lumped Distributed ×10−3 ×10−6

Lumped Distributed

Ex #1 Translation (m) δx 0.109 3.4456 3.4463 3.34 0.644
δy −0.087 −2.9603 −2.9611 2.89 0.801
δz −0.003 0.6294 0.6301 63.4 0.688

Orientation (rad) δθ 0.08 12.598 12.604 12.5 5.97
δφ 0.15 12.895 12.9 12.7 4.94
δλ 0.33 10.191 10.193 9.86 2.25

Ex #2 Translation (m) δx 0.055 2.1901 2.1909 2.14 0.760
δy 0.031 2.3684 2.3693 2.34 0.915
δz −0.0052 0.6068 0.6073 61.2 0.541

Orientation (rad) δθ −0.069 −16.0572 −16.066 16.02 8.76
δφ 0.0718 16.4063 16.416 16.3 9.77
δλ −0.025 12.1742 12.183 12.2 8.76

Ex #3 Translation (m) δx 0.132 0.6905 0.6910 0.56 0.587
δy 0.0817 1.5688 1.5696 1.49 0.810
δz 0.0039 1.6999 1.7002 1.7 0.321

Orientation (rad) δθ 0.0853 8.3907 8.3906 8.3 0.163
δφ −0.745 23.0035 23.013 23.1 9.47
δλ 1.0506 24.117 24.123 23.1 5.66
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6. Stiffness evaluation of robot in the workspace

In this section, stiffness of the 3-PSP parallel manipulator anywhere in the robot reachable workspace is evaluated. As stated
before, stiffness of robot is a function of its configuration and its physical and architectural parameters. One method used to
evaluate stiffness is finding the maximum and minimum eigenvalues of stiffness matrix [22,24]. The KSI criterion calculates

Fig. 10. Translational and rotational displacement contours.
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the ratio of minimum to maximum eigenvalues of stiffness matrix for any point in the robot workspace [29]. This index is
defined as,

KSI ¼ σmin

σmax
ð74Þ

Where σmin and σmax denoteminimum andmaximum eigenvalues of stiffnessmatrix, respectively. In the presentwork, themore
accurate distributedmodel is used and eigenvalues of the robot stiffnessmatrix are evaluated. A numerical algorithm for obtainingKSI

a b c
Fig. 11. Workspace, distribution of max and min eigenvalues of stiffness matrix and KSI values. (a) plane z=0.1 m, (b) plane z=0.2 m, (c) plane z=0.35 m in
terms of θ and φ.
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values in the reachableworkspace is developed. First, the reachableworkspace for this robot is obtained (see [2] formore details). The
z-axis of the 3-PSP robot travels up to 40 centimeters. Therefore, several z planes, (z=10 cm, z=20 cm, z=35 cm) are selected. For
each z plane, all different robot configurations, (θ,φ), are considered. For each configuration, six eigenvalues for the 6×6 stiffness
matrix are calculated and their maximum and minimum of these values are recorded. The distribution of minimum and maximum
eigenvalues of stiffnessmatrix aswell as KSI values for the three planes are illustrated in Fig. 11. As stated earlier, an operatormay select
any three of the available six DOFs for 3-PSP. This means one may choose the x, y and z location of the end-effector as input to the
inverse kinematics problem. Therefore, similar to the θ, φ, z mode, the KSI values for the x, y and z mode are also illustrated in Fig. 12.

a b c
Fig. 12. Workspace, distribution of max/min eigenvalues of stiffness matrix and KSI values. (a) plane z=0.1 m, (b) plane z=0.2 m, (c) plane z=0.35 m in terms
of xT and yT.
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As shown in this figure, in general, aswe get closer to the center of theworkspace, the stiffness increases and reaches itsmaximum
value at the center.

Figs. 11 and 12 demonstrate that the distributions of stiffness are symmetric. In addition, the stiffness of the 3-PSP parallel
robot is best at the center of the workspace and lowest around the boundary of the workspace. Therefore, we should limit or re-
strict operation of the robot around these boundaries and perhaps other particular subspace of the whole reachable workspace
[22]. By choosing proper values for robot structural and material properties, a designer can determine the desired minimum
and maximum values for structural stiffness at a specific configuration.

7. Conclusion

In this research, parametric stiffness analysis of a spatial 3-PSP parallel manipulator using three methods, two analytical and one
numerical, are presented in details. First, structure of a spatial 3-PSP parallel robot is introduced and closed loop inverse kinematics
constraint equations are presented. Next, stiffness analysis is presented using two methods. For the first method, a lumped stiffness
model is presented based on principle of virtual work. For this purpose, the overall Jacobian matrix of the robot for determination of
the stiffness matrix is introduced. For the second method, an energy approach, a distributed method based on calculation of strain
energy of the robot components and Castigliano's theorem is used. Using the energy approach, most simplifying assumptions are
eliminated. Themoving platform ismodeled as flexible and bending effect inmajor components of the robot is considered. Therefore,
the secondmethod provides amuchmore accurate result. To verify results of the two analyticalmodels, a commercial FEA software is
used tomodel the 3-PSPmanipulator. Three numerical examples are provided. Results indicate that the stiffness results of FEAmodel
and the energy approach are very close. This verifies the improved accuracy of the energy approach and suggests that one can depend
on such stiffness calculation to estimate stiffness. Furthermore, the energy approach may be used to test alternative designs, specif-
ically link designs, and choose tool trajectories that reduce the tool compliant displacement caused by structural compliance. Finally,
by usingmore accurate analyticalmethod, eigenvalues of stiffnessmatrix over theworkspace are obtained. Using theKSI criterion, the
stiffness of robot is evaluated in its workspace and areas where robot is the stiffest are identified. Information about these zones may
further be used when considering specific manufacturing requirements. Finally, for each compliant module, a Wrench Compliant
Module Jacobian, matrix is introduced which allows mapping the applied external wrench on MS to corresponding reaction forces
for the compliant module under study. Once the construction of 3PSP is completed, the experimental study will be performed to val-
idate the results obtained from the stiffness analysis. For our future work, we plan on experimentally validate our theoretical and FEA
results.

The main contributions of this paper are the derivation of the stiffness model of a 3-PSP parallel manipulator using two analytical
methods, their verification using a commercial FEA model, assumption of flexible moving platform and introduction of the Wrench
Compliant Module Jacobian matrix. Other contributions include stiffness evaluation using KSI in workspace. Furthermore, the
modeling and analysismethodology presented here use invariant form and can be generalized to other types of parallelmanipulators.
Lastly, the authors have taken extra care to present the material in this paper in a simplified way with significant details.
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Glossary

A — Frames

{B}: fixed coordinate frame attached to point O
{T}: moving coordinate frame attached to point T, end-effetor
{Bi}: local fixed coordinate frame attached to point Bi

{Ti}: local moving coordinate frame attached to point Bi

B — Kinematical parameters and vectors

Bai: locate corners of the fixed base, Ai, in {B}
Bqi: position vectors which connect point Ai, to point Bi
Bbi: position vectors which connect point T to point Bi
BT: the end-effector position vector defined in {B}.

C — Stiffness parameters for lumped model

Kai: equivalent stiffness value of the ith LR
Kmi: equivalent linear spring which models the stiffness of the ith motor
Ktor: equivalent torsional stiffness of motor
τm: applied moment on motor
Δθm: rotational deformation of motor
Δq: linear displacement of Nut
lb: lead of the ball screw
J: the overall Jacobian matrix of the 3-PSP parallel manipulator
t: the MS twist
_q: the vectors of the linear actuated joint rates
δq: virtual infinitesimal displacement vector of LRs
κa: diagonal matrix consisting of equivalent stiffness of LRs and motors

D — Stiffness parameters for distributed model

W: the applied external wrench
Bfext: external force vector define in {B}
BMext: external moment vector define in {B}
U: total strain energy of manipulator
δS: virtual infinitesimal twist vector of the end-effector
δχ: virtual translation vector of the end-effector
δψ: virtual rotation vector of the end-effector
C: the overall compliance matrix of the 3-PSP parallel manipulator
K: the overall stiffness matrix of the 3-PSP parallel manipulator

i. Moving Star (MS)

UMS: strain energy of MS
δSMS: the virtual twist vectors due to flexibility of MS
δχMS: virtual translation vector due to flexibility of the MS
δψMS: virtual rotation vector due to flexibility of the MS
CMS: compliance matrix of the MS
TF: reaction forces vector in the S-joints
fui: value of reaction force in ith S-joint along u axis
fvi: value of reaction force in ith S-joint along v axis
fwi: value of reaction force in ith S-joint along w axis
Tivi: the unit vector along the v component of reaction force in {Ti}
Tiwi: the unit vector along the w component of reaction force in {Ti}
B: wrench compliant module Jacobian, WCMJMS, matrix for the MS
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ii. Linear rods (LRs)

ULR: strain energy of three LRs
δSLR: the virtual twist vectors due to flexibility of three LRs
δχLR: virtual translation vector due to flexibility of the LRs
δψLR: virtual rotation vector due to flexibility of the LRs
CLR: compliance matrix of the LRs
E: wrench compliant module Jacobian, WCMJLR, matrix for the LRs

iii. Motors

τbi: resulting ball screw torque due to axial force on the ith LR
τmi: resistant torque in the motor due to resulting ball screw torque
N: gearbox transmission ratio
UM: strain energy of three Motors
δSM: the virtual twist vectors due to flexibility of three Motors
δχM: virtual translation vector due to flexibility of the Motors
δψM: virtual rotation vector due to flexibility of the Motors
CM: compliance matrix of the Motors
Q: wrench compliant module Jacobian, WCMJM, matrix for the Motors

E — Stiffness evaluation

σmin: minimum eigenvalues of the overall stiffness matrix, K
σmax: maximum eigenvalues of the overall stiffness matrix, K
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