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Abstract Conventional approaches to optimization generally utilize a point-based search to scan domains
of complex functions. These optimization algorithms, as a result, face a perpetual search that is never
concluded with certainty, since the search space can never be completely scanned. In contrast, the
proposed approach benefits from a granular view to scan thewhole of the domain space. Such perspective
can yield an efficient tool for analysis of complex functions, especially when proof is required. In contrast
to conventional granular techniques that usually compute with certain granules, this scheme exploits
uncertain granules, in addition to certain ones, to improve computational efficiency. To efficiently navigate
the search space, Zadeh’s extension principle, along with several heuristics, is introduced to estimate and
reduce the likeliness of inaccuracy. Function analysis is then converted to a question–answering process.
This method is general and can be applied to all types of functions whether linear or nonlinear, analytical
or non-analytical and continuous or discrete. Several examples and a MATLAB toolbox are provided to
illustrate the real-world applicability and computational efficiency of the approach.

© 2011 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Analysis of functions plays a pivotal role in nearly all
fields of engineering and other sciences, like optimization,
control, modeling, analysis and design. Thus, increasing the
efficiency of function analysismethods is an important research
area, especially for nonlinear, high-dimensional and complex
functions. Most conventional methods apply a point-wise view
to scan the function’s domain space point by point. Since a
continuous domain space has an infinite number of points,
conventional methods could never scan the whole of the
domain space, especially for complex functions. In comparison
with conventional techniques, the proposed approach uses a
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novel granular view to scan the domain space of a function,
granule by granule. Using this approach, all points of the domain
space of the function could be scanned without skipping even
one point. Thus, this method is an efficient tool for analysis of
nonlinear and complex functions when proof is required.

In the following, the earlier works by authors are briefly
considered. Akbarzadeh-T et al. in 2007–2008 [1–3] focused
on the application of fuzzy granulation to replace fitness
function computation in evolutionary optimization. Authors, in
2009 [4–6], applied this approach to the extension principle in
order to increase the performance of evolutionary optimization.
In continuation, we further propose here the use of several
heuristics for estimation and reduction of the likelihood of
inaccuracy of the proposed EP. Also, the proposed approach
is extended to all function analysis problems and further
discussions and examples are presented. Moreover, an open
source toolbox [7] is introduced for real-world applications of
the proposed scheme.

Some earlier works that are directly or indirectly related to
the topic of this paper are briefly reviewed. Pedrycz in 2010 [8]
simultaneously, used granular computing and evolutionary
optimization, and discussed their synergism for proposing
an approach to designing cognitive maps. Tao et al. in
2008 [9] discussed the evolutionary characteristics of knowl-
edge granulation and proposed the Evolutionary Algorithm
of Knowledge Granulation (EAKG), which applies knowledge
granulation to genetic programming. Batyrshin and Shereme-
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tov [10] employed CWP and granular computing to propose a
novel approach to perception-based data mining. Qin et al. [11]
applied CWP to design a PNL-based question–answering ma-
chine. Gacek and Pedrycz in 2006 [12] applied granular com-
puting for granular description of ECG signals. Reformat and
Pedrycz in 2001 [13] proposed a genetic-based approach for
evolutionary optimization of information granules. Ho and Lee
in 2000 [14] presented a search algorithm, granular optimiza-
tion, as an approach to functional optimization.

The main differences between the proposed scheme and
other granular methods are as follows. Most of the former
granular methodologies were designed for a special application
or a typical class of functions, while this paper proposes a
general approach to function analysis that could be applied to
all types of function, including linear or nonlinear, analytical or
non-analytical and continuous or discrete. This is achieved by
applying Zadeh’s generalized extension principle and using its
approximate form to reduce its computational complexity. This
approach is further enhanced by applying several heuristics
that exploit the ambiguity in the likeliness of a granule to
contain the solution. Also, it should be mentioned that the
proposed scheme is based on fuzzy granulation and, therefore,
crisp granulation (interval-based analysis), as used in this
paper, is only a special case of it. Furthermore, this approach
can be generalized for analysis of uncertain functions, when the
known parts of the function are considered as certain and the
uncertain parameters are considered as additional variables of
the function.

This paper is organized as follows. The proposed granular
approach is discussed in Section 2. Four generalized forms of the
conventional Extension Principle (EP) are introduced here. Due
to the computational complexity of the fourth generalized form,
a new EP is proposed that is computationally efficient but only
gives an approximate range of the granular value of the function
over a given granule. Theorem 1 shows that this approximate
range always contains the actual range. Then, several heuristics
are proposed for estimation and reduction of the likelihood of
inaccuracy of the proposed EP. The Perception-Based Problem
Solver, a MATLAB toolbox, is introduced in Section 3, and the
efficiency of the proposed approach is illustrated by several
examples. Finally, conclusions are drawn in Section 4.

2. The proposed granular approach
In fuzzy computing [15–23], the Extension Principle (EP)

plays a central role in granular analysis of certain functions. The
basic form of EP is as follows:

X is A
y = f (X), X = [x1, x2, . . . , xn]
y is B

µA(X) : known,

µB(y) =?

µB(y) = maxX (µA(X))

s.t. y = f (X).

Suppose granule A (a fuzzy set) is given in the domain space
and EP wishes to calculate the corresponding granular value
of y. The method that has been introduced in [15] is usually
used for solving EP. This method is based on discretization
of y over its range, and then solving several n-dimensional
nonlinear programming problems corresponding to discretized
values of y. This means that solving EP leads to solving several
n-dimensional nonlinear programming problems. It is clear that
the computational efficiency of this approach is not satisfying
when n is large and f is complex.

In the following sections, four general forms of EP are first
introduced. It is shown that the above-mentioned complexity
is only related to the fourth form of EP. Then, a new form of EP
is proposed to be used instead of the fourth form. The proposed
EP is computationally more efficient, but it only provides an
approximate range that contains the actual granular value of y.
Several heuristics are then suggested to improve the accuracy
of the proposed EP.

2.1. General forms of extension principle

Figure 1 illustrates the four general forms of the extension
principle that directly result from Zadeh’s standard extension
principle. In this figure, µ(.) is the possibility distribution
function (membership function) of the constraining relation;
x and X are a scalar variable and a vector of n variables,
respectively; f and g are scalar functions, * stands for basic
arithmetic operators including +, −, ×, ÷; and ˆ is a t-norm
operator. The aim is to calculate µBi(y), i.e. the possibility
distribution function of the output where i = 1 : 4 is the
form index. Regarding Forms 1 to 4, calculating µBi(y) leads to
solving a constrained maximization problem [15]. As discussed
further below, solving this maximization problem is trivial for
Forms 1 to 3, but it is complex and computationally expensive
for Form 4, when the number of variables is large.

Form 1 represents the standard extension principle if the
maximization is performed over a scalar domain and for this
reason, µB1(y) or at least an accurate approximation of it can
be achieved, either explicitly or numerically. Form 2 shows
the standard extension principle which is extended to scalar
functions. Regarding Figure 1(b), calculatingµB2(y) is similar to
µB1(y) of Form 1. Form 3 deals with the arithmetic combination
of two scalar multi-variable functions, f (X1) and g(X2), when
their variables, X1 and X2, are two independent vectors.
Regarding Figure 1(c), calculating µB3(y) leads to solving the
following constrained one-dimensionalmaximization problem,
whose details are shown in Figure 1(c):

µB3(y) = max
f (X1),g(X2)

(µA31(f (X1)) ∧ µA32(g(X2))), (1)

s.t. y = f ∗g(X1, X2). (2)

The constraint in Eq. (2) can be simply inserted in Eq. (1),
i.e. the objective function, as shown in Figure 2. In other words,
the above constrained maximization problem can be converted
to an unconstrained maximization problem which is more
conveniently solved. Generally, calculating µBi(y) is simple for
Forms 1 to 3, since maximization is performed over a one-
dimensional space, while Form 4 is different.

Form 4 deals with the arithmetic combination of two scalar
multi-variable functions, f (X) and g(X), whose variables, in
contrast to Form 3, are allowed to be mutual. Regarding Fig-
ure 1(d), calculating µB4(y) leads to solving an n-dimensional
nonlinear constrained maximization problem, which may be
complex and computationally expensive when the number of
variables is large. One way is by quantizing y and then ap-
plying an optimization scheme to solve the mentioned maxi-
mization problem for each quantized value of y. Zadeh, in [15],
recommended the use of neuro and evolution-based comput-
ing to achieve an accurate approximation ofµB4(y). It should be
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Figure 1: Four generalized forms of conventional EP: Forms 1 and 2 correspond to 1-variable basic functions, and Forms 3 and 4 correspond to multi-variable
functions for basic arithmetic operators.
Figure 2: Simplified form of Form 3.

mentioned that such an approach, as well as other similar ap-
proaches, can be computationally expensive when the number
of variables is large.

In many cases, however, a precise value of µB4(y) may
not be necessary, and µC (y) can be used instead of µB4(y),
where µB4(y) ⊂ µC (y). In the next subsection, we propose an
approach for calculating such aµC (y), which is computationally
simpler than Form 4 and can be used instead. The proposed
approach becomes more efficient as this approximation,
µB4(y) ≈ µC (y), becomes more accurate.

2.2. Atomic and composite elements of a function

Suppose f (x1, x2, . . . , xn) is an n-variable scalar function
that can be computationally described. Here, f is allowed to be
continuous or discrete, analytical or non-analytical and linear
or nonlinear. For example, f may be represented as an ordinary
mathematical formula including a combination of polynomial
and sinusoidal functions, or may be described as the source of a
computer program that includes algorithmic and user-defined
sub-functions. If f has not been described computationally,
fuzzy or neuro systems or other similar methods could be
applied to computationally model it. Hence, in the following,
we assume that f is computationally described without loss of
generality.

A general computational statement, which describes an
n-variable scalar function, f , is composed of two basic types
of elements including atomic and composite elements. Atomic
elements are generally simple scalar functions like ex, sin(x)
and xr that operate on a one-dimensional domain. Composite
elements are composed of two or more atomic elements that
are joined by basic arithmetic operators, such as +, −, ×, ÷ or
other similar operators. f can be represented as a combination
of its atomic and composite elements. After this decomposition,
generalized forms of EP can be directly applied to each of these
basic elements, and EP works on these simple terms instead of
f , which is more complex. Example 1, as below, illustrates this
process.

Example 1. Consider the Peaks function over the domain space
−10 ≤ x1, x2 ≤ 10,

y = f (x1, x2) = 3(1 − x1)2e−(x1)2−(x2+1)2

+

−2x1 + 10x31 + 10x52


e−(x1)2−(x2)2

−
1
3
e−(x1+1)2−(x2)2 ,

where f (x1, x2) is composed of seven atomic elements as below:

Term 1: 3(1 − x1)2e−(x1)2 ,

Term 2: e−(x2+1)2 ,

Term 3: (−2x1 + 10x31)e
−(x1)2 ,

Term 4: e−(x2)2 ,

Term 5: (10x52)e
−(x2)2 ,

Term 6: e−(x1)2 ,

Term 7: − 1
3 e

−(x1+1)2 .
These atomic terms are combined by summation and multipli-
cation operators as follows:

y = Term 1∗Term 2 + Term 3∗Term 4
+ Term 5∗Term 6 + Term 7∗Term 2.
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Figure 3: (a) The proposed EP instead of Form 4. (b) Simplified form of (a).
All the above atomic elements are single-variable functions, and
the composite elements are created by well-known arithmetic
operators. It is important to note that a considerable amount
of information can be easily achieved concerning these single-
variable atomic elements by plotting them. The behavior
of summation and multiplication operators is clear and can
be plotted as well. Using this information, the first three
generalized forms of EP, aswell as the proposed EP, can be easily
solved symbolically. Formoredetails, the relatedMATLAB codes
(M-files) can be downloaded from [7].

2.3. The proposed extension principle

As Figure 1 illustrates, the main difference between Forms 3
and 4 lies in the relation between the variables of functions f
and g . In Form 3, these variables are independent and this leads
to a one-dimensional maximization, while in Form 4, they are
dependent and, for this reason, an n-dimensionalmaximization
problemmust be solved. Figure 3 illustrates the proposed form
of the extension principle that can be used instead of Form 4.
Regarding the concept of µC (y), f and g in Form 4 can be
assumed to be independent, then the new form can be written
as shown in Figure 3(a). Figure 3(a) indicates a new form
of the extension principle, all parts of which are same as in
Form 4, except for the maximization part which is similar to
Form 3. Thus, calculating µC (y) of the new form is similar
to calculating µB3(y) of Form 3, and leads to solving a one-
dimensional maximization problem, which is computationally
trivial. Similar to Figure 2, Figure 3(b) shows the simplified
form of Figure 3(a). In the following theorem, we prove that
µB4(y) ⊂ µC (y). Therefore, the proposed form of Figure 3 can
be efficiently used in place of Form 4. In the following sections,
this new form along with Forms 1 to 3 is applied to reasoning.

Theorem 1. The fuzzy set B4 of Form 4 (in Figure 1) is a subset of
the fuzzy set C of the new form (in Figure 3), i.e. B4 ⊂ C.

Proof. Let us define notion SF as the support of fuzzy set F .
Consider y1 and y2 to be arbitrary members of SA41 and SA42 ,
respectively (i.e. y1 ∈ SA41 , y2 ∈ SA42 ). It is then clear f (X) ∈

SA41 , g(X) ∈ SA42 . LetUX be the local universe of discourse of the
n-dimensional vector variable (X ∈ UX ). Regarding the above
definitions, it is obvious that:

{(f (X), g(X))|X ∈ UX } ⊂ {(y1, y2)|y1 ∈ SA41 , y2 ∈ SA42}. (3)

According to Relation 3, the following statement proves that
support of B4 is a subset of the support of C:

{v|∀X ∈ UX : v = f (X)∗g(X)}

⊂ {w|w = y∗

1y2 : y1 ∈ SA41 , y2 ∈ SA42} : SB4 ⊂ SC . (4)
Using Relation 3, and given any fixed y0, we have:

{(f (X), g(X))|y0 = f (X)∗g(X), X ∈ UX }

⊂ {(y1, y2)|y0 = y∗

1 y2, y1 ∈ SA41 , y2 ∈ SA42}. (5)

From Relations 3 and 5, we can conclude that:

µB4(y0) = max
X

(µA41(f (X)) ∧ µA42(g(X)))

≤ max
y1,y2

(µA41(y1) ∧ µA42(y2)) = µC (y0),

s.t. y0 = f (X)∗g(X) = y∗

1y2. (6)

From Relations 4 and 6, we conclude that ∀y : µB4(y) ≤ µC (y)
and, consequently, B4 ⊂ C . �

Theorem 1 proves that fuzzy set B4 is a subset of fuzzy set
C . Fuzzy set B4 is the actual granular value of y (actual range),
while fuzzy set C is an approximate range that contains B4. It
is not trivial to calculate how much C is larger than B4, since
it depends on the behaviors of f and g over the given granule
in the n-dimensional domain space. This means that although
the new EP is computationally efficient, it entails a degree of
uncertainty.

The proposed approach, based on several heuristics, consid-
ers the likeliness of the resulting inaccuracy versus the com-
putational complexity of the exact method, i.e. conventional
EP. Furthermore, we consider here crisp granulation (interval-
based granulation), since it is computationally simpler than
fuzzy granulation. There exists a notable number of function
analysis problems that can be solved by crisp granulation and
do not require the extra information provided by fuzzy granu-
lation.

2.4. Estimation and reduction of the likeliness of inaccuracy

In this section, five different heuristics are proposed for
reducing and estimating the likelihood of inaccuracy of the
proposed EP when crisp granulation is used. The large value of
this likeliness usually decreases the efficiency of the proposed
scheme. The proposed approaches are as follows: increasing
the resolution, fuzzy evaluation, well-defined terms, finding
an approximate range using optimization techniques and
increasing available knowledge.

2.4.1. Increasing the resolution
The likelihood of inaccuracy is usually reduced by increas-

ing the resolution, which means using smaller instead of larger
granules. This is a good approach for solving small-scale prob-
lems. Since decreasing the size of granules leads to increasing
the number of granules and consequently the number of func-
tion evaluations, this technique is not computationally efficient
for large-scale problems if it is applied separately. The other
methods that are proposed below solve this problem.
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Figure 4: Conventional MF vs. interval-based MF for precisiating ‘‘x is about zero’’.
Figure 5: Fuzzy evaluation of the function of Example 2.
2.4.2. Fuzzy evaluation
In this approach, one or more fuzzy granules are defined

over the given crisp granule in the domain space, and the
proposed EP is separately solved over both crisp and defined
fuzzy granules. These additional fuzzy evaluations provide
useful knowledge about the behavior of the function over the
given crisp granule. Although this knowledge can be applied for
various purposes, here, it is used for estimating the likeliness
of inaccuracy of the proposed EP over a given granule in
the domain space. If the estimated value for the likeliness of
inaccuracy is large, then the previous approach (increasing the
resolution) can be applied to reduce inaccuracy. This approach
is usually computationally efficient for most problems, even
large-scale ones.

Due to computational simplicity, Interval-based Member-
ship Functions (IMF) is used instead of conventional MF. Fig-
ure 4 introduces interval-based MF as an approximation of
conventional MF. Conventional MF uses a precise conventional
function for describing membership degree distribution, while
such accuracy is not usually required, and it just increases com-
putational complexity. In contrast, IMF uses an interval-based
function for describing membership degree distribution, which
is computationally efficient. Also, the accuracy of interval-based
MF is usually acceptable.

The following example illustrates how fuzzy evaluation
can be used for estimating the likeliness of inaccuracy of the
proposed EP.

Example 2. What is the granular value of f (x)+g(x) over−4 ≤

x ≤ 4 where f (x) = x2 and (x) = −x2?

Solution. Solving the proposed EP over −4 ≤ x ≤ 4 gives
[−16 16] as an approximate range of f (x) + g(x), while the
actual range is 0. For this example, the value of inaccuracy is
very large. Figure 5 shows a fuzzy granule that is defined over
−4 ≤ x ≤ 4 by a triangular interval-based MF, as well as the
granular values of f (x) and g(x) over this fuzzy granule.

Regarding this figure, the membership degrees of both of
f (x) and g(x) are about one when their values are about zero
and also the membership degree of x is about one at zero. Thus,
f (x) and g(x) are about zero, when x is about zero. If x moves
away from zero, f (x) increases and g(x) decreases. Therefore,
it is highly unlikely that the maximum value of f (x) could be
added to the maximum value of g(x). The same result could
be obtained for the minimum values. Consequently, it is highly
unlikely that [−16 16] is approximately equal to the actual
range.

To systematize the above idea, sub-granules with the same
membership degree are added. This idea comes from the
behavior of EP, when an output point with a membership
degree of q certainly relates to an input point with a
membership degree of q; moreover, itmay relate to other input
points with membership degrees equal or less than q. Usually,
the input sub-granule with membership degree of q is only
known and it is not easy to determine if other sub-granules
exist or not. Thus, decision making based on the above idea
is uncertain rather than certain. In effect, the above idea helps
machines to guess the value of the likeliness of inaccuracy of
the proposed EP. By applying the above-mentioned idea to this
example, Figure 6 is obtained. Comparing the range of Figure 6
(about [−3 3]) with [−16 16] gives the following guess: ‘‘the
likeliness of inaccuracy of the proposed EP over the given crisp
granule is very high’’. Regarding the actual range, the precision
of this guess is approved.
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Figure 6: In Example 2, the sub-granules with the same membership degree
are added.

2.4.3. Well-defined terms
Consider two terms (functions) that are combined by a

combining operator. Without loss of generality, suppose that
the combining operator is a summation. Assume that we aim
to compute the range of the summation of two given terms
over a given granule in the domain space. For the combining
operator of summation, if both of these terms get their global
maximums at the same point of the given granule, and also get
their global minimums at another same point, then the range
of summation of these terms over this granule is equal to the
summation of the ranges of these terms over this granule. These
terms are called well-defined for the summation operator over
the given granule. In otherwords, if the range of each termcould
be calculated accurately, and if these terms are well-defined for
the summation operator over the given granule, then the range
of the summation of them over this granule could be computed
accurately. It should be noted that these termsmay not bewell-
defined over another granule in the domain space or for another
combining operator.

Special but important classes of well-defined terms are
the classes of increasing and decreasing functions, since an
increasing function always gets its globalminimum(maximum)
at the smallest (largest) point of the given granule, and vice-
versa for decreasing functions. The given two terms may be
monotone over only a few granules in the domain space. The
following example shows the details of this approach.

Example 3. Consider g(x1, x2) as follows:

g(x1, x2) = sin (0.25(x1 + x2))4 +


2

1 + e−2(x1+x2)
− 1

2

,

s.t. − 3 ≤ x1, x2 ≤ 3.

g(x1, x2) is the summation of g1(x1, x2) = sin(0.25(x1 + x2))4
and g2(x1, x2) = ( 2

1+e−2(x1+x2) − 1)2, which are not atomic, and
each of them includes a few basic elements. By considering the
defining formulas of g1 and g2, it can be observed that both
are monotone around line x1 + x2 = 0. This claim can be
proven from their partial derivatives. If the given granule does
not include line x1 +x2 = 0, terms g1 and g2 are simultaneously
increasing or decreasing. Thus, these terms are well-defined,
and the range of g can be computed accurately over these
granules. The concept of well-defined terms can be generalized
to other combining operators.
2.4.4. Finding an approximate range using optimization tech-
niques

Suppose the range of a function must be calculated over
a given crisp granule. The proposed EP gives an approximate
range that contains the actual range. Suppose that an opti-
mization method like Genetic Algorithms is applied to find the
minimum (m) andmaximum (M)of the function over this gran-
ule. The obtained minimum and maximum values are usually
near-optimal and thus the range [m,M] is a subset of the actual
range of the function over this granule. Thus, the actual range
is limited between [m,M] (as an approximation that is smaller
than the actual range) and the approximate range obtained by
EP (as an approximation that is larger than the actual range).
This additional information could be used in different ways like
estimating the likeliness of inaccuracy of the proposed EP.

2.4.5. Increasing available knowledge
Increasing available knowledge about the behavior of a

function over the domain space could significantly help
previous approaches in estimating and reducing the likeliness
of inaccuracy. Indeed, fuzzy evaluation can be considered as
a special case of increasing available knowledge. There exist
different ways for exploiting this knowledge. For example,
this knowledge could be employed for identifying semi-well-
defined terms whose behavior is approximately similar to
well-defined terms. Also, this knowledge could be applied to
design an efficient termination criterion for the optimization
technique used in the fourth approach.Moreover, it can be used
for determining the size of smaller granules in each part of the
space when resolution is increased.

Figure 7 shows the algorithmic flowchart of the proposed
approach. In the next section, a MATLAB toolbox is introduced
to implement this algorithm and few examples are solved to
demonstrate the efficiency of the proposed scheme.

3. ‘‘Perception-based problem solver’’: an open-source tool-
box for global search [7]

‘‘Perception-based Problem Solver’’ is an open source
toolbox in MATLAB for implementation of the proposed
approach, and is available via [7]. This toolbox could be used
as a question–answering machine for analysis of functions.
Using the proposed granular approach, this toolbox scans the
whole domain space of the given function without skipping
even one point. Thus, it could be used as an efficient tool
for analysis of nonlinear and complex systems, when proof
is required. This toolbox uses the first approach of reducing
inaccuracy, i.e. increasing the resolution. To increase its
efficiency for solving high-dimensional problems, the other
proposed heuristic approaches in the above section must be
incorporated. The algorithm of this toolbox is described as
follows.

First, user asks a question like the queries of Example 4.
The original domain space is partitioned into a number of
granules. This level is called resolution level 1. Then, the function
is evaluated over each granule using the proposed approach.
It should be noted that the proposed approach just gives an
approximate range that contains the actual range. Depending
on the given query, a number of granules are rejected certainly
(poor granules) and the rest of themare kept. From the remained
granules, a number of them certainly satisfy the query (good
granules), which means that entire points of a good granule
satisfy the query. The rest of the granules are likely granules,
which are likely to satisfy the query, but it is not certain.
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Figure 7: Flowchart of the proposed approach.
To certainly determine the status of likely granules, they are
considered as the new domain space and are partitioned into
smaller granules, then the above procedure is repeated for
them. This level is called resolution level 2. The above procedure
can be repeated several times. It is clear that the resolution is
increased through resolution levels. As a convergence criterion,
the search can be stopped at the current resolution level, if
the size of all likely granules approaches the size of all good
granules of the current resolution level.

Example 4. In this example, the proposed toolbox is used for
analysis of Peaks function of Example 1. Several queries are
asked by the user and answered by toolbox. In this example,
at each resolution level, the domain of each variable over the
given likely granule is partitioned into two equal parts. So each
likely granule is partitioned into 4 equal parts. For all queries,
the space is initially partitioned into 100 identical granules. The
convergence factor is the ratio of the size of likely granules to
the size of good granules. If the convergence factor approaches
one, then the search is stopped.

Figure 8 shows the contour plot of the Peaks function. The
answers that are provided by toolbox to the following different
queries are shown in Figures 9–11. Comparing these answers
Figure 8: Visualization of Peaks function.

with the contour plot of the Peaks function (Figure 8) demon-
strates the efficiency of the proposed approach. Interested read-
ers can download this toolbox from [7] and run these examples
on their own computers. Also, more solved examples are avail-
able in [7].
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Figure 9: Query: In which parts of the domain space, f (x1, x2) is larger than 6? The good granules (black) and likely granules (gray), as well as the convergence
diagram, are shown at each resolution level. The first good solutions are found in resolution level 4.
Figure 10: Query: In which parts of the domain space, f (x1, x2) is between 3 and 4? The good granules (black) and likely granules (gray), as well as the convergence
diagram, are shown at each resolution level. The first good solutions are found in resolution level 4.
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Figure 11: Query: In which parts of the domain space, f (x1, x2) is smaller than −8? The likely granules (gray) are shown at each resolution level. No solution exists
after resolution level 2.
4. Conclusion

This paper proposes a novel granular approach for analysis
of certain functions based on exploiting uncertainty. This
approach is general and can be applied to all types of function,
whether linear or nonlinear, analytical or non-analytical, and
continuous or discrete. Using this method, all points of the
domain space of the function can be scanned without skipping
even one point. This could be used as an efficient tool
for analysis of complex functions, especially when proof is
required. The proposed scheme effectively exploits uncertain
granules to increase its computational efficiency. Several
heuristics are suggested for estimation and reduction of the
likeliness of inaccuracy. A MATLAB toolbox [7] is introduced for
real-world applications of the proposed approach, and different
examples are solved to show its efficiency. The proposed
theorem applies to fuzzy granules and thus this approach can
be generalized to fuzzy granulation. Also, the proposed scheme
is flexible enough to be generalized for analysis of uncertain
functions when known parts of the function are considered
certain, and the uncertain parameters are considered additional
variables of the function.
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