
Microelectronics Journal 42 (2011) 863–873
Contents lists available at ScienceDirect
Microelectronics Journal
0026-26

doi:10.1

n Corr

E-m

mirema
journal homepage: www.elsevier.com/locate/mejo
An FSM-based monitoring technique to differentiate between follow-up and
original errors in safety-critical distributed embedded systems
Yasser Sedaghat, Seyed Ghassem Miremadi n

Dependable Systems Laboratory, Sharif University of Technology, Tehran, Iran
a r t i c l e i n f o

Article history:

Received 19 September 2010

Received in revised form

15 March 2011

Accepted 5 April 2011
Available online 6 May 2011

Keywords:

Distributed embedded systems

Error propagation

Follow-up errors

FlexRay protocol

Transient faults

FSM-based monitoring
92/$ - see front matter & 2011 Elsevier Ltd. A

016/j.mejo.2011.04.003

esponding author.

ail addresses: y_sedaghat@ce.sharif.edu (Y. Se

di@sharif.edu (S.G. Miremadi).
a b s t r a c t

Nowadays, distributed embedded systems are employed in many safety-critical applications such as

X-by-Wire. These systems are composed of several nodes interconnected by a network. Studies show

that a transient fault in the communication controller of a network node can lead to errors in the

fault site node (called original errors) and/or in the neighbor nodes (called follow-up errors). The

communication controller of a network node can be halted due to an error, which may be a follow-up

error. In this situation, a follow-up error leads to halt the correct operation of a fault-free controller

while the fault site node, i.e. the faulty controller, still continues its operation. In this paper, an analysis

shows that the occurrence probability of follow-up errors in communication protocols is noticeable.

Consequently, it is important to provide a technique to recognize the error’s nature, i.e. original or

follow-up in each node. This paper proposes a novel low-cost monitoring technique to differentiate

follow-up errors from original errors. The proposed technique is based on monitoring the operational

states of a communication controller. In this paper, this technique has been applied to the FlexRay

protocol. However, it is applicable for all communication protocols having an FSM-based description

such as FlexRay, TTP/C, and TT-Ethernet. To evaluate the monitoring technique, a FlexRay-based

network including 4 nodes was designed and implemented. The low-cost monitoring technique was as

well implemented inside each node of the network. A total of 135,600 transient bit-flip faults were

injected in the communication controller of one node. The results showed that about 6.0% of injected

faults lead to original errors. This figure for follow-up errors was about 6.1%. The results as well showed

that the accuracy of the proposed technique to differentiate between the follow-up and original errors

is about 97% at merely 1.4% hardware overhead. This level of accuracy and cost makes the proposed

technique a feasible solution to enhance the reliability of communication controllers.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Since the last two decades, there has been an increased use of
electronic components in automotive applications. The main
motivations behind this include lower cost, reduced weight,
new and innovative functionalities and the need for faster design
cycles [1]. Modern automotive applications are nowadays imple-
mented by complex distributed embedded systems. These sys-
tems are composed of several electronic control units (ECUs)
(sometimes called nodes) interconnected by a communication
network. An ECU is composed of a processing unit and a set of
actuators and sensors. This unit is connected to the network by a
communication controller. The controller is responsible for imple-
menting a communication protocol to transfer data between the
ll rights reserved.

daghat),
ECUs. Examples of distributed automotive applications are: chas-
sis, air bag, powertrain, body and comfort electronics, diagnostics,
X-by-Wire, multimedia and infotainment, and wireless and tele-
matics [2]. Among these applications, chassis, air bag, X-by-Wire,
and powertrain are safety-critical [2], demanding a failure rate of
lower than one failure per 109 h of operation (1 FIT) [3]. To reach
such a low failure rate, the system should be distributed into
reliable subsystems and reliable communication protocols as well
should be employed [4].

For safety-critical automotive distributed systems, several
communication protocols such as Byteflight, TTP/C, TT-CAN, and
FlexRay have been introduced [2]. Among these protocols, the
FlexRay protocol is advancing as a predominant protocol and is
expected to become a de-facto industry standard for X-by-Wire
and safety-critical automotive applications [1,5–8]. The BMW X5
is the first vehicle, which employed the FlexRay protocol to
enable a new and fast adaptive damping system at the end of
2006. A full use of the FlexRay was introduced in 2008 in the new
BMW 7 series, the world’s first production vehicle. Moreover, in

www.elsevier.com/locate/mejo
dx.doi.org/10.1016/j.mejo.2011.04.003
mailto:y_sedaghat@ce.sharif.edu
mailto:miremadi@sharif.edu
dx.doi.org/10.1016/j.mejo.2011.04.003


Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873864
the BMW X6 Sports Activity Coupe, the FlexRay protocol has been
employed in steering, braking and suspension systems [9]. Driver
assistance systems in Audi A8 car as also well been networked
utilizing the FlexRay protocol.

There are a lot of studies addressing the reliability assessment
and enhancement of communication protocols. Fault tolerance
of the TTP/C protocol has been investigated by heavy-ion fault
injection [10] and physical pin-level fault-injection [11]. Fault
tolerance and the occurred failures in the TTP/C protocol have
been studied using a heavy-ion fault injection and a simulation-
based fault injection [12]. Fault-containment and error detection
mechanisms of the TTP/C and the FlexRay protocols have been
investigated [4]; in addition, this paper has introduced and
analyzed several critical failures in these two protocols. The
removal of babbling idiot failures by designing a bus guardian
technique in the TTP/C and the FlexRay-based communication
networks have been studied in Refs. [13] and [14]. An evaluation
of the FlexRay protocol utilizing a simulation-based fault injection
has been reported in Refs. [15] and [16]. In these studies, faults
were injected merely into about 10% of the FlexRay controller’s
registers. In Ref. [17], an exhaustive evaluation of the FlexRay
protocol utilizing a simulation-based fault injection has been
reported, and the occurred errors have been classified in Refs.
[18] and [19]. Single points of failure in the FlexRay protocol have
been identified and resolved in Ref. [20]. The startup algorithm of
the FlexRay protocol has been analyzed and the vulnerability of
this protocol in the presence of failures during the startup has
been investigated [21]. Milbredt et al. in Ref. [22] have investi-
gated the clique problem in the FlexRay protocol. An approach to
the implementation of an application-level acknowledgment and
retransmission scheme for the FlexRay protocol has been pro-
posed in Ref. [23]. A membership service with a low runtime
overhead has been proposed for FlexRay-based communication
networks [24].

Two main points in the safety-critical distributed embedded
systems are: (1) each network node is commonly designed as a
fail-silent node, and (2) a transient fault in a communication
controller of a network node can cause errors in the fault site
node (called original errors) and/or in the neighbor nodes (called
follow-up errors) [25,26]. Consequently, follow-up errors can lead
a neighbor node to enter an unwanted fail-safe mode while in the
fault site node no original errors may occur and that node can
continue its operation. One effective way to prevent the neighbor
node from entering an unwanted fail-safe operation is to provide
this node with a technique to differentiate between the error’s
natures, i.e. original, and follow-up, and to inform the controller
of the nature. It should be noted that this issue has not been
addressed in the literatures, while this differentiation is the most
important step for the containment of error propagations.

This paper proposes a novel low-cost monitoring technique to
differentiate follow-up errors from original errors. The proposed
technique is based on monitoring the operational states of a
communication controller. In this paper, this technique has been
applied to the FlexRay protocol. However, it is applicable for all
communication protocols having an FSM-based description such
as FlexRay [27], TTP/C [28], and TT-Ethernet [29]. To evaluate the
technique, a FlexRay-based network including 4 nodes has been
designed and the technique (a differentiating monitor) has been
implemented inside each node. The simulation-based fault injec-
tion is employed to generate original and follow-up errors in the
network and accuracy of the differentiating monitor is assessed.
Furthermore, an analysis has been performed, which shows
the noticeable occurrence of follow-up errors. In this analysis,
TDMA-based communication protocols have been analyzed and
the occurrence probability of the follow-up errors has been
determined.
The remaining of the paper is organized as follows. The FlexRay
protocol is briefly introduced and its FSM-based behaviors are
described in Section 2. In Section 3, the proposed FSM-based
monitoring technique is presented. Furthermore, the importance
of follow-up errors in TDMA-based communication protocols is
analyzed in Section 4. Section 5 includes the experimental setup
and evaluation results of the proposed technique, and finally the
conclusions are given in Section 6.
2. Review of the FlexRay protocol

In 2000, the FlexRay protocol had been developed by an industry
consortium with four founding members (BMW, Daimler-Chrysler,
Philips, and Freescale) [8]. This consortium now consists of several
automotive industry key players including Bosch, General Motors,
and Volkswagen [30]. Today, the FlexRay protocol is expected
to become the de-facto industry standard in future automotive
systems [2]. The FlexRay protocol provides flexibility, robustness,
scalability, and high data rate up to 10 Mbps to be employed in
automotive applications. This protocol supports different network
topologies, i.e. passive bus, passive or active star, cascaded star, and
hybrid topologies. The FlexRay as well supports dual channel
communications, which can be employed in fault-tolerant systems
[27]. From the dependability point of view, in the FlexRay protocol
specifications, a bus guardian mechanism, a fault-tolerant clock syn-
chronization algorithm, and Cyclic Redundancy Codes (CRC) are
described; however, other complicated mechanisms, such as a
membership service or a clique avoidance mechanism should be
implemented in software or hardware layers on top of the FlexRay
protocol. This will allow the designers to conceive and implement
exactly the services, which are required for the drawback that can be
corrected and efficient implementations may be more difficult to
achieve in a layer above the communication protocol [27].

2.1. Media access control in the FlexRay protocol

Communications in the FlexRay protocol are based on sending
messages in recurring communication cycles. In this protocol,
a communication cycle is a concatenation of a time-triggered
(or static) window, an event-triggered (or dynamic) window,
a symbol window and a network idle time (NIT) window. The
time-triggered window employs a Time Division Multiple Access
(TDMA) [31] mechanism. In the event-triggered window of the
communication cycle, the arbitration mechanism is Flexible
TDMA (FTDMA) [32]. The symbol window is a communication
period in which a symbol can be transmitted on the network. The
NIT window is a communication-free period that concludes each
communication cycle. It should be noted that in the FlexRay
protocol, data frames are sent in the static slots or in the dynamic
slots of each communication cycle.

2.2. Architecture of the FlexRay communication controller

The FlexRay communication controller consists of six func-
tional modules [27]: (1) a controller host interface (CHI) module
that manages all data and a control flow between the host
controller and the FlexRay communication controller within
each node, (2) a protocol operation control (POC) module adjusts
operational modes of the FlexRay modules, (3) a coding and
decoding (CODEC) module that is responsible to encode the
communication elements into a bit stream and to receive com-
munication elements, making bit streams and investigating cor-
rectness of bit streams, (4) a media access control (MAC) module
controls the access to the bus, in the FlexRay protocol, the
media access control is based on recurring communication cycles,



Fig. 2. Power operation states of the FlexRay communication controller [27].

Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873 865
(5) a frame and symbol processing (FSP) module that is respon-
sible to check the correct timing of received frames and a received
symbol, applying further syntactical tests to the received frames,
and checking the semantic correctness of received frames, and
(6) clock synchronization process (CSP) module that is respon-
sible to generate timing units in the FlexRay communication
controller, e.g., communication cycles. Moreover, this module
employs a distributed clock synchronization mechanism in
which each node individually synchronizes itself to its cluster
by observing the timing of transmitted frames from the other
nodes. Fig. 1 shows the relationship between the FlexRay con-
troller modules.
2.3. FlexRay protocol: an FSM-based protocol

The FlexRay consortium has released a version (Version 2.1,
revision A) of the FlexRay communication protocol specification
[27], which is available to the general public. In this specification,
all of the FlexRay mechanisms have been described utilizing
Finite State Machines (FSMs) and have been presented utilizing
a graphical method loosely based on the Specification and
Description Language (SDL) [33] (SDL diagrams). For example,
Fig. 2 shows power operation states of the FlexRay communica-
tion controller utilizing an SDL-based description.

As shown in this figure, the communication controller has
three power operation states. When the power supply of the
controller is turned on and its voltage level reaches a required
level, the power operation state of the controller changes from the
‘‘power off’’ state to the ‘‘reset’’ state. The power state changes
from the ‘‘reset’’ state to the ‘‘POC operational’’ state when the
voltage level is sustained for predetermined time duration and a
hardware reset is not asserted. Moreover, the POC operational
state itself consists of eight functional states. Fig. 3 shows an
Coding and Decoding Unit

Media Access
Control

Frame and
Symbol

Processing

Synchronization
Process

Controller Host

From Channel InterfaceTo Channel Interface

To/From Host

Interface

Protocol Operation
Control

Clock

Fig. 1. Structure of the FlexRay communication controller [27].
overview of the relationship between the eight sub-states of the
‘‘POC operational’’ state.

As shown in Fig. 3, the POC module enters the ‘‘default config’’
state when the communication controller enters the ‘‘POC opera-
tional’’ power state or the controller is recovered from its ‘‘halt’’
state by a DEFAULT CONFIG command issued from the host
controller. In the ‘‘default config’’ state, the POC awaits the
explicit command from the host (CONFIG command) to enable
the configuration of the controller and afterwards the POC enters
the ‘‘config’’ state. It should be noted that an entrance to the
‘‘config’’ state is merely occurred when the CONFIG command is
issued by the host and the POC’s state is ‘‘default config’’ or
‘‘ready’’. In the ‘‘config’’ state, the host configures the commu-
nication controller through the CHI module and afterwards
verifies this configuration. When a proper configuration is ver-
ified, a CONFIG COMPLETE command is issued by the host to
announce the successful completion of the controller’s configura-
tion. Next, the POC transits to the ‘‘ready’’ state. On this transition,
the POC creates all of the core mechanism processes, incorporat-
ing the configuration values that were set in the ‘‘config’’ state.

In the ‘‘ready’’ state, the communication controller is ready to
perform the necessary tasks to start or join an actively commu-
nicating cluster. In this state, three commands, i.e. CONFIG,
WAKEUP, and RUN commands, which are issued by the host
controller leads the communication controller to perform several
related tasks to the issued command and then the POC opera-
tional state is changed to a proper state. Fig. 4 shows all tasks,
which and how should be performed in the ‘‘ready’’ state before
transiting to a next state, if one of these commands is received
from the host.

The CONFIG command causes the host to re-enter the ‘‘config’’
state to allow the host to alter the current controller configuration.
Since the core mechanism processes are created on the transition
back to ‘‘ready’’ following the configuration process, the processes
shall be terminated on the transition to ‘‘config’’. This operation has
been shown in Fig. 4 by the TERMINATE_ALL_PROCESSES macro
invocation.

The WAKEUP command causes the POC to commence the
wakeup procedure in accordance with the configuration loaded
into the controller when it was previously configured. This
procedure is shown in Fig. 4 by the WAKEUP macro invocation.
On completion of the wakeup procedure, the POC activates all the
core mechanisms appropriately for ‘‘ready’’ state and returns to
this state.

The RUN command causes the POC to commence a sequence of
tasks that bring the POC to a normal operation, i.e. the ‘‘normal
active’’ state. First, all internal status variables are reset to their
starting values. Next, the startup procedure is executed. In Fig. 4
this is represented by the STARTUP macro invocation. This
procedure activates the core mechanisms appropriately to per-
form the sequence of tasks necessary for the communication
controller (and its node) to start or enter an actively communicating



Fig. 3. An overview of the POC operational functional states [27].

Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873866
cluster. The startup procedure results in the node being synchro-
nized to the timing of the cluster. Following a successful startup, the
POC will reside in the ‘‘normal active’’ state. In this state, the
communication controller is able to communicate with the other
communication controllers, which have been placed in the other
network nodes.

Similar to the presented figures, all of the other FlexRay
mechanisms have been described using FSMs and have been
presented using SDL technique in the FlexRay protocol specifica-
tions. For more details, readers are referred to Ref. [27]. In
addition to the FlexRay protocol, other communication protocols
for safety-critical distributed embedded systems, e.g., TTP/C [28],
and TT-Ethernet [29], have been as well described and presented
using FSMs and the SDL technique.

As described in this section, FSMs and SDL diagrams present
the behavior of a communication protocol and its communication
controller in all possible situations. Consequently, if the behavior
of a communication controller is monitored during its operation
in a communication network, all behavioral errors will be detect-
able. In this paper, an FSM-based monitoring technique, which is
based on monitoring the behavior of the FlexRay communication
controller, has been presented. This technique discovers the
nature of an occurred error, i.e. original or follow-up in the
communication controller and informs the host controller.
3. The proposed FSM-based monitoring technique

In safety-critical distributed embedded systems, fail-silent
communication protocols are most frequently employed. In a
fail-silent protocol, communication controller of this protocol is a
self-checking controller that either functions correctly or stops
functioning when a critical error is detected. The FlexRay protocol
has been as well designed as a fail-silent protocol. In the FlexRay
controller, if a severe error occurs or if various errors persist, the
communication controller will be halted [27]. More detailed
studies of the FlexRay documents [27] and beforehand experi-
mental results [18,19,34], show that the propagation of an
erroneous message can result in follow-up error(s) in the com-
munication controller of the receiving nodes. In this situation, the
communication controller of a receiving node cannot discover the
nature of errors and thus cannot differentiate between follow-up
errors originated from a faulty sending node, and original errors
originated from a fault in the communication controller. Conse-
quently, it is possible that a communication controller is halted
by the host due to frequently occurred errors, which can be
follow-up errors. On the other hand, a perfect communication
controller can be halted due to follow-up errors, whereas a faulty
communication controller (the origin of follow-up errors) con-
tinues to send its messages.

In the FlexRay-based networks similar to the other networks,
e.g., TTP/C-based networks, an error in a received message due to
a fault in the sending communication controller can appear in two
models [4,35]: (1) an error in the timing of the message or (2) an
error in the value of the message. A timing error in a received
message implies that the ‘‘instant of sending the message’’ or the
‘‘instant of receiving the message’’ are not in agreement with the
system specifications, which are determined in the design time.
A value error in a received message implies that there is an error
in the structure of the message or in the content of the data,
which has been packed in the message. Propagation of the timing
errors has been contained utilizing a technique, which is called
the bus guardian. A bus guardian is an autonomous unit which
has a prior knowledge of the temporal access pattern of a node to
a communication channel. Hence, this unit, based on its knowl-
edge knows all of the intended message send and receive instants



Fig. 4. POC behavior in preparation for normal operation [27].

Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873 867
[36]. Furthermore, it allows transmissions merely in slots
assigned to a respective node. The bus guardian has a separate
oscillator to prevent temporal coupling with the communication
controller and to prevent common mode failures [12]. In the
literature, detection of the value errors has been relegated to the
host controller of a receiving node [4,37] and thus, propagation of
this error model has not been contained.

3.1. Monitoring policy for the FlexRay protocol

As mentioned before, when a fault occurs in a communication
controller, the controller can violate its normal behavior. This
results in an original error(s). However, when an erroneous
message is received by the controller, a follow-up error(s) occurs
in the controller. In this situation, there is no violation in the
normal behavior of the communication controller. Consequently,
to differentiate between follow-up and original errors, an on-line
monitoring technique is employed. This technique should moni-
tor the behavior of the communication controller of a network
node, concurrently with the operation of the controller.

To propose an on-line monitoring technique to differentiate
follow-up errors from original errors, the FlexRay protocol was
chosen as a case study. The two main motivations behind this are
as follows: (1) the FlexRay protocol has gained an industry-wide
acceptance as a next-generation automotive networking stan-
dard, and (2) the FlexRay documents [27] present a behavioral
specification of this protocol utilizing SDL-based descriptions.

In the FlexRay protocol, the following seven error types are
possible [18,19,27]: (1) Boundary violation error, (2) Conflict
error, (3) Content error, (4) Synchronization error, (5) Syntax
error, (6) Freeze error, and (7) Invalid frame error. The Boundary
violation error denotes whether a boundary violation has
occurred at the boundary of a corresponding slot. Hence, the
boundary violation occurs if a node does not consider the channel
to be idle at the boundary of a slot. The Conflict error denotes
whether reception was ongoing at the time when the node started
a transmission. The Content error denotes the presence of an error
in a received frame. Moreover, in the FlexRay protocol, a clock
rate correction mechanism is employed. However, in a synchro-
nization process, if a fault results in failing the clock rate
correction mechanism, a Synchronization error occurred. The
Syntax error denotes the presence of a syntactic error in a time
slot, e.g., when a decoding error occurs. Moreover, in the FlexRay
communication protocol, there are three general conditions,



Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873868
which transit functional state of communication controller to the
halt state immediately. In this state, the POC module stops the
activities of all the other modules and freezes the communication
controller. After resolving the freeze conditions, communication
controller should be started up through the host controller. Three
freeze conditions are: (1) Product-specific error conditions such
as Built-In Self-Test (BIST) and sanity check errors, (2) Error
conditions detected by the host that result in a FREEZE command
being sent to the POC via the CHI, and (3) Fatal conditions
detected by the POC or one of the communication controller
mechanisms. Finally, in addition to the mentioned error types,
when a syntactically correct frame is received in the FlexRay
protocol, this frame is checked to meet the frame acceptance
conditions. If the frame passes this check, it is marked as an
accepted frame; otherwise, an Invalid frame error occurs and the
received frame is dropped [27].

The occurrence of the Boundary violation, the Conflict, the
Content, the Invalid frame, and the Syntax errors is reported to
the host controller via the CHI module and the host responses to
these errors, appropriately. In addition, the occurrence of the
Synchronization error is reported in the POC module and this
module based on a graceful degradation mechanism reacts to it.
Moreover, in the FlexRay protocol, if one of the freeze conditions
is satisfied then the CHI module enforces the POC module to stop
the activities of all other modules and to freeze the communica-
tion controller [27].

Previous investigations showed that an injected transient single
bit-flip fault in the FlexRay communication controller can be over-
written or can result in more than one error type in the network
nodes, i.e. fault site node and the other neighbor nodes, simulta-
neously [18]. For example, if a fault causes a Freeze error in the fault
site node, other error types such as the Syntax, the Content error,
and the Invalid frame errors can occur in the other network nodes
(as follow-up errors) [18]. It should be noted that due to an injected
fault in one node, merely the Boundary violation, the Conflict, the
Content, the Invalid frame, the Synchronization, and the Syntax
errors can occur in the other network nodes, on the contrary, the
Freeze error occurs only in the fault site node [18,19,27]. Moreover,
if the bus guardian technique is applied, the propagation of the
Boundary violation error will be contained. Consequently, the
monitoring technique should be able to check the occurrence
conditions of all error types except the Freeze error.

It should be noted that the main cause, the main consequence,
and the possible nature of each error type have been as well
presented in Table 1.

3.2. Architecture of the proposed FSM-based monitoring technique

As presented in Table 1, due to a fault in network node, the
Boundary violation, the Conflict, the Content, the Invalid frame,
Table 1
Error types in the FlexRay communication protocol.

Error types Boundary violation Conflict Content

Cause Disregarding the

channel to be idle at

the boundary of a slot

Starting a

transmission while

reception is ongoing

Presence of an

error in a received

frame

Consequence Depends on the host’s

response

Depends on the

host’s response

Depends on the

host’s response

Informed unit Host controller Host controller Host controller

Can appear as an
original error?

Yes Yes Yes

Can appear as a

follow-up error?

Yes Yes Yes
the Synchronization, and the Syntax error types can occur as
follow-up errors in the communication controller of the other
nodes. Hence, if the monitor can check the occurrence conditions
of these error types in the communication controller of a receiv-
ing node concurrently with the operation of the controller, it will
be able, capable to determine whether the nature of an occurred
error is an original or a follow-up error. The reason is that when
an error occurs its occurrence conditions had not been satisfied, it
implies that this error originates from a fault in the error site
communication controller and thus the occurred error is an
original error. However, if occurrence conditions of the occurred
error had been satisfied, it implies that the error is due to an
erroneous received message and thus the occurred error is a
follow-up error.

To assess the satisfaction of the mentioned error types’
occurrence conditions, behavioral FSMs of these error types, i.e.
the Boundary violation, the Conflict, the Content, the Invalid
frame, the Synchronization, and the Syntax error types, should
be monitored by the monitor, concurrently with the operation of
the communication controller. These FSMs are easily extractable
from behavioral FSMs of the FlexRay mechanisms presented in
Ref. [27]. For example, an extracted FSM of the Syntax error type
has been presented using SDL as shown in Fig. 5. As shown in
Fig. 5, in the standard operation of the FlexRay protocol, when the
operational state of the FSP module is ‘‘decoding in progress’’ or
‘‘wait for CHIRP’’ and one of the transition conditions illustrated
in this figure is satisfied, the Syntax error will occur. Each
illustrated transition condition itself is satisfied in a special
operational state of the FlexRay modules. For example, ‘‘decoding
halted on A’’ transition occurs merely when the operational state
of the CODEC module is ‘‘Normal’’ or ‘‘Wakeup’’. Consequently, if
the monitor checks the occurrence conditions of an occurred
Syntax error based on monitoring the FSM of the Syntax error
type, it will be able, capable to determine whether the nature of
the occurred error is an original or a follow-up error.

Fig. 6 shows the behavioral description of the differentiating
monitor for the Syntax error type. As illustrated in this figure,
once a Syntax error occurs, the monitor checks the operation state
of the CODEC module and when the state of the CODEC is
‘‘Decoding in progress’’ or ‘‘Wait for CHIRP’’, it will check illu-
strated transition conditions and finally will determine the nature
of the occurred error. For example, if a fault sets the ‘‘decoding
halted on A’’ register, this fault will lead to a Syntax error. In this
situation, the differentiating monitor checks occurrence condi-
tions of the Syntax error and discovers that the occurrence
conditions of setting ‘‘decoding halted on A’’ have not been
satisfied. Hence, the monitor determines the nature of the
occurred Syntax error as an original error.

In addition to the Syntax error type, behavioral FSMs of the
other error types, i.e. the Boundary violation, the Conflict, the
Freeze Invalid frame Synchronization Syntax

Satisfying at least

one of the freezing

conditions

Failing the frame

acceptance check

Failing the clock

rate correction

mechanism

Presence of a

syntactic error in

a received frame

Freezing the

communication

controller

Depends on the

host’s response

Activating a

graceful

degradation

mechanism

Depends on the

host’s response

The CHI module Host controller The POC module Host controller

Yes Yes Yes Yes

No Yes Yes Yes



Fig. 5. SDL presentation of Syntax error type.

Fig. 6. SDL diagram of the differentiating monitor for the Syntax error.

Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873 869
Content, the Invalid frame, and the Synchronization error types,
were extracted from the behavioral FSMs of the FlexRay mechan-
isms presented in Ref. [27] and based on them, behavioral
descriptions for the differentiating monitor were provided. It
should be noted that the differentiating monitor observes the
behavior of the communication controller and traces the opera-
tional state of the controller, concurrently with the operation of
the controller. Hence, when one of the error types occurs, the
monitor will be able to determine the nature of the occurred error
immediately. Moreover, the monitor creates no disturbance in the
operation of the communication controller; consequently, it has
no effect on the performance of the controller.

Fig. 7 shows the architecture of a FlexRay node in the presence of
the differentiating monitor. This figure as well shows the relationship
between FlexRay communication controller and proposed differen-
tiating monitor. As illustrated in this figure, the communication
controller exchanges configuration data, status information, and
communication data with the host controller. Moreover, it informs
the type of occurred errors to the host. In addition, the proposed
monitor observes the operational status of the communication
controller and provides an output for the host controller that
determines the nature of occurred errors, i.e. original or follow-up
errors.

To apply the technique to the other FSM-based communica-
tion protocol, e.g., TTP/C [28], and TT-Ethernet [29], five steps
should be performed: (1) as described in this section, all probable
error types should be identified, (2) the behavioral FSM of the
detection mechanism for each error type is extracted, (3) based on



Fig. 7. FlexRay node architecture with differentiating monitor.

Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873870
the extracted FSM for each error type, an FSM should be provided
to assess the satisfaction of the error type’s occurrence conditions,
(4) all error types’ assessing FSMs should be integrated in a
differentiating monitor, and Finally (5) the differentiating monitor
is placed beside the communication controller in a network node.
Hence, the consequent monitor will be able to determine the
nature of the occurred errors in each communication controller in
a network’s node.
4. An analysis on the follow-up errors

In this section, a probability analysis has been presented. In
this analysis, TDMA-based communication protocols have been
analyzed and the occurrence probability of the follow-up errors
has been determined.

Communications in the time-triggered protocols are based on
sending messages in predetermined interval times, which are
named as communication cycles (bus cycles). These communica-
tion cycles are executed periodically. In these protocols, based on
Time Division Multiple Access (TDMA) [31] mechanism, a com-
munication cycle is composed of several communication time
slots called static slots. Each static slot is assigned merely to one
node of the network. Moreover, it is possible that more than one
slot is assigned to one node. Hence, each node sends its data
frame merely in static slots, which have been assigned to it.

To analyze the occurrence probability of follow-up errors,
several assumptions and notations should be established before
proceeding with the main development of the section. The system
is composed of Nn nodes. Each node is composed of a processing
unit and a communication controller. The physical and architec-
tural structures of all system nodes are assumed to be identical.
Each communication cycle contains Ns equal length time slots and
Ni

s is number of time slots, which have been assigned to the ith
node and Bi denotes the bandwidth that has been assigned to the
ith node:

Bi ¼
Ni

s

Ns
:

To simplify the analysis, it is assumed that just one fault could
have occurred in each communication cycle. The rate of fault
occurrence for all nodes is the same and depends on environ-
mental conditions. It is denoted by Rflt_Occ . Not all faults in the
communication controller lead to an error. The probability of a
fault in the communication controller leading to an error depends
on where and when that fault occurs and is denoted by Pflt_act . It is
obvious that the occurrence probability of the original error, Po for
all nodes due to a fault in the communication controller of the
fault site node is the same and is equal to:

Po ¼ Rflt_Occ � Pflt_act :

Among all original errors in each node, merely a part of them
can be propagated to the other nodes of the network. Let Rpropag

denote the ratio of the propagated original errors. This ratio is
estimated by analytical or experimental approaches. Therefore,
the probability of propagating an original error in jth node to the
other nodes, Ppropag in a time slot, which has been assigned to the
jth node, is equal to:

Ppropag ¼ Rpropag � Po:

Now it is ready to calculate the occurrence probability of an
error in the ith node, Pi

ein a communication cycle. In each time
slot, which has been assigned to the ith node, the occurred error is
just an original error due to a fault in that node as a fault site
node, therefore the probability of error in this time slot is:

Pi
e ¼ Po:

In the other time slots, which have been assigned to the
jth, ðja iÞ node, the occurred error in the ith node is not merely
due to an original error in the ith node, however, it may be due to
a propagated error from the jth node to it and therefore the
probability of an error in this time slot is:

Pi
e ¼ PoþPpropag :

The above equality holds because it is assumed that just
one fault could have occurred in each communication cycle. By
applying previous equations, the occurrence probability of an
error in the ith node in each communication cycle is:

Pi
e ¼ Poþ

XNn

j¼ 1

ia j

Ppropag �
Nj

s

Ns

 !
¼ Poþ

XNn

j¼ 1

ia j

ðPo � RpropagÞ �
Nj

s

Ns

 !

¼ Poþ Po � Rpropag �
Ns�Ni

s

Ns

� �
: ð1Þ

The first term in Eq. (1) denotes the occurrence probability of
an original error in the ith node and the second term denotes the
occurrence probability of an error in the ith node due to a fault in
the other nodes, called a follow-up error, which is denoted by Pi

f :

Pi
f ¼ Rpropag � Po �

Ns�Ni
s

Ns
: ð2Þ



Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873 871
By applying Eq. (2), the ratio of the occurrence probability of a
follow-up error to the occurrence probability of an original error
in the ith node, Ri

f , is equal to:

Ri
f ¼

Pi
f

Po
¼ Rpropag �

Ns�Ni
s

Ns
: ð3Þ

In Eq. (3), as mentioned before, Rpropag denotes the ratio of the
propagated original errors from a fault site node to the ith node. It
should be noted that this ratio is the same for all nodes, which
employ a same communication controller. Moreover, this equa-
tion shows that the follow-up error ratio for the ith node is
increased when the number of assigned time slots to that node is
decreased.

This simplified analysis shows that the occurrence probability
of follow-up errors is not negligible and is even noticeable. For
example, based on the presented results in Ref. [19], ratio of the
propagated original errors from a fault site node to a neighbor
node in the FlexRay protocol is about 88.8% (Rpropag ¼ 0:888) and if
among all 10 time slots (Ns¼10), two slot is assigned to the ith
node (Ni

s ¼ 2), then the ratio of the occurrence probability of a
follow-up error to the occurrence probability of an original error
in the ith node is approximately 0.71 (Ri

f ¼ 0:7104). Hence,
designers should take care of the follow-up errors.
5. Experimental evaluation

Safety-critical applications have to function perfectly even in
the presence of faults. Faults can be permanent, transient, or
intermittent. The transient faults in flip-flops, latches and combi-
national logic circuits, pose a key challenge in the design of fault-
tolerant applications and their rates are significantly increasing
due to the ever decreasing technology size of semiconductor
devices [38–40]. Transient single bit-flip errors, which are the
major consequences of transient faults [41] have been considered
in this paper.

5.1. Experimental setup

The FlexRay communication controller was implemented by
a hardware description language, Verilog HDL, based on State
Diagram Language (SDL) descriptions of this controller in the
FlexRay specifications [27]. Later, specifications of this controller,
e.g., timing and configuration were tested according to the
FlexRay protocol conformance test specification [42].

To evaluate the proposed monitoring technique, a cluster con-
sisting of 4 nodes with single bus topology (Fig. 8) was formed. In
this topology, each node was composed of a host controller, a
communication controller and a proposed differentiating monitor.
The host controller typically was a hardware unit that generates data
to exchange with the other nodes through a communication channel.
In the experiments, instead of a real host, a data generator was
employed to generate static frames with fixed length and dynamic
Fig. 8. Experime
frames with variable length at the start of the communication cycles.
In this cluster, each node was allowed to send and receive frames on
the communication channel.

To simulate the experiments, the ModelSim 5.5 was employed
as a simulation environment. The simulation includes five com-
munication cycles; in the second and third cycles a single
transient bit-flip fault was injected randomly, then the simulation
was resumed to two cycles to assure that the injected fault shows
its effects or is overwritten.

5.2. Results

The modeled FlexRay communication controller is not still
synthesizable to investigate the error propagation rate in the
FlexRay-based networks, transient single bit-flip faults were
injected into all accessible registers of the communication con-
troller of node 2 (as a fault site node) and their effects on another
communication controller (node 4 as an observed neighbor node)
were investigated. To reach a sufficiently accurate investigation,
50 transient bit-flip faults were injected to each bit of all FlexRay
controller registers in the fault site node and gathered results
were investigated. The fault injection process utilized in this
experiment is the same as the one utilized in Refs. [18] and [19].

A total of 135,600 transient single bit-flip faults were injected
into all 408 single-bit and multiple-bit registers of the FlexRay
communication controller in the fault site node and behaviors of
the communication controller in the fault site node as well as the
observed neighbor node were observed. As mentioned before in
Refs. [18] and [19], investigations showed that in the FlexRay
communication controller, an injected transient single bit-flip
fault can be overwritten or can result in one or more discussed
error types in the fault site and the observed neighbor nodes,
simultaneously. For example, if a fault leads to satisfy one of the
freeze conditions in a communication controller, the POC module
stops the activities of all the communication controller’s modules
and freezes the controller. In this situation, if the fault site
communication controller is sending a message, its transmission
is discontinued and the transmitted message will be imperfect.
Moreover, if the fault site communication controller is receiving a
message, its reception is discontinued and the received message
will be imperfect. Hence, several error types such as the Syntax,
the Content, the Boundary violation, and even the Invalid frame
errors can occur due to a Freeze error in the observed neighbor
node and even in the fault site node.

In addition to a communication controller, the proposed
differentiating monitor was placed in each node. This monitor
reports the nature of the occurred errors, i.e. original or follow-up
errors, in each node. Table 2, presents number and occurrence
rate of each error types in the fault site and observed neighbor
nodes, which have been presented in Ref. [19]. Detailed analyses
of the occurrence rate of the error types in the fault site and
observed neighbor nodes are beyond the scope of this paper and
have been presented in Refs. [18] and [19]. Moreover, this table
ntal setup.



Table 2
Statistics on the error types in the observed neighbor node.

Boundary

violation

errors

Conflict

errors

Content

errors

Synchronization

errors

Syntax

errors

Invalid

frame errors

Total

errors

Fault site node Occurred errors (#) 2489 0 1746 6403 513 4149 15300

Monitor

Original errors (#) 2410 0 1715 6180 498 4073 14876

Follow-up errors (#) 79 0 31 223 15 76 424

Accuracy (%) 96.8 – 98.2 96.5 97.1 98.2 97.2

Neighbor node Occurred errors (#) 1718 0 625 4705 2005 4488 13541

Monitor

Original errors (#) 0 0 0 0 0 0 0

Follow-up errors (#) 1718 0 625 4705 2005 4488 13541

Accuracy (%) 100 – 100 100 100 100 100

Table 3
Hardware overhead of the proposed differentiating monitor.

Standard FlexRay

communication

controller

Differentiating Monitor Hardware

overhead

Boundary

violation error

Conflict error Content error Synchroniza-

tion error

Syntax error Invalid frame

Error

Total

Flip-flops 2712 6 4 5 10 7 6 38 1.4%

Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873872
shows the number of occurred errors, whether their natures have
been correctly determined by the monitor and the accuracy rate
for the differentiating monitor in each node.

It should be noted that, in this experiment, transient single bit-
flip faults were injected in the communication controller of the
fault site node; hence, nature of all occurred errors in that node is
the original error, whereas the nature of all occurred errors in the
communication controller of the observed node is the follow-
up error.

The experimental results showed that the differentiating
monitor has correctly determined the nature of all occurred errors
in the observed neighbor node as the follow-up error. However, in
the fault site node, the monitor has determined the nature of
97.2% of all occurred errors as the original error, and has
considered other errors (merely 2.8%) as the follow-up errors,
incorrectly. Investigations on the experimental results showed
that when an error occurs in a communication controller’s
register, which indirectly affects occurrence conditions of the
error types, the nature of this error may be determined as the
follow-up error instead of the original error. This issue will be
resolved if more error occurrence conditions are checked by the
monitor utilizing more imposed hardware overhead. Table 3
shows an estimation of the imposed hardware overhead of the
proposed differentiating monitor for each error type. It should be
noted that since the modeled FlexRay communication controller is
not yet synthesizable, the imposed hardware overhead is estimated
based on the number of added flip-flops in comparison with the
number of communication controller’s flip-flops. The main purpose
of this estimation is to show that the hardware overhead of the
proposed differentiating monitor is rather negligible.

As shown in Table 3, the differentiating monitor imposes only
38 flip-flops (1.4%) as hardware overheads to the FlexRay com-
munication controller. These flip-flops are employed as flags,
which are utilized to trace the behavior of the FlexRay commu-
nication controller to check error occurrence conditions. Among
all error types, checking occurrence conditions of the Synchroni-
zation is the most complicated and needs to apply 10 flip-flops,
whereas to check the occurrence conditions of the Conflict errors,
only 4 flip-flops is required.
It should be noted that, the differentiating monitor is consulted
merely when an error is observed by the controller. Consequently, a
single bit-flip transient fault in the differentiating monitor cannot
result in any malfunction in the communication controller.

6. Conclusion

It has been shown that a transient fault occurring in the
communication controller of a network node can cause errors in
the fault site node (called original errors) and/or in the neighbor
nodes (called follow-up errors). This paper proposes a novel low-
cost monitoring technique to differentiate follow-up errors from
original errors. The proposed technique is based on monitoring the
states of a communication controller, which is applicable for all
communication protocols having an FSM-based description such as
FlexRay, TTP/C, and TT-Ethernet. To evaluate this technique, a
FlexRay-based network including 4 nodes was implemented. The
monitoring technique was as well implemented inside each node of
the network. A total of 135,600 transient bit-flip faults were injected
into the communication controller of one node. The results showed
that about 6.0% of injected faults lead to original errors. This figure
for follow-up errors was about 6.1%. The results as well showed that
the accuracy of the proposed technique to differentiate between the
follow-up and the original errors is about 97% at only 1.4% hardware
overhead. This level of accuracy and cost makes the proposed
technique a viable solution to enhance the reliability of commu-
nication controllers. Furthermore, an analysis has been performed to
show that it is important to pay special attention to the follow-up
errors. In this analysis, TDMA-based communication protocols have
been analyzed and the occurrence probability of the follow-up
errors has been determined.
Acknowledgment

The authors would like to thank Mrs. Monireh Houshmand
from Electrical Engineering Department of Ferdowsi University of
Mashhad for her helpful comments and suggestions which have
improved the paper.



Y. Sedaghat, S.G. Miremadi / Microelectronics Journal 42 (2011) 863–873 873
References

[1] A. Hagiescu, U.D. Bordoloi, S. Chakraborty, Performance analysis of FlexRay-
based ECU networks, in: Proceedings of the 44th ACM/IEEE Design Automa-
tion Conference (DAC ’07), San Diego, USA, 4–8 June 2007, pp. 284–289.

[2] T. Nolte, H. Hansson, L. Bello, Automotive communications—past, current and
future, in: Proceedings of the 10th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’05), vol. 1, Catania, Italy, 19–22
September 2005, pp. 985–992.

[3] N. Suri, C.J. Walter, M.M. Hugue (Eds.), IEEE Press, Los Alamitos, 1995.
[4] H. Kopetz, Fault containment and error detection in the time-triggered

architecture, in: Proceedings of the 6th International Symposium on Auton-
omous Decentralized Systems (ISADS’03), Pisa, Italy, 9–11 April 2003,
pp. 139–146.

[5] E. Armengaud, A. Steininger, M. Horauer, Towards a systematic test for
embedded automotive communication systems, IEEE Transactions on Indus-
trial Informatics 4 (3) (2008) 146–155.

[6] T. Pop, P. Pop, P. Eles, Z. Peng, A. Andrei, Timing analysis of the FlexRay
communication protocol, in: Proceedings of the 18th Euromicro Conference
Real-Time Systems (ECRTS’06), Dresden, Germany, 5–7 July 2006, pp. 203–216.

[7] T. Pop, P. Pop, P. Eles, Z. Peng, Bus access optimization for FlexRay-based
distributed embedded systems, in: Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition 2007 (DATE ’07), Nice, France,
16–20 April 2007, pp. 1–6.

[8] R. Makowitz, C. Temple, FlexRay—a communication network for automotive
control systems, in: Proceedings of the 6th IEEE International Workshop on
Factory Communication Systems (WFCS 2006), Torino, Italy, 28–30 June 2006,
pp. 207–212.

[9] J. Voelcker, Top 10 tech cars, IEEE Spectrum Magazine 45 (4) (2008) 27.
[10] H. Sivencrona, P. Johannessen, M. Persson, J. Torin, Heavy-ion fault injections

in the time-triggered communication protocol, in: Proceedings of the 1st
Latin American Symposium on Dependable Computing (LADC ’03), Sao Paulo,
Brazil, 21–24 October 2003, pp. 69–80.

[11] S. Blanc, P.J. Gil, Improving the multiple errors detection coverage in
distributed embedded systems, in: Proceedings of the 22nd International
Symposium on Reliable Distributed Systems (SRDS’03), Florence, Italy, 6–18
October 2003, pp. 303–312.

[12] A. Ademaj, H. Sivencrona, G. Bauer, J. Torin, Evaluation of fault handling of the
time-triggered architecture with bus and star topology, in: Proceedings of
the International Conference on Dependable Systems and Networks (DSN’03),
San Francisco, CA, USA, 22–25 June 2003, pp. 123–132.

[13] G. Bauer, H. Kopetz, W. Steiner, The central guardian approach to enforce
fault isolation in the time-triggered architecture, in: Proceedings of the 6th
International Symposium on Autonomous Decentralized Systems (ISADS’03),
Pisa, Italy, 9–11 April 2003, pp. 37–44.

[14] G.N. Sung, C.Y. Juan, C.C. Wang, Bus guardian design for automobile
networking ECU nodes compliant with FlexRay standard, in: Proceedings of
the IEEE International Symposium on Consumer Electronics (ISCE’08),
Algarve, Portugal, 14–16 April 2008, pp. 1–4.

[15] V. Lari, M. Dehbashi, S.G. Miremadi, N. Farazmand, Assessment of message
missing failures in FlexRay-based networks, in: Proceedings of the 13th
Pacific Rim International Symposium on Dependable Computing (PRDC’07),
Melbourne, Australia,17–19 December 2007, pp. 191–194.

[16] V. Lari, M. Dehbashi, S.G. Miremadi, M. Amiri, Evaluation of babbling idiot
failures in FlexRay-based networks, in: Proceedings of the 7th IFAC Interna-
tional Conference on Fieldbuses and Networks in Industrial and Embedded
Systems (FET’07), Toulouse, France, 7–9 November 2007, 8 pp.

[17] Y. Sedaghat, S.G. Miremadi, Investigation and reduction of fault sensitivity in the
FlexRay communication controller registers, in: Proceedings of the 27th Interna-
tional Conference on Computer Safety, Reliability and Security (SAFECOMP’08),
Newcastle upon Tyne, UK, 22–25 September 2008, pp. 153–166.

[18] Y. Sedaghat, S.G. Miremadi, Categorizing and analysis of activated faults in
the FlexRay communication controller registers, in: Proceedings of the 14th
European Test Symposium (ETS’09), Seville, Spain, 25–29 May 2009.

[19] Y. Sedaghat, S.G. Miremadi, Classification of activated faults in the FlexRay-
based networks, Journal of Electronic Testing: Theory and Applications
(JETTA) 26 (5) (2010) 535–547.

[20] Y. Sedaghat, S.G. Miremadi, A low-cost on-line monitoring mechanism for the
FlexRay communication protocol, in: Proceedings of the 4th Latin–American
Symposium on Dependable Computing (LADC’09), Joao Pessoa, Brazil, 1–4
September 2009, pp. 111–118.
[21] W. Steiner, H. Kopetz, The startup problem in fault-tolerant time-triggered
communication, in: Proceedings of the Conference on Dependable Systems
and Networks (DSN’06), Philadelphia, PA, USA, 25–28 June 2006, pp. 35–44.

[22] P. Milbredt, M. Horauer, A. Steininger, An investigation of the clique problem in
FlexRay, in: Proceedings of the 3rd International Symposium on Industrial
Embedded Systems (SIES’08), Montpellier, France,11–13 June 2008, pp. 200–207.

[23] W. Li, M.D. Natale, W. Zheng, P. Giusto, A.L. Sangiovanni-Vincentelli, S.A.
Seshia, Optimizations of an application-level protocol for enhanced depend-
ability in FlexRay, in: Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE’09), Nice, France, 20–24 April 2009,
pp. 1076–1081.

[24] M. Mitzlaff, M. Lang, R. Kapitza, W. Schröder-Preikschat, A membership
service for a distributed, embedded system based on a time-triggered
FlexRay network, in: Proceedings of the 8th European Dependable Comput-
ing Conference (EDCC-8), Valencia, Spain, 28–30 April 2010, pp.155–162.

[25] P. Marwedel, Embedded System Design, Springer, 2006.
[26] H. Kopetz, Architecture of safety-critical distributed real-time systems,

invited talk, in: Proceedings of the Design, Automation, and Test in Europe
Conference and Exhibition (DATE’03), Munich, Germany, 3–7 March 2003.

[27] FlexRay Communications System—Protocol Specification V2.1 Revision A,
/www.flexray.comS.

[28] Time-Triggered Protocol TTP/C High Level Specification Document, TTTech,
Vienna, Austria 2002.

[29] H. Kopetz, A. Ademaj, P. Grillinger, K. Steinhammer, The time-triggered
ethernet (TTE) design, in: Proceedings of the 8th International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC’05), Seattle,
WA, USA, 18–20 May 2005, pp. 22–33.

[30] F. Sethna, E. Stipidis, F.H. Ali, What lessons can controller area networks learn
from FlexRay, in: Proceedings of the IEEE Vehicle Power and Propulsion
Conference (VPPC’06), Windsor, UK, 6–8 September 2006, pp. 1–4.

[31] K. Tindell, J. Clark, Holistic schedulability analysis for distributed hard real-
time systems, Transactions on Microprocessing and Microprogramming 40
(2–3) (1994) 117–134.

[32] G. Cena, A..Valenzano, Performance analysis of byteflight networks, in:
Proceedings of the 5th IEEE international Workshop Factory Communication
Systems (WFCS’04), Vienna, Austria, 22–24 September 2004, pp. 157–166.

[33] ITU-T Recommendation Z.100 (03/93), Programming Languages—CCITT Spe-
cification and Description Language (SDL), International Telecommunication
Union, Geneva, 1993.

[34] M. Dehbashi, V. Lari, S.G. Miremadi, M. Shokrolah-Shirazi, Fault effects in
FlexRay-based networks with hybrid topology, in: Proceedings of the 3rd
International Conference on Availability, Reliability and Security (ARES’08),
Barcelona, Spain, 4–8 March 2008, pp. 491–496.

[35] F. Cristian , H. Aghili , R. Strong, D. Dolev, Atomic broadcast: from simple
message diffusion to byzantine agreement, in: Proceedings of the 25th
International Symposium on Fault-Tolerant Computing (FTCS-25), Pasadena,
California, USA, 27–30 June 1995, pp. 431.

[36] C. Temple, Avoiding the babbling-idiot failure in a time-triggered commu-
nication system, in: Proceedings of the 28th Annual International Sympo-
sium on Fault-Tolerant Computing (FTCS-28), Munich, Germany, 23–25 June
1998, pp. 218–227.

[37] G. Bauer, H. Kopetz, Transparent redundancy in the time-triggered architec-
ture, in: Proceedings of the International Conference on Dependable Systems
and Networks (DSN’00), New York, USA, 25–28 June 2000, pp. 5–13.

[38] V. Izosimov, P. Pop, P. Eles, Z. Peng, Design optimization of time- and cost-
constrained fault-tolerant distributed embedded systems, in: Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition 2005
(DATE’05), vol. 2, Munich, Germany, 7–11 March 2005, pp. 864–869.

[39] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, T. Toba, Impact of scaling on
neutron-induced soft error in SRAMs from a 250 nm to a 22 nm design rule,
IEEE Transactions on Electronic Devices 57 (7) (2010) 1527–1538.

[40] S. Mitra, M. Zhang, T.M. Mak, N. Seifert, V. Zia, K.S. Kim, Logic soft errors: a
major barrier to robust platform design, in: Proceedings of the 36th annual
IEEE International Test Conference (ITC’05), Austin, Texas, USA, 8–10
November 2005, pp. 687–696.

[41] E. Armengaud, F. Rothensteiner, A. Steininger, M. Horauer, A method for bit level
test and diagnosis of communication services, in: Proceedings of the 8th
International IEEE Workshop on Design & Diagnostics of Electronic Circuits &
Systems (DDECS’05), Sopron, Hungary, 13–16 April 2005, pp. 69–74.

[42] FlexRay Communications System—Protocol Conformance Test Specification
V2.1, /www.flexray.comS.

www.flexray.com
www.flexray.com
www.flexray.com
www.flexray.com
www.flexray.com
www.flexray.com
www.flexray.com
www.flexray.com

	An FSM-based monitoring technique to differentiate between follow-up and original errors in safety-critical distributed...
	Introduction
	Review of the FlexRay protocol
	Media access control in the FlexRay protocol
	Architecture of the FlexRay communication controller
	FlexRay protocol: an FSM-based protocol

	The proposed FSM-based monitoring technique
	Monitoring policy for the FlexRay protocol
	Architecture of the proposed FSM-based monitoring technique

	An analysis on the follow-up errors
	Experimental evaluation
	Experimental setup
	Results

	Conclusion
	Acknowledgment
	References




