
M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 153–166, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Investigation and Reduction of Fault Sensitivity in the
FlexRay Communication Controller Registers

Yasser Sedaghat and Seyed Ghassem Miremadi

Dependable Systems Laboratory, Sharif University of Technology, Tehran, Iran
y_sedaghat@ce.sharif.edu, miremadi@sharif.edu

Abstract. It is now widely believed that FlexRay communication protocol will
become the de-facto standard for distributed safety-critical automotive systems.
In this paper, the fault sensitivity of the FlexRay communication controller reg-
isters are investigated using transient single bit-flip fault injection. To do this, a
FlexRay bus network, composed of four nodes, was modeled. A total of
135,600 transient single bit-flip faults were injected to all 408 accessible single-
bit and multiple-bit registers of the communication controller in one node. The
results showed that among all 408 accessible registers, 30 registers were imme-
diately affected by the injected faults. The results also showed that 26.2% of in-
jected faults caused at least one error. Based on the fault injection results, the
TMR and the Hamming code techniques were applied to the most sensitive
parts of the FlexRay protocol. These techniques reduced the fault affection to
the registers from 26.2% to 10.3% with only 13% hardware overhead.

Keywords: Safety-critical applications, Distributed embedded systems, Flex-
Ray protocol, Fault injection.

1 Introduction

Today, many safety-critical applications are implemented as distributed embedded
systems [13], e.g. X-by-wire applications. These systems are composed of several
different types of hardware units (called nodes), e.g., processing units, sensors, and
actuators, interconnected by a communication network.

Communication in a distributed architecture can be triggered either dynamically, in
response to an event (event-driven), or statically, at predetermined moments in time
(time-driven). Examples of event-triggered protocols are Byteflight [1], CAN [2],
LonWorks [3], and Profibus [4]. The main drawback of event-triggered protocols is
their lack of predictability [5]. Examples of time-triggered protocols are SAFEbus [6],
SPIDER [7], and TTP/C [8]. The main drawback of time-triggered protocols is their
lack of flexibility [5]. To resolve the drawbacks of both event-triggered and time-
triggered protocols, other protocols such as TTCAN [9], FTT-CAN [10], and Flex
Ray [11] are introduced that can support both time-triggered and event-triggered
transmissions.

Among the latter protocols, the FlexRay protocol is advancing as the predominant
protocol and will become the de-facto industry standard for X-by-wire applications
[12], [13], [5], [14], [15]; e.g., the next edition of the BMW X5 will use the FlexRay

154 Y. Sedaghat and S.G. Miremadi

protocol in its electronically controlled dampers [12].The FlexRay protocol was
started by an industry consortium with four founding members (BMW, Daimler-
Chrysler, Philips, and Freescale) [15]. Three top design objectives were considered in
the standardization of the FlexRay protocol: high speed transmission, deterministic
communication, and fault-tolerant communication [15].

In safety-critical distributed embedded systems, a fault-tolerant communication be-
tween different nodes has a significant impact on the overall system reliability. It has
been reported [16], [13] that the overall reliability of a safety-critical distributed em-
bedded system not only depends on the reliability of the nodes, but also on the reli-
ability of the communication network.

This paper investigates the fault sensitivity of all parts of the FlexRay communication
controller using fault injection. The most and the least sensitive registers in the FlexRay
are characterized. Then, appropriate fault-tolerant techniques are applied to the most
sensitive registers, to protect the communication controller against transient faults.

The remainder of the paper is organized as follows: Section 2 introduces the
FlexRay protocol briefly. Error models and error handling mechanisms in the
FlexRay protocol are presented in Section 3. In Section 4, the experimental environ-
ment is presented. Section 5 includes the experimental results and finally, the conclu-
sions are given in Section 6.

2 The FlexRay Protocol

The FlexRay protocol provides key features of synchronization that include scalable
data transmission in both synchronous and asynchronous modes. It can support the
data rate up to 10Mbit/sec. The protocol itself offers deterministic data transmission,
guaranteed message latency and message jitter. The FlexRay supports dual and re-
dundant transmission channels and transmission mechanism is arbitration free. In ad-
dition, it has optional support of optical or electrical physical layers. The physical
layer will provide support for bus, star, and multiple star topologies [11].

From the dependability point of view, the FlexRay documents [11] specify solely
bus guardian mechanism and clock synchronization algorithms. Other features, such
as a membership service or mode management facilities, should be implemented in
software or hardware layers on top of the FlexRay. This will allow to conceive and to
implement exactly the services that are needed with the drawback that correct and
efficient implementations might be more difficult to achieve in a layer above the
communication controller [16].

One of the main purposes of this paper is to convince developers of the FlexRay
communication controller, by the experimental results, how necessary it is to reduce
the fault sensitivity of critical registers. This reduction causes to improve the reliabil-
ity of the FlexRay protocol, noticeably; and it is possible to reduce the need for
expensive fault-tolerant techniques, such as bus guardian mechanism or clock syn-
chronization algorithms.

2.1 Protocol Operation

Communications in the FlexRay protocol are based on predetermined interval times
which are named communication cycles (bus cycles). These communication cycles are

 Investigation and Reduction of Fault Sensitivity 155

executed periodically. In this protocol a communication cycle is a concatenation of a
time-triggered (or static) window, an event-triggered (or dynamic) window, a symbol
window and a network idle time (NIT) window. The size of each communication win-
dow is set statically at design time. The time-triggered window uses a Time Division
Multiple Access (TDMA) [17] mechanism; a node in FlexRay might possess several
slots in the time-triggered window, but the size of all the slots is identical. In the event-
triggered part of the communication cycle, the mechanism is Flexible TDMA (FTDMA)
[18]: time is divided into so-called minislots, each station possesses a given number of
minislots (not necessarily consecutive), and it can start the transmission of a frame inside
each of its own minislots. A minislot remains idle, if the station has nothing to transmit
which actually induces a loss of bandwidth [16]. The symbol window is a communica-
tion period in which a symbol can be transmitted on the network. The NIT window is a
communication-free period that concludes each communication cycle. Fig. 1 shows an
example of communication cycle in the FlexRay protocol.

Fig. 1. Communication Cycle in the FlexRay Protocol

The FlexRay frame consists of three parts: the header segment, the payload seg-
ment, and the trailer segment. The FlexRay header segment consists of 5 bytes. These
bytes contain one reserved bit, payload preamble indicator, null frame indicator, sync
frame indicator, startup frame indicator, frame ID, payload length, header CRC, and
cycle count.

The payload segment contains 0 to 254 bytes (0 to 127 two-byte words) of data.
Because the payload length contains the number of two-byte words, the payload seg-
ment contains an even number of bytes. The FlexRay trailer segment contains a single
field, a 24-bit CRC for the frame. The Frame CRC field contains a cyclic redundancy
check code (CRC) computed over the header segment and the payload segment of the
frame. The computation includes all fields in these segments.

In the FlexRay protocol, frames are sent in static slots or dynamic slots of each
communication cycle. Fig. 2 shows the frame format in the FlexRay protocol.

Fig. 2. Frame format in the FlexRay Protocol

Sym bol NIT

NIT
Symbol
W indowDynam ic W indowStatic W indow

Static Slots Dynam ic Slots

156 Y. Sedaghat and S.G. Miremadi

Fig. 3. The FlexRay Structure [11]

2.2 Protocol Structure

The FlexRay communication controller consists of six modules [11]: controller host
interface (CHI), protocol operation control (POC), coding and decoding (CODEC),
media access control (MAC), frame and symbol processing (FSP), and clock syn-
chronization process (CSP). Fig. 3 shows relation between these modules.

The CHI module, manages data and control flow between the host processor and
the FlexRay protocol engine within each node. The CHI module manages all data
exchange relevant to the protocol operation and manages all data exchanges relevant
to the exchange of messages. Moreover, this module manages protocol configuration
data, protocol control data, and protocol status data.

Operational modes of FlexRay modules are adjusted by POC module. Proper proto-
col behavior can only occur if the mode changes of the core modules are properly coor-
dinated and synchronized. The purpose of the POC is to react to host commands and
protocol conditions by triggering coherent changes to core modules in a synchronous
manner, and to provide the host with the appropriate status regarding these changes.

The CODEC module is responsible for en-
coding the communication elements into a bit
stream and is responsible for receiving com-
munication elements, making bit streams and
investigating correctness of bit streams.

The MAC module controls access to the
bus. In the FlexRay protocol, media access
control is based on a recurring communica-
tion cycle. Within one communication cycle,
the FlexRay offers the choice of two media
access schemes, i.e., TDMA scheme and
FTDMA scheme. The communication cycle
is the fundamental element of the media ac-
cess scheme within FlexRay.

The FSP module checks the correct timing
of received frames and received symbols with
respect to the TDMA scheme, applies further
syntactical tests to received frames, and checks
the semantic correctness of received frames.

Finally, the CSP module is responsible for
generation of timing units in the FlexRay
communication controller, e.g., communication
cycles. Moreover this module uses a distributed clock synchronization mechanism in
which each node individually synchronizes itself to its cluster by observing the timing of
transmitted sync frames from other nodes.

3 Error Models and Error Handling Mechanisms in the FlexRay
Protocol

Safety-critical applications have to function correctly even in presence of faults.
Faults can be permanent (e.g., damaged microcontrollers or communication links),
transient (e.g., caused by single event upsets or electromagnetic interferences), or

 Investigation and Reduction of Fault Sensitivity 157

intermittent (appear and disappear repeatedly). The transient faults are the most
common, and their number is continuously increasing due to the continuously raising
level of integration in semiconductors [19]. These transient single bit-flip errors are
more common consequences of transient faults [22].

3.1 Error Models in the FlexRay Protocol

According to the FlexRay protocol, the following three categories of errors are possi-
ble [11]:

1) Syntax error
Syntax error denotes the presence of a syntactic error in a time slot, and occurs in fol-
lowing conditions:

- The node starts transmitting while the channel is not in the idle state.
- A decoding error occurs.
- A frame is decoded in the symbol window or in the network idle time.
- A symbol is decoded in the static segment, the dynamic segment, or the net-

work idle time.
- A frame is received within the slot after the reception of a semantically cor-

rect frame.
- Two or more symbols are received within the symbol window.

2) Content error
Content error denotes the presence of an error in a received frame, and occurs in fol-
lowing condition:

- In the static segment, the header length the header of the received frame does
not match the stored header length in a special register (this register contains
globally configured value of the payload length of a static frame).

- In the static segment, the startup frame indicator, contained in the header of
the received frame, is set to one while the sync frame indicator is set to zero.

- In the static or in the dynamic segment, the frame ID, contained in the header
of the received frame, does not match the current value of the slot counter or
the frame ID equals to zero in the dynamic segment.

- In the static or dynamic segment, the cycle count, contained in the header of
the received frame, does not match the current value of the cycle counter.

- In the dynamic segment the sync frame indicator, contained in the header of
the received frame, is set to one.

- In the dynamic segment the startup frame indicator, contained in the header
of the received frame, is set to one.

- In the dynamic segment the null frame indicator, contained in the header of
the received frame, is set to zero.

3) Boundary violation error
Boundary violation error denotes whether a boundary violation has occurred at the
boundary of the corresponding slot. A boundary violation occurs if the node does not
consider the channel to be idle at the boundary of a slot.

3.2 Error Handling Mechanisms in the FlexRay Protocol

In order to respond to errors, two basic mechanisms are provided in the POC module
[11]. For significant errors, the POC:halt state is immediately entered. The POC also

158 Y. Sedaghat and S.G. Miremadi

contains a three-state degradation model for errors that can be endured for a limited
period of time. In this case entry to the POC:halt state is deferred, at least temporarily,
to support possible recovery from a potentially transient condition.

Errors causing immediate entry to the POC:halt state
There are three general conditions that trigger entry to the POC:halt state:

• Product-specific error conditions such as BIST errors and sanity checks.
• Error conditions detected by the host that result in a FREEZE command be-

ing sent to the POC via the CHI.
• Fatal error conditions detected by the POC or one of the core mechanisms.

Product-specific errors are accommodated by the POC, but not described in
FlexRay specification. Similarly, host detected error strategies are supported by the
POC's ability to respond to a host FREEZE command, but the host-based mechanisms
that trigger the command are beyond the scope of this specification, hence they were
not considered in this paper.

Errors handled by the degradation model
Integral to the POC is a three-state error handling mechanism referred to as the degrada-
tion model. It is designed to react to certain conditions detected by the clock synchroni-
zation mechanism that are indicative of a problem, but that may not require immediate
action due to the inherent fault tolerance of the clock synchronization mechanism. This
makes it possible to avoid immediate transitions to the POC:halt state while assessing
the nature and extent of the errors. The degradation model is embodied in three POC
states - POC:normal active, POC:normal passive, and POC:halt.

In the POC:normal active state, the node is assumed to be either error free, or at
least within error bounds that allow continued “normal operation”. Specifically, it is
assumed that the node remains adequately time synchronized to the cluster to allow
continued frame transmission without disrupting the transmissions of other nodes.

In the POC:normal passive state, it is assumed that synchronization with the re-
mainder of the cluster has degraded to the extent that continued frame transmissions
cannot be allowed because collisions with transmissions from other nodes are possi-
ble. Frame reception continues in the POC:normal passive state in support of host
functionality and in an effort to regain sufficient synchronization to allow a transition
back to the POC:normal active state.

If errors persist in the POC:normal passive state or if errors are severe enough, the
POC can transit to the POC:halt state. In this state it is assumed that recovery back to
the POC:normal active state cannot be achieved, so the POC halts the core mechanisms
in preparation for reinitializing the node. The conditions for transitioning between the
three states comprising the degradation model are configurable. Furthermore, transitions
between the states are communicated to the host allowing the host to react appropriately
and to possibly take alternative actions using one of the explicit host commands.

3.3 Error Indicator Registers of the FlexRay Communication Controller

In this protocol, there are some registers that are set in the mentioned error con-
ditions. In this paper, these registers are named “error indicator registers”. Table 1
shows these registers and their locations in the FlexRay communication controller.

 Investigation and Reduction of Fault Sensitivity 159

Activating each of these registers, may result in one or more main error types. Faults,
depending on when and where they occur, may change the expected value of some of
these registers and cause one or more main error types. In this paper, the type of oc-
curred error is not considered. However, if any of registers in the Table 1, is unex-
pectedly changed, this change is considered as an error.

Table 1. Error indicator registers (registers of the FlexRay showing the error occurrences) in
the FlexRay protocol

Registers Module Registers Modules
decoding_error_on_A

CODEC

vPOC_Freeze
POCTSS_ok vPOC_CHIHaltRequest

TSS_too_long vPOC_ErrorMode
FSS_ok zSyncCalcResult CSP

payload_ok Content_error_on_A

FSP

trailer_ok Fatal_protocol_error
BSS_ok T_StatusSlot_ValidFrame
FES_ok T_StatusSlot_SyntaxError
zBssError T_StatusSlot_ContentError

Header_Crc_error T_StatusSlot_TxConflict
Frame_Crc_error T_StatusSlot_BViolation

4 Experimental Environment

The FlexRay communication controller was implemented by hardware description
language, Verilog HDL, and specifications of this controller, e.g. timing and configu-
ration, were tested according to the FlexRay protocol conformance test specification
[20]. This controller, according to its specifications [11], has six modules to perform
its functions: controller host interface (CHI), protocol operation control (POC), clock
synchronization process (CSP), frame and symbol process (FSP), media access con-
trol (MAC), and coding and decoding (CODEC). A cluster was formed consisting of
4 nodes with single bus topology (Fig. 4). In this topology, a node is composed of a
host and a communication controller. The host typically is a hardware unit that gener-
ates data to exchange with other nodes through a communication channel.

In the experiments, instead of a real host, a data generator was implemented to
generate static frames with fixed length and dynamic frames with variable length at
the start of the communication cycles. In this cluster, any node was allowed to send
and receive frames on the communication channel.

Fig. 4. Experimental setup

160 Y. Sedaghat and S.G. Miremadi

To investigate the fault tolerance of the FlexRay communication controller, transient
single bit-flip faults were injected in all accessible registers of communication controller
modules of the node 2 and their effects on the error indicator registers were observed in
node 2 and node 4 (for observing more fault effects); and results were stored.

4.1 Fault Sensitivity Calculation Process

To inject the transient single bit-flip faults at the behavioral level in node 2, the SIN-
JECT fault injection tool [21] was used.

A fault sensitivity calculation process of a bit, by using SINJECT tool, consists of
four steps:

1- When the given workload is applied, behaviors of the error indicator registers
in a fault-free network are simulated and stored.

2- During the second step, to consider fault effects, the given workload is applied
again to the network, a single transient bit-flip fault is injected to a bit of a
communication controller register of node 2, at a random time, and the behav-
ior of the error indicator registers of node 2 and node 4 are observed.

3- During the third step of the fault sensitivity calculation process, the faulty
network behavior is compared with the behavior of the fault-free network,
which is gathered at first step, and if there is a mismatch, this injected fault is
considered as an activated fault and otherwise, this injected fault is considered
as an overwritten fault.

4- To achieve accurate fault sensitivity of a bit, several faults should be injected
to this bit (repeating the first three steps). After injecting enough bit-flip faults
and determining the number of activated faults (be Equation 1), the fault sen-
sitivity of this bit is calculated by Equation 2:

#injected faults #activated faults #overwritten faults= +

Number of activated faults
fault sensitivity of a bit= 100%

Number of all injceted faults to that bit
×

The process was repeated for all bits in all accessible registers in FlexRay commu-
nication controller and the fault sensitivity of these registers was determined.

4.2 Fault Tolerance Improvement Strategies

After determining the fault sensitivity of a register, if its sensitivity was more than an
acceptable value, a proper fault-tolerant technique would be used to reduce its vulner-
ability. The Hamming code technique with single bit correction ability and Triple
Modular Redundancy (TMR) technique were used for this purpose.

The Hamming technique was implemented on several sets of vulnerable registers.
Those sets were organized such that most related registers were encapsulated in a set;
and the size of each set varied between 10 bits and 32 bits. This implementation did
not incur any delay or limitation to access to protected registers. After changing value
of a protected register in a register set, due to protocol operations, Hamming bits of
that register set is calculated while other parts of communication controller were al-
lowed to access to that register set.

(1)

(2)

 Investigation and Reduction of Fault Sensitivity 161

TMR or Hamming techniques should be used consciously; for example, if there is
a highly fault sensitive register which immediately triggers other parts of communica-
tion controller by changing its value, the Hamming code technique should not be used
to reduce the sensitivity of this register. The main reason is that if a bit-flip fault oc-
curs in this register, the other parts of communication controller react to that fault
immediately and some errors may occur in other parts of communication controller;
in such situation, if Hamming technique is used, the occurred fault in the register is
detected and corrected while other parts of communication controller react to this
changing value again. Consequently, a bit-flip fault causes two incorrect reactions in
other communication parts. Also, if Hamming technique is implemented such that the
accessibility to that register is not allowed until the Hamming bits of this register are
calculated, some delay is inserted into the operation of communication controller and
this delay may corrupt the timing of FlexRay protocol operations. In this situation, the
TMR technique is the better option, but if the imposed delay due to Hamming tech-
nique for this type of register does not damage the FlexRay protocol timings, by
checking and testing according to the FlexRay protocol conformance test specifica-
tion [20], it is beneficial to use Hamming technique instead of TMR technique.

On the other hand, if there is a highly fault sensitive register which does not trigger
immediately other parts of communication controller by changing its value, the TMR
technique should not be used because of its ultra-high hardware overhead (200%). In
this condition, the Hamming technique is the better option.

In this paper, with respect to properties of the FlexRay communication controller
registers, the TMR technique and the Hamming technique (without incurring any de-
lay) are suggested to improve fault tolerance of this controller.

5 Experimental Results

In this paper, to assess the fault sensitivity of the FlexRay communication controller,
the nodes were connected through a passive bus network. The main reason of select-
ing bus topology is to prevent some error propagations in star coupler of star topol-
ogy. This prevention results in hiding the fault sensitivity of some communication
controller registers.

To simulate the experiments, the ModelSim 5.5 simulation environment was used.
The simulation includes four communication cycles; in the first two cycles, single
transient bit-flip fault was injected randomly, then simulation was resumed two cycles
to guarantee that the injected fault caused an error or overwritten.

5.1 The FlexRay Communication Controller Modules

To reach an accurate fault sensitivity of each register, 50 transient bit-flip faults were
injected to each bit of all accessible FlexRay controller registers (according to the
fault sensitivity calculation process) and gathered results were investigated. If there
existed a register with more than 20% of fault sensitivity, a proper fault-tolerant tech-
nique based on properties of this register were used to reduce its vulnerability.

As discussed in the previous section, the TMR technique was only used for regis-
ters which were immediately triggered other communication controller parts with

162 Y. Sedaghat and S.G. Miremadi

their changing values. In this controller, all of these kinds of registers were single-bit
register; consequently, for each single-bit register, two redundant flip-flops were added
to implement the TMR technique. Furthermore, to implement the Hamming technique,
all vulnerable registers which were not improved by TMR technique, were grouped in
some sets. These register sets were organized as discussed in the previous section.

The results show that the TMR technique masks all injected faults but the Hamming
technique is not able to tolerate all injected faults; because it is probable that faulty reg-
isters are used immediately before they are corrected. The experiment results are pre-
sented in Table 2, whereas the modeled FlexRay communication controller is not still
synthesizable, the estimated hardware overhead is based on the number of accessible
flip-flops. Table 3 contains hardware overhead of implemented techniques.

Table 2. Fault injection results

FlexRay
Module

#
Injected
Faults

Standard FlexRay Improved FlexRay
Improvement

(%)Activated Faults Activated Faults

% # %

POC 5200 2343 45.1 512 9.8 357
CODEC 32300 5396 16.7 3586 11.1 50
MAC 11050 1805 16.3 1181 10.7 52
CSP 47850 16574 34.6 4774 10 246
FSP 6850 1230 18 688 10 80
CHI 32350 8154 25.2 3300 10.2 147
ALL 135600 35502 26.2 14041 10.3 154

FlexRay
Modules

Standard FlexRay Improved FlexRay HW
Overhead

(%)# Registers # Flip-Flops # Flip-Flops

POC 28 104 (104 + 32) = 136 30.8
CODEC 104 646 (646 + 46) = 692 7.1
MAC 64 221 (221 + 28) = 249 12.7
CSP 94 957 (957 + 162) = 1119 16.9`
FSP 41 137 (137 + 20) = 157 14.6
CHI 77 647 (647 + 66) = 713 10.2
ALL 408 2712 (2712 + 354) = 3066 13.0

In the modeled FlexRay communication controller, all registers, signals and other
components are named based on FlexRay specification document (version 2.1, revi-
sion A) [11]; for more details about their responsibilities, readers are referred to [11].
Based on experimental results, Fig. 5 shows the fault sensitivity of all FlexRay com-
munication controller modules in the standard implementation (according to the
FlexRay specifications [11]) and in the improved implementation. In this figure, the
fault sensitivities of the FlexRay module registers which are more than 20% sensitive
to injected faults are presented. For more clarity, fault sensitivities are sorted in a de-
scending order.

Table 3. Hardware overheads

 Investigation and Reduction of Fault Sensitivity 163

Fig. 5. Fault sensitivities of FlexRay modules in standard and improved implementations

(a) Fault sensitivities of FlexRay Registers
(POC Module)

(b) Fault sensitivities of FlexRay Registers
(MAC Module)

(c) Fault sensitivities of FlexRay Registers (CODEC Module)

(d) Fault sensitivities of FlexRay Registers (CSP Module)

164 Y. Sedaghat and S.G. Miremadi

Fig. 5. (continued)

5.2 Overall Results

In general, fault sensitivity analysis of the FlexRay modules shows that there were 30
registers with 100% sensitivity. This fact may question use of this protocol for safety-
critical applications. In addition, in Fig. 5 there is a severe variance in the fault sensi-
tivities of the FlexRay controller registers. Our improvements make them smooth.

The FlexRay communication controller contains 408 single-bit and multiple-bit
registers in total. A number of 135,600 transient single-bit flip faults were injected to
them. 35,502 faults caused at least one error; consequently, the fault sensitivity of the
whole controller was about 26.2%.

After improving the fault sensitivity of the FlexRay communication controller, its
sensitivity was reduced from 26.2% to 10.3% (about 154% improvement), while add-
ing 354 extra flip-flops costs the controller about 13% flip-flop overhead.

Fig. 6 shows the fault sensitivity of each module in the standard implementation
and the improved implementation of FlexRay communication controller. This figure
also shows that the POC module is the most sensitive part of FlexRay communication
controller and CODEC module is the least sensitive part. Furthermore, our results
show that we were able to reduce the sensitivity of FlexRay modules to almost equal

(f) Fault sensitivities of FlexRay Registers (CHI Module)

(e) Fault sensitivities of FlexRay Registers (FSP Module)

 Investigation and Reduction of Fault Sensitivity 165

Fig. 6. Fault Sensitivity of FlexRay Communication Controller

values (difference about 1%) as compared with previous values in the standard im-
plementation.

6 Conclusions

Safety-critical automotive control systems are nowadays complex distributed embed-
ded systems and the communication protocol is an essential part of them. The
FlexRay communication protocol is now expected to become the future standard for
in-vehicle communication.

In this paper, the fault sensitivities and vulnerabilities of FlexRay communication
controller registers, based on 135,600 single-bit flip fault injections to all accessible
registers, are investigated.

The results show that the fault sensitivities of POC, CODEC, MAC, CSP, FSP, and
CHI modules are 45.1%, 16.7%, 16.3%, 34.6%, 18%, and 25.2% respectively. Moreover,
according to the fault injection results, among all 408 accessible registers, 30 registers
were immediately affected by the injected faults, 84 registers were affected between 20%
and 99%, while the remaining (294) registers were affected by less than 20%.

After determining the sensitive registers, proper fault masking and fault-tolerant
techniques, based on their properties, are applied to reduce the vulnerability of these
registers. This caused, the fault sensitivity of POC, CODEC, MAC, CSP, FSP, and
CHI modules to reduce to 9.85%, 11.1%, 10.7%, 10%, 10%, and 10.2% respectively.

In general, the fault sensitivity of FlexRay communication controller was improved
more than 2 times and in this improved implementation, none of the registers has
more than 20% fault sensitivity.

References

1. Byteflight Specification, http://www.byteflight.com/
2. CAN Specification 2.0, http://www.can-cia.org/
3. LonWorks networks, http://www.echelon.com
4. PROFIBUS DP Specification, http://www.profibus.com
5. Pop, T., Pop, P., Eles, P., Peng, Z.: Bus Access Optimization for FlexRay-based Distrib-

uted Embedded Systems. In: Design, Automation & Test in Europe Conference & Exhibi-
tion 2007 (DATE 2007), pp. 1–6. EDA Consortium, Nice (2007)

166 Y. Sedaghat and S.G. Miremadi

6. Hoyme, K., Driscoll, K.: SAFEbus. In: IEEE Aerospace and Electronic Systems Magazine
(ISSN 0885-8985), vol. 8(3), pp. 34–39. IEEE Press, Los Alamitos (1992)

7. Miner, P.S., Malekpour, M., Torres-Pomales, W.: Conceptual design of a Reliable Optical
BUS (ROBUS). In: 21st AIAA/IEEE Digital Avionics Systems Conference, pp.13D3-1–
13D3-11. IEEE Press, Irvine (2002)

8. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. J. IEEE. 91(1), 112–126 (2003)
9. Road Vehicles—Controller Area Network (CAN)—Part 4: Time-Triggered Communica-

tion, ISO 11 898-4 (2000)
10. Ferreira, J., Pedreiras, P., Almeida, L., Fonseca, J.A.: The FTT-CAN protocol for flexibil-

ity in safety-critical systems. J. IEEE Micro. (Special Issue on Critical Embedded Automo-
tive Networks) 22(4), 46–55 (2002)

11. FlexRay Communications System - Protocol Specification V2.1 Revision A,
http://www.flexray.com

12. Sethna, F., Stipidis, E., Ali, F.H.: What Lessons Can Controller Area Networks Learn
From FlexRay. In: Vehicle Power and Propulsion Conference (VPPC 2006), pp. 1–4.
IEEE Press, Windsor (2006)

13. Pop, T., Pop, P., Eles, P., Peng, Z., Andrei, A.: Timing Analysis of the FlexRay Commu-
nication Protocol. In: 18th Euromicro Conference Real-Time Systems (ECRTS 2006), pp.
203–216. Kluwer Academic Publishers, Dresden (2006)

14. Hagiescu, A., Bordoloi, U.D., Chakraborty, S.: Performance Analysis of FlexRay-based
ECU Networks. In: 44th ACM/IEEE Design Automation Conference (DAC 2007), pp.
284–289. ACM, San Diego (2007)

15. Makowitz, R., Temple, C.: FlexRay- A Communication Network for Automotive Control
Systems. In: IEEE International Workshop on Factory Communication Systems (WFCS
2006), pp. 207–212. IEEE Press, Torino (2006)

16. Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in Automotive Communica-
tion Systems. J. IEEE 93(6), 1204–1223 (2005)

17. Tindell, K., Clark, J.: Holistic Schedulability Analysis for Distributed Hard Real-Time
Systems. J. Microprocessing & Microprogramming 40, 117–134 (1994)

18. Cena, G., Valenzano, A.: Performance analysis of byteflight networks. In: IEEE Workshop
on Factory Communication Systems (WFCS 2004), pp. 157–166. IEEE Press, Vienna
(2004)

19. Izosimov, V., Pop, P., Eles, P., Peng, Z.: Design Optimization of Time- and Cost-
Constrained Fault-Tolerant Distributed Embedded Systems. In: Design, Automation and
Test in Europe Conference and Exhibition 2005 (DATE 2005), vol. 2, pp. 864–869. IEEE
Computer Society, Munich (2005)

20. FlexRay Communications System - Protocol Conformance Test Specification V2.1,
http://www.flexray.com

21. Zarandi, H.R., Miremadi, S.G., Ejlali, A.: Dependability Analysis Using a Fault Injection
Tool Based on Synthesizability of HDL Models. In: 18th IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, pp. 485–492. IEEE Press, Boston (2003)

22. Armengaud, E., Rothensteiner, F., Steininger, A., Horauer, M.: A Method for Bit Level
Test and Diagnosis of Communication Services. In: IEEE Workshop on Design & Diag-
nostics of Electronic Circuits & Systems 2005 (DDECS 2005), p. 6. IEEE Press, Hungary
(2005)

	Investigation and Reduction of Fault Sensitivity in the FlexRay Communication Controller Registers
	Introduction
	The FlexRay Protocol
	Protocol Operation
	Protocol Structure

	Error Models and Error Handling Mechanisms in the FlexRay Protocol
	Error Models in the FlexRay Protocol
	Error Handling Mechanisms in the FlexRay Protocol
	Error Indicator Registers of the FlexRay Communication Controller

	Experimental Environment
	Fault Sensitivity Calculation Process
	Fault Tolerance Improvement Strategies

	Experimental Results
	The FlexRay Communication Controller Modules
	Overall Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

