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Abstract 

Nowadays, communication protocols are used in 
safety-critical automotive applications. In these 
applications, fault tolerance is a main requirement and 
the existence of single points of failure is a serious 
threat to system failures. Among the communication 
protocols, FlexRay is expected to become the 
communication backbone for future automotive 
systems. In this paper, we identify single points of 
failure in the FlexRay protocol by injecting a total of 
135,600 single-bit transient faults into all accessible 
registers of the FlexRay communication controller. 
The results showed that about 1.2% of all injected 
faults caused the controller to freeze immediately. 
Based on these results and detailed study of the 
FlexRay specifications, a low-cost on-line monitoring 
mechanism is proposed to check freeze errors. Using 
this mechanism, the host controller distinguishes about 
99.8% all occurred freeze errors into errors due to 
transient faults or due to standard operation of the 
FlexRay protocol. 

Keywords: Distributed embedded systems, FlexRay 
protocol, Fault injection, Transient faults, Single point 
of failure, On-line monitoring.  

 

1. Introduction 
Car electronics has been deemed as the 4th “C” 

right after Computer, Communication and Consumer 
electronics [1]. Electronics has been the key innovation 
driver for automotive systems throughout the last 
decade, and this situation is not going to change in the 
near future [2]. Nowadays, automotive electronic 
systems are complex distributed embedded systems 
which are composed of several electronic control units 
(ECUs) (sometimes called nodes) interconnected by a 
communication network. An ECU is composed of a 
processing unit and a set of actuators and sensors. This 

unit is connected to the network by a communication 
controller. The controller is responsible for 
implementing a communication protocol for 
transferring ECU’s data. 

Major automotive systems that rely on networking 
are relevant to chassis, air-bag, powertrain, body and 
comfort electronics, diagnostics, X-by-Wire, 
multimedia and infotainment, and wireless and 
telematics [3]. To interconnect these systems, there is a 
need for high bandwidth together with flexibility and 
determinism. In addition, among these systems, 
chassis, air-bag, X-by-Wire, and powertrain are safety-
critical, and consequently fault tolerance is a main 
requirement for them [3]. 

For non safety-critical communication, a number of 
protocols have become popular, such as LIN, CAN, 
MOST, Bluetooth, and ZigBee. For safety-critical and 
more complex applications, several communication 
protocols have been introduced such as Byteflight, 
TTP/C, TT-CAN, and FlexRay [3]. Among the latter 
protocols, the FlexRay protocol is advancing as the 
predominant protocol and is expecting to become the 
de-facto industry standard for X-by-wire and other 
safety-critical applications [2], [4], [5], [6], [7]. As an 
example, in the BMW X6 “Sports Activity Coupe”, the 
FlexRay protocol is used in steering, braking and 
suspension systems [8]. 

The FlexRay protocol were proposed by several 
industrial members, including BMW, Daimler-
Chrysler, Freescale, Philips, General Motors, Robert 
Bosch, Volkswagen, etc. Three top design objectives 
were considered in the standardization of the FlexRay 
protocol: high speed transmission, deterministic 
communication, and fault-tolerant communication [7]. 

The overall reliability of the distributed embedded 
systems not only depends on the reliability of the 
nodes, but also on the reliability of the communication 
network  which is composed of communication 
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protocols and communication links [4], [9], [10], [11]. 
In these systems, the communication network is a 
single point of failure [12]; thus fault-tolerant 
operation of communication controllers and 
communication links must be guaranteed. 

 Several work have investigated fault tolerance and 
reliability of communication protocols. Effects of 
masquerade failures [13] and message missing failures 
[14] have been studied for the CAN protocol by the 
simulation-based transient single bit-flip fault 
injection. Also, [15] has investigated effects of 
simulation-based fault injection in the CAN protocol. 
Fault tolerance of the TTP/C protocol has been 
assessed, by heavy-ion fault injection [16] and physical 
pin-level fault-injection [17]. Moreover, fault tolerance 
and the occurred failures in this protocol have been 
studied using heavy-ion fault injection and simulation-
based fault injection [18]. Fault-containment and error 
detection mechanisms of the TTP/C and the FlexRay 
protocols have been investigated by [19]; this paper 
also introduces some critical failures and analyzes 
them on these two protocols. The removal of  babbling 
idiot failures by designing a “Bus Guardian” in CAN, 
TTP/C, and FlexRay based communication networks 
have been studied in [20], [21], and [1] respectively. 
Furthermore, an evaluation of the FlexRay protocol 
using simulation-based fault injection has been 
reported in [22] and [23]. In these studies, faults were 
injected only into about 10% of the FlexRay registers. 
In [10], an exhaustive evaluation of the FlexRay 
protocol using simulation-based single bit-flip fault 
injection has been reported and the occurred errors 
have been categorized in [11]. 

In this paper, single points of failure in the FlexRay 
communication controller have been identified. To do 
this, transient single bit-flip faults have been injected 
into all registers of the controller. Fault injection 
results and detailed study of the FlexRay specifications 
show that the occurrence of faults in some registers 
halts the controller immediately. A low-cost on-line 
monitoring mechanism is proposed to report this 
halting situation. Using this mechanism, the host 
controller can distinguish between two types of 
freezes: 1) freezes due to transient faults, and 2) 
freezes due to standard operation of the protocol. 

The remainder of the paper is organized as follows. 
Section 2 introduces the FlexRay protocol briefly. 
Freeze conditions in the FlexRay protocol are 
presented in Section 3. In Section 4, experimental 
results and analyses are presented. Section 5 includes 
the proposed mechanism and finally, the conclusions 
are given in Section 6. 

2. FlexRay protocol concepts 
The FlexRay protocol provides flexibility, 

scalability, and high data rate up to 10 Mbit/sec. The 
protocol itself offers deterministic data transmission, 
guaranteed message latency and message jitter. The 
FlexRay supports dual and redundant transmission 
channels and transmission mechanism is contention 
free [24]. 

In the FlexRay protocol specifications [24] and 
other its documents, only a bus guardian mechanism 
and a fault-tolerant clock synchronization algorithm 
have been mentioned; and other fault-tolerant 
mechanisms, such as a membership service or a clique 
avoidance mechanism, should be implemented in 
software or hardware layers on top of the FlexRay. 
This will allow to conceive and to implement exactly 
the services that are needed with the drawback that 
correct and efficient implementations might be more 
difficult to achieve in a layer above the communication 
controller [9]. 

Based on the experimental results and detailed 
studies of the FlexRay protocol specifications, a main 
purpose of this paper is to demonstrate that in this 
protocol there are several vulnerable parts that 
injecting a transient single bit-flip fault into them, can 
lead to halt the controller immediately. It seems that in 
addition to existing fault-tolerant techniques in the 
FlexRay communication controller, other useful 
techniques should be applied. 

2.1. Media access scheme in the FlexRay 

Communications in the FlexRay protocol are based 
on sending messages in predetermined interval times 
which are named communication cycles (bus cycles). 
These communication cycles are executed periodically. 
In this protocol, a communication cycle is a 
concatenation of a time-triggered (or static) window, 
an event-triggered (or dynamic) window, a symbol 
window and a network idle time (NIT) window. The 
time-triggered window uses a Time Division Multiple 
Access (TDMA) [25] mechanism. In the event-
triggered part of the communication cycle, the 
arbitration mechanism is Flexible TDMA (FTDMA) 
[26]. The symbol window is a communication period 
in which a symbol can be transmitted on the network. 
The NIT window is a communication-free period that 
concludes each communication cycle. In the FlexRay 
protocol, data frames are sent in the static slots or in 
the dynamic slots of each communication cycle. Figure 
1 shows an example of a communication cycle in the 
FlexRay protocol. More details about the media access 
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scheme in the FlexRay protocol have been presented in 
[24] and [10]. 

2.2. Structure of the FlexRay controller 
The FlexRay communication controller consists of 

six modules [24]: controller host interface (CHI), 
protocol operation control (POC), coding and decoding 
(CODEC), media access control (MAC), frame and 
symbol processing (FSP), and clock synchronization 
process (CSP). Figure 2 illustrates the relation between 
these modules. 

The CHI module, manages all data and control flow 
between the host controller and the FlexRay 
communication controller within each node. The POC 
module adjusts operational modes of the FlexRay 
modules. The CODEC module is responsible for 
encoding the communication elements into a bit stream 
and for receiving communication elements, making bit 
streams and investigating correctness of bit streams. 
The MAC module controls access to the bus. In the 
FlexRay protocol, media access control is based on 
recurring communication cycles. The FSP module is 
responsible for checking the correct timing of received 
frames and symbol, applying further syntactical tests to 
received frames, and checking the semantic correctness 
of received frames. The CSP module is responsible for 
generating timing units in the FlexRay communication 
controller, e.g., communication cycles. Moreover this 
module uses a distributed clock synchronization 

mechanism in which each node individually 
synchronizes itself to its cluster by observing the 
timing of transmitted frames from other nodes [24]. 

2.3. Clock synchronization 
In a distributed communication system every node 

has its own clock. Because of temperature fluctuations, 
voltage fluctuations, and production tolerances of the 
timing source (an oscillator, for example), the internal 
time bases of the various nodes diverge after a short 
time, even if all the internal time bases are initially 
synchronized. 

The FlexRay protocol uses a distributed clock 
synchronization mechanism in which each node 
individually synchronizes itself to the cluster. The CSP 
module performs the initialization at cycle start, the 
measurement and storage of deviation values, and the 
calculation of the offset and the rate correction values. 
The offset correction values are calculated based on 
arrival time of a frame in a static slot and location of 
action point (expected arrival time of that frame) in 
that slot. The rate correction values are determined by 
comparing the corresponding measured time 
differences from two successive cycles. 

After calculating these values and before applying 
the calculated correction values, they shall be checked 
against pre-configured limits. If both (offset and rate) 
correction values are inside the limits, the correction 
will be performed. If either value exceeds its 
preconfigured limit, an error is reported to the POC 
module. More detailed descriptions about the 
synchronization mechanism in the FlexRay protocol 
are beyond the scope of this paper and readers are 
referred to the FlexRay protocol specifications [24]. 

3. Freeze conditions in the FlexRay 
protocol 

In order to respond to severe errors, the POC 
module can freeze the communication controller, 
immediately. More detailed study of the FlexRay 
specifications [24] showed that there are some 
conditions that trigger these severe errors.  

These conditions, which are named freeze 
conditions, have been illustrated in Figure 3 and are 
described as follows: 1) Product-specific errors such as 
Built-In Self-Test (BIST) and sanity check errors in the 
communication controller, 2) Requested halts by the 
host controller, due to occurred errors in it, result in a 
FREEZE command or a CHI halt command which are 
sent to the POC via the CHI, 3) Fatal errors detected 
by the MAC or the FSP Modules, and 4) If 

 
Figure 2. Structure of the FlexRay 

Communication Controller [24] 

 
Figure 1. Communication cycle in the 

FlexRay protocol 
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Figure 3. The Freeze conditions in the FlexRay protocol 

synchronization errors persist, or if these errors are 
severe enough. 

In the standard operation of the FlexRay controller, 
if any of the above conditions is fulfilled, the value of 
some registers, which are named freeze condition 
registers in this paper, are changed. After that, based 
on these values, the POC module freezes the other 
modules, and then the controller will be halted. 
Furthermore, in the standard operation of the FlexRay 
controller, the values of these freeze condition registers 
are changed (due to fulfill a freeze condition) only in 
special operational states of the FlexRay modules. For 
example, as shown in Figure 3, the 
“Fatal_Protocol_Error_FSP” single-bit register only 
should be set if the FSP state is “wait for transmission 
end”. 

Investigations show that the existence of single 
points of failure in this protocol is due to the lack of 
attention to fault effects on the freeze condition 
registers. For example, in the FlexRay protocol, if a 
single bit-flip fault sets the 
“Fatal_Protocol_Error_FSP”, the POC module freezes 
the controller immediately, whereas it may be possible 
that the FSP state is not the “wait for transmission 
end”. Whereas, if a transient single bit-flip fault affects 
one of these registers in one node, that node halts and 
loses its communication with other nodes, immediately 
and a system failure may occur. Consequently, these 
freeze condition registers can be considered as “single 
points of failure” in the controller.  

In the next subsection, the protocol specifications 
have been reviewed carefully and causes of halting the 
controller, due to freeze conditions, in the standard 
operation of the protocol are introduced.  

 

3.1. Causes of freezing FlexRay controller [24] 
As mentioned before, there are four freeze 

conditions in the FlexRay protocol. Among these 
conditions, Product-specific errors such as Built-In 
Self-Test (BIST) and sanity check errors are not 
related to the protocol directly, hence they are not 
considered in this paper. It should be noticed that all 
registers and flags which are introduced in this paper, 
have been named based on the FlexRay protocol 
specifications. 

Freezing due to synchronization  
As shown in Figure 3, in the FlexRay protocol, 

“pAllowHaltDueToClock” is a flag in the CHI module. 
If the node is configured to allow communication to be 
halted due to severe clock calculation errors, this flag 
should be set true, otherwise this flag should be set 
false. On the other hand, if the 
“pAllowHaltDueToClock” is false, clock 
synchronization errors could not lead the controller to 
halt. 

At the end of each communication cycle, the CSP 
module communicates the error consequences of the 
clock synchronization mechanism’s rate and offset 
calculations [24]. In the protocol specifications, 
“zSyncCalcResult” assumes one of three values: 1) 
WITHIN_BOUNDS: indicates that the calculations 
resulted in no errors. 2) MISSING_TERM: indicates 
that either the rate or offset correction could not be 
calculated. 3) EXCEEDS_BOUNDS: indicates that 
either the rate or offset correction term calculated was 
deemed too large when compared to pre-configured 
limits. 

As illustrated in Figure 3, in the 
POC:Normal_Active or POC:Normal_Passive states, if 
the “pAllowHaltDueToClock” is true and the 
“zSyncCalcResult” is EXCEEDS_BOUNDS, the POC 
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freezes all the FlexRay modules and transits its state to 
POC:halt state; so the controller will be halted. Also, in 
the controller, there is a counter which counts how 
many consecutive odd cycles have yielded 
MISSING_TERM. This counter has been named 
“vClockCorrectionFailed”. If “zSyncCalcResult” is 
MISSING_TERM and the cycle is odd and value of 
“vClockCorrectionFailed” is larger than a predefined 
value and the “pAllowHaltDueToClock” flag is true, 
then the POC freezes all the FlexRay modules and 
transits its state to POC:halt state; and the controller 
will be halted. 

Freezing due to fatal protocol error 
In the POC module, there is an input flag which 

indicates the existence of a fatal protocol error in the 
communication controller. If the fatal protocol error 
flag is set, the POC module immediately freezes the 
other modules and then the controller is halted. The 
fatal protocol error flag of the POC is originated from 
two flags with same name in the FSP and the MAC 
modules. 

As shown in Figure 3, the fatal protocol error flag 
in the FSP module is set when this module waits for 
end of transmission in a cycle, but either a slot 
boundary or one of the four segment boundaries, i.e., 
static segment, dynamic segment, symbol window, and 
NIT, is crossed. In the MAC module, if a request for 
transmitting a dynamic frame is received, but either 
last minislots of dynamic segment was not enough or 
end of dynamic segment had been crossed, the fatal 
protocol error flag of the MAC module is set. 

Freezing due to CHI requests 
In the FlexRay protocol, the host can freeze the 

communication controller by sending halt or freeze 
commands. After receiving one of these commands, 
the POC freezes other modules and enters to POC:halt 
state and controller is halted, immediately. 

4. Experimental analyses 
Safety-critical applications have to function 

correctly even in presence of faults. Faults can be 
permanent, transient, or intermittent. The transient 
faults are the most common, and their number is 
dramatically increasing due to the continuously raising 
level of integration in semiconductors [27]. Transient 
single bit-flip errors, which are considered in this 
paper, are more common consequences of transient 
faults [28]. 

4.1. Experimental environment 
The FlexRay communication controller was 

implemented by hardware description language, 

Verilog HDL, based on State Diagram Language 
(SDL) descriptions of this controller in the FlexRay 
specifications [24]. After that, specifications of this 
controller, e.g. timing and configuration, were tested 
according to the FlexRay protocol conformance test 
specification [29]. This controller, according to its 
specifications [24], has six modules to perform its 
functions: controller host interface (CHI), protocol 
operation control (POC), clock synchronization 
process (CSP), frame and symbol process (FSP), media 
access control (MAC), and coding and decoding 
(CODEC).  

 
 

A cluster was formed consisting of 4 nodes with 
single bus topology (Figure 4). In this topology, a node 
is composed of a host controller and a communication 
controller. The host controller typically is a hardware 
unit that generates data to exchange with other nodes 
through a communication channel. In the experiments, 
instead of a real host, a data generator was 
implemented to generate static frames with fixed 
length and dynamic frames with variable length at the 
start of the communication cycles. In this cluster, each 
node was allowed to send and receive frames on the 
communication channel.  

Whereas the modeled FlexRay communication 
controller is not still synthesizable, for investigating 
the existence of single points of failure in the FlexRay 
communication controller and identifying them, 
transient single bit-flip faults were injected into all 
accessible registers of the controller modules of node 2 
and their effects on that controller were investigated. 

To simulate the experiments, the ModelSim 5.5 
simulation environment was used. The simulation 
includes five communication cycles; in the second and 
third cycles, a single transient bit-flip fault was 
injected randomly, then simulation was resumed two 
cycles to guarantee that the injected fault shows its 
effects or is overwritten. 

To reach a relative accurate fault sensitivity of each 
register, 50 transient bit-flip faults were injected to 
each bit of all accessible FlexRay controller registers 
and gathered results were investigated. The fault 
injection process used in this experiment, is the same 
as is used in [10], and [11]. 

Figure 4. Experimental setup 
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4.2. Fault injection results 
A total of 135,600 transient single-bit flip faults 

were injected into all 408 single-bit and multiple-bit 
registers of the FlexRay communication controller. 
Table 1 shows the occurrence ratio of the Freeze error 
due to fault injection in the FlexRay communication 
controller.  

Table 1. Fault injection results 

Modules Injected 
Faults 

Freeze Errors 
# % 

CHI 32350 406 1.2 

CODEC 32350 40 0.1 

CSP 47750 0 0 

FSP 6900 51 0.7 

MAC 11050 144 1.3 

POC 5200 979 18.8 

Total 135600 1620 1.2 

 
Although the presented results in this table show 

that only about 1.2% of 135,600 injected faults result 
in the freeze error, it should be noticed that this error 
freezes all the FlexRay modules and halts the FlexRay 
controller immediately. 

Among the FlexRay modules, the POC module is 
the most vulnerable because about 18.8% of 5200 
injected faults to it result in the freeze error. Moreover, 
the fault injection results show that the CSP module 
tolerates all injected faults and prevent them from 
halting the controller. 

5. Proposed freeze error monitoring 
mechanism 

Detailed studies of the FlexRay protocol show that 
this protocol has a fail silent property, because if a 
severe error occurs, the POC module can freeze the 
whole controller; but fault injection results showed that 
a single bit-flip fault can result in freezing the 
controller, whereas any severe error has not occurred. 
Consequently a monitoring mechanism should be used 
to investigate that an occurred freeze error is due to a 
severe error in standard operation of the FlexRay 
protocol or due to a transient fault. 

 Experimental analyses also show that if a single 
bit-flip fault results in a freeze error, other error types 
may be occurred [11]. Then if the monitor recognizes a 
freeze error due to a fault, it will inform the host 
controller about it and this controller will be 

responsible for recovering the communication 
controller from these errors. 

As mentioned before, the FlexRay protocol 
described by SDL in the FlexRay Specifications. To 
design the freeze error monitoring, this property was 
used and the monitor was designed based on checking 
the freeze conditions which were shown in Figure 3.  

For example, if a freeze error occurs, when the 
Fatal_protocol_Error_POC and Fatal_protocol_Error_ 
MAC single-bit registers had been set, the part (D) of 
Figure 3 is checked by the proposed monitor. To do 
this, if the MAC module’s state is “wait for 
transmission end” and other conditions which have 
been shown in the part (D) of Figure 3 have been 
fulfilled, a flag which was named Freeze_OK is set. 

When the Freeze_OK flag is set, it means that the 
occurred freeze error is due to a sever error in the 
standard operation of the FlexRay protocol; otherwise, 
if a freeze error occurs and the monitor, after checking 
the conditions, does not set the Freeze_OK flag, it 
means that this freeze error is due to a fault, e.g., a 
transient bit-flip fault in the Fatal_Protocol_Error 
_MAC register which is caused to set the 
Fatal_protocol_Error_POC register. 

To check the conditions in Figure 3 by the monitor, 
it needs to insert some status checking flags in all six 
FlexRay controller modules. These flags indicate the 
operational state of these modules. Implementation of 
this controller showed that only 16 single-bit flags 
should be used to monitor the freeze error conditions. 

Fault injection results showed that the proposed 
freeze error monitor is able to distinguish about 99.8% 
all occurred freeze errors into errors due to transient 
faults or due to sever errors in standard operation of 
the protocol and to report it to the host controller. 
Table 2 shows these results. Also this monitor, by 
checking the status flags and freeze condition registers, 
is able to locate the fault site in the controller and 
inform the host controller about it. As shown in this 
table, the proposed monitor did not distinguish only 6 
freeze errors due to injected faults into the CHI 
module. Investigations show that by using more status 
checking flags in this module, these freeze errors are 
also distinguishable by the monitor. 

It should be noticed that, using the TMR and the 
Hamming techniques for protecting freeze condition 
registers is not a good idea, because these techniques 
incur more hardware and power consumption 
overheads. Also, because the delay of inserted gates,  it 
is possible that timing constraints of the 
communication controller are threatened. Furthermore, 
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analyses show that freeze errors due to multiple-bit 
faults are also distinguishable by the proposed monitor. 

Table 2. Statistics of errors reported by the 
monitoring mechanism 

Modules 

Freeze Errors 
due to Injected 

Faults 

Distinguished 
Freeze Errors by the 

Monitor 

# # % 

CHI 406 400 98.5 

CODEC 40 40 100 

FSP 51 51 100 

MAC 144 144 100 

POC 979 979 100 

Total 1620 1616 99.8 
 

By implementing this monitor beside the FlexRay 
modules, the host controller is able (with probability of 
99.8%) to discover that an occurred freeze error is due 
to a fault or due to a sever error in standard operation 
of the protocol. In addition, because the proposed 
monitor is only activated when a freeze error occurs, in 
the normal and freeze error-free operation of the 
protocol this monitor is idle and has not any power 
consumption. In addition to 2712 flip-flops of the 
FlexRay controller, this monitor adds 16 flip-flops 
(about 0.6%) to them. Also results of single bit-flip 
fault injections on the added flip-flops (16 single-bit 
status checking flags) showed that these flags do not 
affect the fault tolerance of the FlexRay controller and 
the proposed monitor. Figure 5 shows the structure of 

the FlexRay controller with freeze error monitor. 

6. Conclusions 
Safety-critical automotive control systems are 

complex distributed embedded systems and the 
communication protocol is an essential part of them. It 
is now widely believed that the FlexRay protocol will 
emerge as the predominant protocol and will become 
the de-facto standard for these systems. In this paper, 
single points of failure in the FlexRay communication 
protocol have been identified by injecting a total of 
135,600 single bit-flip transient faults into all 
accessible registers of the FlexRay communication 
controller. Results showed that about 1.2% of injected 
faults caused the controller to halt immediately. Based 
on detailed studies of the protocol specifications, a 
low-cost and on-line monitoring mechanism is 
proposed. This mechanism correctly distinguishes 
about 99.8% all occurred freeze errors into errors due 
to transient faults or due to sever errors in standard 
operation of the FlexRay protocol and reports them to 
the host controller. The proposed mechanism has low 
power consumption and has only 0.6% hardware 
overhead.  
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