

A Low-Cost On-Line Monitoring Mechanism for the FlexRay
Communication Protocol

Yasser Sedaghat
Dependable Systems Laboratory

Sharif University of Technology
Tehran, Iran

y_sedaghat@ce.sharif.edu

 Seyed Ghassem Miremadi
Dependable Systems Laboratory

Sharif University of Technology
Tehran, Iran

miremadi@sharif.edu

Abstract

Nowadays, communication protocols are used in
safety-critical automotive applications. In these
applications, fault tolerance is a main requirement and
the existence of single points of failure is a serious
threat to system failures. Among the communication
protocols, FlexRay is expected to become the
communication backbone for future automotive
systems. In this paper, we identify single points of
failure in the FlexRay protocol by injecting a total of
135,600 single-bit transient faults into all accessible
registers of the FlexRay communication controller.
The results showed that about 1.2% of all injected
faults caused the controller to freeze immediately.
Based on these results and detailed study of the
FlexRay specifications, a low-cost on-line monitoring
mechanism is proposed to check freeze errors. Using
this mechanism, the host controller distinguishes about
99.8% all occurred freeze errors into errors due to
transient faults or due to standard operation of the
FlexRay protocol.

Keywords: Distributed embedded systems, FlexRay
protocol, Fault injection, Transient faults, Single point
of failure, On-line monitoring.

1. Introduction
Car electronics has been deemed as the 4th “C”

right after Computer, Communication and Consumer
electronics [1]. Electronics has been the key innovation
driver for automotive systems throughout the last
decade, and this situation is not going to change in the
near future [2]. Nowadays, automotive electronic
systems are complex distributed embedded systems
which are composed of several electronic control units
(ECUs) (sometimes called nodes) interconnected by a
communication network. An ECU is composed of a
processing unit and a set of actuators and sensors. This

unit is connected to the network by a communication
controller. The controller is responsible for
implementing a communication protocol for
transferring ECU’s data.

Major automotive systems that rely on networking
are relevant to chassis, air-bag, powertrain, body and
comfort electronics, diagnostics, X-by-Wire,
multimedia and infotainment, and wireless and
telematics [3]. To interconnect these systems, there is a
need for high bandwidth together with flexibility and
determinism. In addition, among these systems,
chassis, air-bag, X-by-Wire, and powertrain are safety-
critical, and consequently fault tolerance is a main
requirement for them [3].

For non safety-critical communication, a number of
protocols have become popular, such as LIN, CAN,
MOST, Bluetooth, and ZigBee. For safety-critical and
more complex applications, several communication
protocols have been introduced such as Byteflight,
TTP/C, TT-CAN, and FlexRay [3]. Among the latter
protocols, the FlexRay protocol is advancing as the
predominant protocol and is expecting to become the
de-facto industry standard for X-by-wire and other
safety-critical applications [2], [4], [5], [6], [7]. As an
example, in the BMW X6 “Sports Activity Coupe”, the
FlexRay protocol is used in steering, braking and
suspension systems [8].

The FlexRay protocol were proposed by several
industrial members, including BMW, Daimler-
Chrysler, Freescale, Philips, General Motors, Robert
Bosch, Volkswagen, etc. Three top design objectives
were considered in the standardization of the FlexRay
protocol: high speed transmission, deterministic
communication, and fault-tolerant communication [7].

The overall reliability of the distributed embedded
systems not only depends on the reliability of the
nodes, but also on the reliability of the communication
network which is composed of communication

2009 Fourth Latin-American Symposium on Dependable Computing

978-0-7695-3760-3/09 $25.00 © 2009 IEEE

DOI 10.1109/LADC.2009.20

111

Authorized licensed use limited to: Sharif University of Technology. Downloaded on July 14,2010 at 10:24:16 UTC from IEEE Xplore. Restrictions apply.

protocols and communication links [4], [9], [10], [11].
In these systems, the communication network is a
single point of failure [12]; thus fault-tolerant
operation of communication controllers and
communication links must be guaranteed.

 Several work have investigated fault tolerance and
reliability of communication protocols. Effects of
masquerade failures [13] and message missing failures
[14] have been studied for the CAN protocol by the
simulation-based transient single bit-flip fault
injection. Also, [15] has investigated effects of
simulation-based fault injection in the CAN protocol.
Fault tolerance of the TTP/C protocol has been
assessed, by heavy-ion fault injection [16] and physical
pin-level fault-injection [17]. Moreover, fault tolerance
and the occurred failures in this protocol have been
studied using heavy-ion fault injection and simulation-
based fault injection [18]. Fault-containment and error
detection mechanisms of the TTP/C and the FlexRay
protocols have been investigated by [19]; this paper
also introduces some critical failures and analyzes
them on these two protocols. The removal of babbling
idiot failures by designing a “Bus Guardian” in CAN,
TTP/C, and FlexRay based communication networks
have been studied in [20], [21], and [1] respectively.
Furthermore, an evaluation of the FlexRay protocol
using simulation-based fault injection has been
reported in [22] and [23]. In these studies, faults were
injected only into about 10% of the FlexRay registers.
In [10], an exhaustive evaluation of the FlexRay
protocol using simulation-based single bit-flip fault
injection has been reported and the occurred errors
have been categorized in [11].

In this paper, single points of failure in the FlexRay
communication controller have been identified. To do
this, transient single bit-flip faults have been injected
into all registers of the controller. Fault injection
results and detailed study of the FlexRay specifications
show that the occurrence of faults in some registers
halts the controller immediately. A low-cost on-line
monitoring mechanism is proposed to report this
halting situation. Using this mechanism, the host
controller can distinguish between two types of
freezes: 1) freezes due to transient faults, and 2)
freezes due to standard operation of the protocol.

The remainder of the paper is organized as follows.
Section 2 introduces the FlexRay protocol briefly.
Freeze conditions in the FlexRay protocol are
presented in Section 3. In Section 4, experimental
results and analyses are presented. Section 5 includes
the proposed mechanism and finally, the conclusions
are given in Section 6.

2. FlexRay protocol concepts
The FlexRay protocol provides flexibility,

scalability, and high data rate up to 10 Mbit/sec. The
protocol itself offers deterministic data transmission,
guaranteed message latency and message jitter. The
FlexRay supports dual and redundant transmission
channels and transmission mechanism is contention
free [24].

In the FlexRay protocol specifications [24] and
other its documents, only a bus guardian mechanism
and a fault-tolerant clock synchronization algorithm
have been mentioned; and other fault-tolerant
mechanisms, such as a membership service or a clique
avoidance mechanism, should be implemented in
software or hardware layers on top of the FlexRay.
This will allow to conceive and to implement exactly
the services that are needed with the drawback that
correct and efficient implementations might be more
difficult to achieve in a layer above the communication
controller [9].

Based on the experimental results and detailed
studies of the FlexRay protocol specifications, a main
purpose of this paper is to demonstrate that in this
protocol there are several vulnerable parts that
injecting a transient single bit-flip fault into them, can
lead to halt the controller immediately. It seems that in
addition to existing fault-tolerant techniques in the
FlexRay communication controller, other useful
techniques should be applied.

2.1. Media access scheme in the FlexRay

Communications in the FlexRay protocol are based
on sending messages in predetermined interval times
which are named communication cycles (bus cycles).
These communication cycles are executed periodically.
In this protocol, a communication cycle is a
concatenation of a time-triggered (or static) window,
an event-triggered (or dynamic) window, a symbol
window and a network idle time (NIT) window. The
time-triggered window uses a Time Division Multiple
Access (TDMA) [25] mechanism. In the event-
triggered part of the communication cycle, the
arbitration mechanism is Flexible TDMA (FTDMA)
[26]. The symbol window is a communication period
in which a symbol can be transmitted on the network.
The NIT window is a communication-free period that
concludes each communication cycle. In the FlexRay
protocol, data frames are sent in the static slots or in
the dynamic slots of each communication cycle. Figure
1 shows an example of a communication cycle in the
FlexRay protocol. More details about the media access

112

Authorized licensed use limited to: Sharif University of Technology. Downloaded on July 14,2010 at 10:24:16 UTC from IEEE Xplore. Restrictions apply.

scheme in the FlexRay protocol have been presented in
[24] and [10].

2.2. Structure of the FlexRay controller
The FlexRay communication controller consists of

six modules [24]: controller host interface (CHI),
protocol operation control (POC), coding and decoding
(CODEC), media access control (MAC), frame and
symbol processing (FSP), and clock synchronization
process (CSP). Figure 2 illustrates the relation between
these modules.

The CHI module, manages all data and control flow
between the host controller and the FlexRay
communication controller within each node. The POC
module adjusts operational modes of the FlexRay
modules. The CODEC module is responsible for
encoding the communication elements into a bit stream
and for receiving communication elements, making bit
streams and investigating correctness of bit streams.
The MAC module controls access to the bus. In the
FlexRay protocol, media access control is based on
recurring communication cycles. The FSP module is
responsible for checking the correct timing of received
frames and symbol, applying further syntactical tests to
received frames, and checking the semantic correctness
of received frames. The CSP module is responsible for
generating timing units in the FlexRay communication
controller, e.g., communication cycles. Moreover this
module uses a distributed clock synchronization

mechanism in which each node individually
synchronizes itself to its cluster by observing the
timing of transmitted frames from other nodes [24].

2.3. Clock synchronization
In a distributed communication system every node

has its own clock. Because of temperature fluctuations,
voltage fluctuations, and production tolerances of the
timing source (an oscillator, for example), the internal
time bases of the various nodes diverge after a short
time, even if all the internal time bases are initially
synchronized.

The FlexRay protocol uses a distributed clock
synchronization mechanism in which each node
individually synchronizes itself to the cluster. The CSP
module performs the initialization at cycle start, the
measurement and storage of deviation values, and the
calculation of the offset and the rate correction values.
The offset correction values are calculated based on
arrival time of a frame in a static slot and location of
action point (expected arrival time of that frame) in
that slot. The rate correction values are determined by
comparing the corresponding measured time
differences from two successive cycles.

After calculating these values and before applying
the calculated correction values, they shall be checked
against pre-configured limits. If both (offset and rate)
correction values are inside the limits, the correction
will be performed. If either value exceeds its
preconfigured limit, an error is reported to the POC
module. More detailed descriptions about the
synchronization mechanism in the FlexRay protocol
are beyond the scope of this paper and readers are
referred to the FlexRay protocol specifications [24].

3. Freeze conditions in the FlexRay
protocol

In order to respond to severe errors, the POC
module can freeze the communication controller,
immediately. More detailed study of the FlexRay
specifications [24] showed that there are some
conditions that trigger these severe errors.

These conditions, which are named freeze
conditions, have been illustrated in Figure 3 and are
described as follows: 1) Product-specific errors such as
Built-In Self-Test (BIST) and sanity check errors in the
communication controller, 2) Requested halts by the
host controller, due to occurred errors in it, result in a
FREEZE command or a CHI halt command which are
sent to the POC via the CHI, 3) Fatal errors detected
by the MAC or the FSP Modules, and 4) If

Figure 2. Structure of the FlexRay

Communication Controller [24]

Figure 1. Communication cycle in the

FlexRay protocol

113

Authorized licensed use limited to: Sharif University of Technology. Downloaded on July 14,2010 at 10:24:16 UTC from IEEE Xplore. Restrictions apply.

Figure 3. The Freeze conditions in the FlexRay protocol

synchronization errors persist, or if these errors are
severe enough.

In the standard operation of the FlexRay controller,
if any of the above conditions is fulfilled, the value of
some registers, which are named freeze condition
registers in this paper, are changed. After that, based
on these values, the POC module freezes the other
modules, and then the controller will be halted.
Furthermore, in the standard operation of the FlexRay
controller, the values of these freeze condition registers
are changed (due to fulfill a freeze condition) only in
special operational states of the FlexRay modules. For
example, as shown in Figure 3, the
“Fatal_Protocol_Error_FSP” single-bit register only
should be set if the FSP state is “wait for transmission
end”.

Investigations show that the existence of single
points of failure in this protocol is due to the lack of
attention to fault effects on the freeze condition
registers. For example, in the FlexRay protocol, if a
single bit-flip fault sets the
“Fatal_Protocol_Error_FSP”, the POC module freezes
the controller immediately, whereas it may be possible
that the FSP state is not the “wait for transmission
end”. Whereas, if a transient single bit-flip fault affects
one of these registers in one node, that node halts and
loses its communication with other nodes, immediately
and a system failure may occur. Consequently, these
freeze condition registers can be considered as “single
points of failure” in the controller.

In the next subsection, the protocol specifications
have been reviewed carefully and causes of halting the
controller, due to freeze conditions, in the standard
operation of the protocol are introduced.

3.1. Causes of freezing FlexRay controller [24]
As mentioned before, there are four freeze

conditions in the FlexRay protocol. Among these
conditions, Product-specific errors such as Built-In
Self-Test (BIST) and sanity check errors are not
related to the protocol directly, hence they are not
considered in this paper. It should be noticed that all
registers and flags which are introduced in this paper,
have been named based on the FlexRay protocol
specifications.

Freezing due to synchronization
As shown in Figure 3, in the FlexRay protocol,

“pAllowHaltDueToClock” is a flag in the CHI module.
If the node is configured to allow communication to be
halted due to severe clock calculation errors, this flag
should be set true, otherwise this flag should be set
false. On the other hand, if the
“pAllowHaltDueToClock” is false, clock
synchronization errors could not lead the controller to
halt.

At the end of each communication cycle, the CSP
module communicates the error consequences of the
clock synchronization mechanism’s rate and offset
calculations [24]. In the protocol specifications,
“zSyncCalcResult” assumes one of three values: 1)
WITHIN_BOUNDS: indicates that the calculations
resulted in no errors. 2) MISSING_TERM: indicates
that either the rate or offset correction could not be
calculated. 3) EXCEEDS_BOUNDS: indicates that
either the rate or offset correction term calculated was
deemed too large when compared to pre-configured
limits.

As illustrated in Figure 3, in the
POC:Normal_Active or POC:Normal_Passive states, if
the “pAllowHaltDueToClock” is true and the
“zSyncCalcResult” is EXCEEDS_BOUNDS, the POC

114

Authorized licensed use limited to: Sharif University of Technology. Downloaded on July 14,2010 at 10:24:16 UTC from IEEE Xplore. Restrictions apply.

freezes all the FlexRay modules and transits its state to
POC:halt state; so the controller will be halted. Also, in
the controller, there is a counter which counts how
many consecutive odd cycles have yielded
MISSING_TERM. This counter has been named
“vClockCorrectionFailed”. If “zSyncCalcResult” is
MISSING_TERM and the cycle is odd and value of
“vClockCorrectionFailed” is larger than a predefined
value and the “pAllowHaltDueToClock” flag is true,
then the POC freezes all the FlexRay modules and
transits its state to POC:halt state; and the controller
will be halted.

Freezing due to fatal protocol error
In the POC module, there is an input flag which

indicates the existence of a fatal protocol error in the
communication controller. If the fatal protocol error
flag is set, the POC module immediately freezes the
other modules and then the controller is halted. The
fatal protocol error flag of the POC is originated from
two flags with same name in the FSP and the MAC
modules.

As shown in Figure 3, the fatal protocol error flag
in the FSP module is set when this module waits for
end of transmission in a cycle, but either a slot
boundary or one of the four segment boundaries, i.e.,
static segment, dynamic segment, symbol window, and
NIT, is crossed. In the MAC module, if a request for
transmitting a dynamic frame is received, but either
last minislots of dynamic segment was not enough or
end of dynamic segment had been crossed, the fatal
protocol error flag of the MAC module is set.

Freezing due to CHI requests
In the FlexRay protocol, the host can freeze the

communication controller by sending halt or freeze
commands. After receiving one of these commands,
the POC freezes other modules and enters to POC:halt
state and controller is halted, immediately.

4. Experimental analyses
Safety-critical applications have to function

correctly even in presence of faults. Faults can be
permanent, transient, or intermittent. The transient
faults are the most common, and their number is
dramatically increasing due to the continuously raising
level of integration in semiconductors [27]. Transient
single bit-flip errors, which are considered in this
paper, are more common consequences of transient
faults [28].

4.1. Experimental environment
The FlexRay communication controller was

implemented by hardware description language,

Verilog HDL, based on State Diagram Language
(SDL) descriptions of this controller in the FlexRay
specifications [24]. After that, specifications of this
controller, e.g. timing and configuration, were tested
according to the FlexRay protocol conformance test
specification [29]. This controller, according to its
specifications [24], has six modules to perform its
functions: controller host interface (CHI), protocol
operation control (POC), clock synchronization
process (CSP), frame and symbol process (FSP), media
access control (MAC), and coding and decoding
(CODEC).

A cluster was formed consisting of 4 nodes with
single bus topology (Figure 4). In this topology, a node
is composed of a host controller and a communication
controller. The host controller typically is a hardware
unit that generates data to exchange with other nodes
through a communication channel. In the experiments,
instead of a real host, a data generator was
implemented to generate static frames with fixed
length and dynamic frames with variable length at the
start of the communication cycles. In this cluster, each
node was allowed to send and receive frames on the
communication channel.

Whereas the modeled FlexRay communication
controller is not still synthesizable, for investigating
the existence of single points of failure in the FlexRay
communication controller and identifying them,
transient single bit-flip faults were injected into all
accessible registers of the controller modules of node 2
and their effects on that controller were investigated.

To simulate the experiments, the ModelSim 5.5
simulation environment was used. The simulation
includes five communication cycles; in the second and
third cycles, a single transient bit-flip fault was
injected randomly, then simulation was resumed two
cycles to guarantee that the injected fault shows its
effects or is overwritten.

To reach a relative accurate fault sensitivity of each
register, 50 transient bit-flip faults were injected to
each bit of all accessible FlexRay controller registers
and gathered results were investigated. The fault
injection process used in this experiment, is the same
as is used in [10], and [11].

Figure 4. Experimental setup

115

Authorized licensed use limited to: Sharif University of Technology. Downloaded on July 14,2010 at 10:24:16 UTC from IEEE Xplore. Restrictions apply.

4.2. Fault injection results
A total of 135,600 transient single-bit flip faults

were injected into all 408 single-bit and multiple-bit
registers of the FlexRay communication controller.
Table 1 shows the occurrence ratio of the Freeze error
due to fault injection in the FlexRay communication
controller.

Table 1. Fault injection results

Modules Injected
Faults

Freeze Errors
%

CHI 32350 406 1.2

CODEC 32350 40 0.1

CSP 47750 0 0

FSP 6900 51 0.7

MAC 11050 144 1.3

POC 5200 979 18.8

Total 135600 1620 1.2

Although the presented results in this table show

that only about 1.2% of 135,600 injected faults result
in the freeze error, it should be noticed that this error
freezes all the FlexRay modules and halts the FlexRay
controller immediately.

Among the FlexRay modules, the POC module is
the most vulnerable because about 18.8% of 5200
injected faults to it result in the freeze error. Moreover,
the fault injection results show that the CSP module
tolerates all injected faults and prevent them from
halting the controller.

5. Proposed freeze error monitoring
mechanism

Detailed studies of the FlexRay protocol show that
this protocol has a fail silent property, because if a
severe error occurs, the POC module can freeze the
whole controller; but fault injection results showed that
a single bit-flip fault can result in freezing the
controller, whereas any severe error has not occurred.
Consequently a monitoring mechanism should be used
to investigate that an occurred freeze error is due to a
severe error in standard operation of the FlexRay
protocol or due to a transient fault.

 Experimental analyses also show that if a single
bit-flip fault results in a freeze error, other error types
may be occurred [11]. Then if the monitor recognizes a
freeze error due to a fault, it will inform the host
controller about it and this controller will be

responsible for recovering the communication
controller from these errors.

As mentioned before, the FlexRay protocol
described by SDL in the FlexRay Specifications. To
design the freeze error monitoring, this property was
used and the monitor was designed based on checking
the freeze conditions which were shown in Figure 3.

For example, if a freeze error occurs, when the
Fatal_protocol_Error_POC and Fatal_protocol_Error_
MAC single-bit registers had been set, the part (D) of
Figure 3 is checked by the proposed monitor. To do
this, if the MAC module’s state is “wait for
transmission end” and other conditions which have
been shown in the part (D) of Figure 3 have been
fulfilled, a flag which was named Freeze_OK is set.

When the Freeze_OK flag is set, it means that the
occurred freeze error is due to a sever error in the
standard operation of the FlexRay protocol; otherwise,
if a freeze error occurs and the monitor, after checking
the conditions, does not set the Freeze_OK flag, it
means that this freeze error is due to a fault, e.g., a
transient bit-flip fault in the Fatal_Protocol_Error
_MAC register which is caused to set the
Fatal_protocol_Error_POC register.

To check the conditions in Figure 3 by the monitor,
it needs to insert some status checking flags in all six
FlexRay controller modules. These flags indicate the
operational state of these modules. Implementation of
this controller showed that only 16 single-bit flags
should be used to monitor the freeze error conditions.

Fault injection results showed that the proposed
freeze error monitor is able to distinguish about 99.8%
all occurred freeze errors into errors due to transient
faults or due to sever errors in standard operation of
the protocol and to report it to the host controller.
Table 2 shows these results. Also this monitor, by
checking the status flags and freeze condition registers,
is able to locate the fault site in the controller and
inform the host controller about it. As shown in this
table, the proposed monitor did not distinguish only 6
freeze errors due to injected faults into the CHI
module. Investigations show that by using more status
checking flags in this module, these freeze errors are
also distinguishable by the monitor.

It should be noticed that, using the TMR and the
Hamming techniques for protecting freeze condition
registers is not a good idea, because these techniques
incur more hardware and power consumption
overheads. Also, because the delay of inserted gates, it
is possible that timing constraints of the
communication controller are threatened. Furthermore,

116

Authorized licensed use limited to: Sharif University of Technology. Downloaded on July 14,2010 at 10:24:16 UTC from IEEE Xplore. Restrictions apply.

analyses show that freeze errors due to multiple-bit
faults are also distinguishable by the proposed monitor.

Table 2. Statistics of errors reported by the
monitoring mechanism

Modules

Freeze Errors
due to Injected

Faults

Distinguished
Freeze Errors by the

Monitor

%

CHI 406 400 98.5

CODEC 40 40 100

FSP 51 51 100

MAC 144 144 100

POC 979 979 100

Total 1620 1616 99.8

By implementing this monitor beside the FlexRay
modules, the host controller is able (with probability of
99.8%) to discover that an occurred freeze error is due
to a fault or due to a sever error in standard operation
of the protocol. In addition, because the proposed
monitor is only activated when a freeze error occurs, in
the normal and freeze error-free operation of the
protocol this monitor is idle and has not any power
consumption. In addition to 2712 flip-flops of the
FlexRay controller, this monitor adds 16 flip-flops
(about 0.6%) to them. Also results of single bit-flip
fault injections on the added flip-flops (16 single-bit
status checking flags) showed that these flags do not
affect the fault tolerance of the FlexRay controller and
the proposed monitor. Figure 5 shows the structure of

the FlexRay controller with freeze error monitor.

6. Conclusions
Safety-critical automotive control systems are

complex distributed embedded systems and the
communication protocol is an essential part of them. It
is now widely believed that the FlexRay protocol will
emerge as the predominant protocol and will become
the de-facto standard for these systems. In this paper,
single points of failure in the FlexRay communication
protocol have been identified by injecting a total of
135,600 single bit-flip transient faults into all
accessible registers of the FlexRay communication
controller. Results showed that about 1.2% of injected
faults caused the controller to halt immediately. Based
on detailed studies of the protocol specifications, a
low-cost and on-line monitoring mechanism is
proposed. This mechanism correctly distinguishes
about 99.8% all occurred freeze errors into errors due
to transient faults or due to sever errors in standard
operation of the FlexRay protocol and reports them to
the host controller. The proposed mechanism has low
power consumption and has only 0.6% hardware
overhead.

7. References
[1] G.N. Sung, C.Y. Juan, and C.C. Wang, “Bus Guardian
Design for Automobile Networking ECU Nodes Compliant
with FlexRay Standard,” Proc. of the IEEE International
Symposium on Consumer Electronics (ISCE’08), Algarve,
Portugal, 14-16 April 2008, pp. 1-4.

[2] E. Armengaud, A. Steininger, and M. Horauer, “Towards
a Systematic Test for Embedded Automotive
Communication Systems,” IEEE Trans. on Industrial
Informatics, Vol. 4, Issue 3, August 2008, pp. 146-155.

[3] T. Nolte, H. Hansson, and L. Bello, “Automotive
Communications - Past, Current and Future,” Proc. of 10th
IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’05), Vol. 1, Catania, Italy,
19-22 September 2005, pp. 985-992.

[4] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing
Analysis of the FlexRay Communication Protocol,” Proc. of
the 18th Euromicro Conference Real-Time Systems
(ECRTS’06), Dresden, Germany, 5-7 July 2006, pp. 203-216.

[5] T. Pop, P. Pop, P. Eles, and Z. Peng, “Bus Access
Optimization for FlexRay-based Distributed Embedded
Systems,” Proc. of Design, Automation & Test in Europe
Conference & Exhibition 2007 (DATE '07), Nice, France,
16-20 April 2007, pp. 1-6.

[6] A. Hagiescu, U.D. Bordoloi, and S. Chakraborty,
“Performance Analysis of FlexRay-based ECU Networks,”
Proc. of 44th ACM/IEEE Design Automation Conference
(DAC '07), San Diego, USA, 4-8 June 2007, pp. 284-289.

[7] R. Makowitz and C. Temple, “FlexRay- A
Communication Network for Automotive Control Systems,”

Figure 5. Structure of the FlexRay controller

with freeze error monitor

117

Authorized licensed use limited to: Sharif University of Technology. Downloaded on July 14,2010 at 10:24:16 UTC from IEEE Xplore. Restrictions apply.

Proc. of the 6th IEEE International Workshop on Factory
Communication Systems (WFCS 2006), Torino, Italy , 28-30
June 2006, pp. 207-212.

[8] J. Voelcker, “Top 10 Tech Cars,” IEEE Spectrum
magazine, Vol. 45, No. 4, April 2008, pp. 27.

[9] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert,
“Trends in Automotive Communication Systems”, Proc. of
the IEEE, Vol. 93, Issue 6, June 2005, pp. 1204-1223.

[10] Y. Sedaghat, and S.G. Miremadi, “Investigation and
Reduction of Fault Sensitivity in the FlexRay
Communication Controller Registers”, Proc. of 27th
International Conference on Computer Safety, Reliability
and Security (SAFECOMP’08), Newcastle upon Tyne, UK,
22-25 September 2008, pp. 153-166.

[11] Y. Sedaghat, and S.G. Miremadi, “Categorizing and
Analysis of Activated Faults in the FlexRay Communication
Controller Registers”, Proc. of 14th European Test
Symposium (ETS’09), Seville, Spain, 25-29 May 2009.

[12] J. Rushby, “A Comparison of Bus Architectures for
Safety-Critical Embedded Systems”, Technical Report
NASA/CR-2003-212161 & EMSOFT, 2001, pp. 306-323.

[13] H. Salmani and S.G. Miremadi, “Contribution of
Controller Area Networks Controllers to Masquerade
Failures”, Proc. of 11th Pacific Rim International
Symposium on Dependable Computing (PRDC’05),
Changsha, Hunan, China , 12-14 December 2005, pp. 310-
316.

[14] H. Salmani and S.G. Miremadi “Assessment of Message
Missing Failures in CAN-based Systems”, Proc. of IASTED
International Conference on Parallel and Distributed
Computing and Networks, Austria, 15-17 February 2005, pp.

[15] J. Perez, M.S. Reorda, and M. Violante, “Dependability
Analysis of CAN Networks: an Emulation-based Approach”,
Proc. of 18th IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT’03), Boston, MA,
USA, 3-5 November 2003, pp. 537-544.

[16] H. Sivencrona, P. Johannessen, M. Persson, and J.
Torin, “Heavy-ion Fault Injections in the Time-triggered
Communication Protocol”, Proc. of 1st Latin American
Symposium on Dependable Computing (LADC ’03), Sao
Paulo, Brazil, 21-24 October 2003, pp. 69-80.

[17] S. Blanc and P.J. Gil, “Improving the Multiple Errors
Detection Coverage in Distributed Embedded Systems”,
Proc. of 22nd International Symposium on Reliable
Distributed Systems (SRDS’03), Florence, Italy, 6-18
October 2003, pp. 303-312.

[18] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin,
“Evaluation of Fault Handling of the Time-Triggered
Architecture with Bus and Star Topology”, Proc. of
International Conference on Dependable Systems and
Networks (DSN’03), San Francisco, CA, USA,22-25 June
2003, pp. 123-132.

[19] H. Kopetz, “Fault Containment and Error Detection in
the Time-Triggered Architecture,” Proc. of the 6th
International Symposium on Autonomous Decentralized

Systems (ISADS’03), Pisa, Italy, 9-11 April 2003, pp. 139-
146.

[20] I. Broster and A. Burns, “An Analyzable Bus-Guardian
for Event-Triggered Communication,” Proc. of the 24th
IEEE Real-Time Systems Symposium (RTSS’03), Cancun,
Mexico, 3-5 December 2003, pp. 410-419.

[21] G. Bauer, H. Kopetz, and W. Steiner, “The Central
Guardian Approach to Enforce Fault Isolation in theTime-
Triggered Architecture,” Proc. of the 6th International
Symposium on Autonomous Decentralized Systems
(ISADS'03), Pisa, Italy, 9-11 April 2003, pp. 37-44.

[22] V. Lari, M. Dehbashi, S.G. Miremadi, and N.
Farazmand, “Assessment of Message Missing Failures in
FlexRay-Based Networks”, Proc. of 13th Pacific Rim
International Symposium on Dependable Computing
(PRDC’07), Melbourne, Australia,17-19 December 2007, pp.
191-194.

[23] V. Lari, M. Dehbashi, S. G. Miremadi, and M. Amiri,
“Evaluation of Babbling Idiot Failures in FlexRay-based
Networks”, Proc. of 7th IFAC International Conference on
Fieldbuses and Networks in Industrial and Embedded
Systems (FET’07), Toulouse, France, 7-9 November 2007,
pp. 8.

[24] FlexRay Communications System - Protocol
Specification V2.1 Revision A, www.flexray.com

 [25] K. Tindell, and J. Clark, “Holistic Schedulability
Analysis for Distributed Hard Real-Time Systems”, Trans.
on Microprocessing & Microprogramming, vol. 40, Issue 2-
3, April 1994, pp. 117-134.

[26] G. Cena, and A.Valenzano, “Performance Analysis of
Byteflight Networks”, Proc. of 5th IEEE international
Workshop Factory Communication Systems (WFCS’04),
Vienna, Austria, 22-24 September 2004, pp. 157-166.

[27] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design
Optimization of Time- and Cost-Constrained Fault-Tolerant
Distributed Embedded Systems”, Proc. of Design,
Automation and Test in Europe Conference and Exhibition
2005 (DATE’05), vol. 2, Munich, Germany, 7-11 March
2005, pp. 864-869.

[28] E. Armengaud, F. Rothensteiner, A. Steininger, and M.
Horauer, “A Method for Bit Level Test and Diagnosis of
Communication Services”, Proc. of 8th International IEEE
Workshop on Design & Diagnostics of Electronic Circuits &
Systems (DDECS’05), Sopron, Hungary , 13-16 April 2005,
pp. 69-74.

[29] FlexRay Communications System - Protocol
Conformance Test Specification V2.1, www.flexray.com

118

Authorized licensed use limited to: Sharif University of Technology. Downloaded on July 14,2010 at 10:24:16 UTC from IEEE Xplore. Restrictions apply.

