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In some long-term studies, a series of dependent and possibly censored failure
times may be observed. Suppose that the failure times have a common continuous
distribution function F . A popular stochastic measure of the distance between the
density function f of the failure times and its kernel estimate fn is the integrated
square error(ISE). In this article, we derive a central limit theorem for the integrated
square error of the kernel density estimators under a censored dependent model.

Keywords �-mixing; Bandwidth; Censored dependent data; Integrated square
error; Kaplan–Meier estimator; Kernel density estimator.

Mathematics Subject Classification 62G07; 62G20.

1. Introduction and Main Result

Let X1� � � � � Xn be a sequence of failure times, having a common unknown
continuous marginal distribution function F with a probability density function
f = F ′. The random variables are not assumed to be mutually independent (see
assumption (1) for the kind of dependence stipulated). Let the random variable Xi

be censored on the right by the random variable Yi, so that one observes only

Zi = Xi ∧ Yi and �i = I�Xi ≤ Yi��

where ∧ denotes minimum and I��� is the indicator of the event specified in
parentheses. In this random censorship model, the censoring times Y1� � � � � Yn are
assumed to be independently and identically distributed and they are also assumed
to be independent of the Xi’s. For easy reference, denote with G the distribution of
the Yi’s. Since censored data traditionally occur in lifetime analysis, we assume that
Xi and Yi are nonnegative. The actually observed Zi’s have a distribution function
H satisfying

H�t� = 1−H�t� = �1− F�t���1−G�t���
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Central Limit Theorem for ISE of Kernel Density 1335

Let

H∗�t� = P�Z ≤ t� � = 1��

Define

Nn�t� =
n∑

i=1

I�Zi ≤ t� � = 1� =
n∑

i=1

I�Xi ≤ t ∧ Yi��

the number of uncensored observations less than or equal to t, and

Yn�t� =
n∑

i=1

I�Zi ≥ t��

the number of censored or uncensored observations greater than or equal to t

and also the empirical distribution function of �H�t� and H∗�t� are, respectively,
defined as

�Yn�t� = n−1Yn�t�� Nn�t� = n−1Nn�t��

Then the Kaplan–Meier (K-M) estimator for 1− F�t�, based on the censored data is

1− F̂n�t� =
∏
s≤t

(
1− dNn�s�

Yn�s�

)
� t < Z�n��

where Z�i�’s are the order statistics of Zi’s and dNn�t� = Nn�t�− Nn�t−�� The
empirical cumulative hazard function for the underlying cumulative hazard function
��t� = −log�1− F�t�� is

�̂n�t� =
∫ t

−�
dNn�s�

Yn�s�
�

For the case that the failure time observations are mutually independent, based on
the Kaplan–Meier estimator, Blum and Susarla (1980) proposed to estimate f by a
sequence of kernel estimators fn defined by

fn�t� =
1
hn

∫ �

0
K

(
t − x

hn

)
dF̂n�x��

where K is a smooth kernel function and hn is a sequence of positive bandwidths
tending to zero. The properties of the kernel estimator fn have been examined
by Blum and Susarla (1980), Burke and Horváth (1984), and Földes et al. (1981),
among others.

It is well known that the most widely accepted stochastic measure of the global
performance of a kernel estimator is its integrated square error, defined by

ISE�fn� =
∫
�fn�t�− f�t��2w�t�dt�
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1336 Jomhoori et al.

where w is a non negative weighted function. The corresponding deterministic
measure of the accuracy of fn is the mean integrated square error given by

MISE�fn� =
∫

E �fn�t�− f�t��2 w�t�dt�

Integrated square error is often used in simulation studies to measure the
performance of density estimators. It is also used implicitly in adaptive constructions
of estimators, when the aim is to minimize mean integrated square error in some
sense. Both these applications involve the assumption that integrated square error is
somehow close to mean integrated square error. The central limit theorem for ISE
provide an explicit description of the order of this closeness, by showing that

c�n��ISE�fn�−MISE�fn�	
�−→ N�0� 1�� (1.1)

as n → �� where
�−→ denotes convergence in distribution and c�n�� n ≥ 1 is a

sequence of positive constants diverging to infinity. The asymptotic behavior of
ISE has been studied extensively by many authors. In the uncensored case, Bickel
and Rosenblatt (1973) employed the uniform strong approximation of the empirical
process by the Brownian bridge to obtain a central limit theorem for the ISE of
the Rosenblatt–Parzen kernel estimators of a density function. Hall (1984) derived
central limit theorem for the ISE of density estimator using martingale theory and
U-statistics approach. In general, central limit theorem for Lp deviation between fn
and f , i.e.,

In�fn� p� =
∫

	fn�t�− f�t�	pdt� 1 ≤ p < ��

was studied by Csörgő and Horváth (1988) based on complete samples.
In the right-censored case, Csörgő et al. (1991) obtained central limit theorem

for Lp distances of kernel estimators. Yang (1993) employed the martingale
techniques by Gill (1983) to get a central limit theorem for the ISE of the
product-limit kernel density estimators. Zhang (1996) obtained a simple asymptotic
expression for the mean integrated square error of the kernel estimator fn, and
then derived an asymptotically optimal bandwidth for fn. Zhang (1998) applied the
technique of strong approximation to establish an asymptotic expansion for ISE of
the kernel density estimate fn� Sun and Zheng (1999) proved a central limit theorem
for the ISE of the kernel hazard rate estimators and also presented an asymptotic
representation of the MISE for kernel hazard rate estimators in left-truncated and
right-censored data.

However, for the case that censored observations are dependent, there are no
results available. The main aim of this article is to derive a central limit theorem
for ISE of kernel density estimator when the censored data exhibit some kind of
dependence.

Among various mixing conditions used in the literature, �-mixing, whose
definition is given below is reasonably weak and has many practical applications.
Many stochastic processes and time series are known to be �-mixing. In particular,
the stationary autoregressive-moving average (ARMA) processes, which are widely
applied in time series analysis, are �-mixing with exponential mixing coefficient, i.e.,
��n� = e−
n for some 
 > 0.
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Central Limit Theorem for ISE of Kernel Density 1337

Definition 1.1. Let �Xi� i ≥ 1	 denote a sequence of random variables. Given a
positive integer m, set

��m� = sup
k≥1

�	P�A ∩ B�− P�A�P�B�	� A ∈ � k
1 � B ∈ ��

k+m	� (1.2)

where � k
i denote the �-field of events generated by �Xj� i ≤ j ≤ k	� The sequence is

said to be �-mixing (strongly mixing) if the mixing coefficient ��m� → 0 as m → ��

For such mixing condition, the following basic inequality (see Kim, 1994) is well
known. Let 
 and � be measurable with respect to � k

1 and ��
k+n, respectively. Then,

under �-mixing,

	E�
��− E�
�E���	 ≤ 2����n��1−�1/p+1/q�E1/p	
	pE1/q	�	q� (1.3)

where E	
	p� E	�	q < � for 1 ≤ p� q ≤ � with 1/p+ 1/q = 1− � and 0 < � < 1�
For the sake of simplicity, the assumptions used in this article are as follows.

Assumptions.

1. Suppose that �Xi� i ≥ 1	 is a sequence of stationary strongly mixing random
variables with continuous distribution function F and mixing coefficient � as
defined on (1.2).

2. Suppose that the censoring time variables �Yi� i ≥ 1	 are i.i.d. random variables
with continuous distribution function G and are independent of �Xi� i ≥ 1	.

3. ��n� = O�n−
� for some 
 > 4.
4. K is a bounded, non negative and continuously differentiable function on

�−1� 1� and satisfies the following conditions:

∫ 1

−1
K�t�dt = 1�

∫ 1

−1
tK�t�dt = 0�

∫ 1

−1
t2K�t�dt = k �= 0�

5. The joint probability density function (pdf) of X1 and Xj , f1�j��� �� exists and
	f1�j�u� v�− f�u�f�v�	 ≤ M for all j ≥ 2 and u� v ∈ � and some constant M .

6. f is twice continuously differentiable at t and inf0≤t≤� f�t� > 0� where � is such
that H��� > 0�

7. The weight function w is continuously differentiable and supported on �0� ���

Remark 1.1. In uncensored case, Rosenblatt (1985) established asymptotic
normality, under �-mixing including the assumption that

∑n
j=2 	f1�j�u� v�−

f�u�f�v�	 < � for u� v ∈ �. The assumption 	f1�j�u� v�− f�u�f�v�	 ≤ M < � has
been considered by Masry (1986) to derive asymptotic normality of density
estimators for strong mixing and asymptotically uncorrelated processes. This
assumption has been also considered by Roussas (1990) to derive asymptotic
normality of kernel estimators in a different way. Cai (1998b) applied this
assumption to establish the asymptotic normality and the uniform consistency of
the kernel estimators for density and hazard function under a censored dependent
model.
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1338 Jomhoori et al.

The main result of this article is the following theorem, which presents a central
limit theorem for ISE�fn�. The proof is deferred to Sec. 2. The integrated square
error of fn on the interval �0� �� is defined by

ISE�fn� =
∫ �

0

(
fn�t�− f�t�

)2
w�t�dt� (1.4)

Let

dn1 =
∫ �

0
��fn�t�− f�t��2w�t�dt + �nhn�

−1

( ∫
K2�u�du

) ∫ f�t�

�G�t�
w�t�dt�

where

�fn�t� = h−1
n

∫ �

0
K

(
t − u

hn

)
f�u�du�

and

�2
01 =

( ∫ 1

−1
u2K�u�du

)2 ∫
�f ′′�t�w�t��2

f�t�

�G�t�
dt

+ 16�
�∑
i=1

�1/2�i�

( ∫ 1

−1
u2K�u�du

)2( ∫ (
f ′′�t�w�t�

�G�t�

)4

f�t�dt

)1/2

� (1.5)

Theorem 1.1. Let hn be a sequence of positive bandwidth which satisfies nh6
n → � as

n → �. Under stated assumptions, we have

h−2
n

√
n�ISE�fn�− dn1�

�−→ N�0� �2
1��

where �2
1 ∈ �0� �2

01��

Remark 1.2. The above theorem in iid case has been proved by Hall (1984), Yang
(1993) and Sun and Zheng (1999), respectively. The condition imposed on the
bandwidth in those papers is nh5

n → � as n → �� Csörgő et al. (1991) established
central limit theorem for Lp deviation between fn and f with the optimal bandwidth
choice which satisfies nh5

n → c > 0� where c is a positive constant. However, this
conditions does not seem to be achievable in �-mixing setting.

Another stochastic measure of accuracy is Hellinger distance defined by

HD�fn� =
∫ �

0

(√
fn�t�−

√
f�t�

)2
dt� (1.6)

Let

dn2 =
∫ �

0

��fn�t�− f�t��2

4f�t�
dt + �nhn�

−1
(∫

K2�u�du
) ∫ 1

4�G�t�
dt�

�2
02 =

1
16

(∫ 1

−1
u2K�u�du

)2 ∫ �f ′′�t��2

f�t��G�t�
dt

+ �
�∑
i=1

�1/2�i�

(∫ 1

−1
u2K�u�du

)2 (∫ �f ′′�t��4

f 3�t��G4�t�
dt

)1/2

�
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Central Limit Theorem for ISE of Kernel Density 1339

Corollary 1.1. Under the stipulated assumptions on the theorem

h−2
n

√
n�HD�fn�− dn2�

�−→ N�0� �2
2��

where �2
2 ∈ �0� �2

02��

2. Proofs

The proof of theorem is based on the following lemmas. We begin with introducing
some further notations. We define

f ∗
n �t� = h−1

n

∫ �

0

K
(
t−u
hn

)
G�u�

dNn�u��

Qn1 = 2
∫ �

0
�fn�t�− �fn�t����fn�t�− f�t��w�t�dt� (2.1)

Qn2 =
∫ �

0
�fn�t�− �fn�t��2w�t�dt� (2.2)

Let g�x� = ∫ x

0 �
�H�s��−2dH∗�s�� and for positive real z and x and � = 0 or 1, let


�z� �� x� = g�z ∧ x�− I�z ≤ x� � = 1�/�H�z��

Observe that

E�
�Zi� �i� x�� = 0� Cov�
�Zi� �i� s�� 
�Zi� �i� t�� = g�s ∧ t��

Lemma 2.1 in Cai (1998a) ensures that �
�Zi� �i� t�	 is a sequence of stationary
�-mixing bounded random variables.

Lemma 2.1. Under the assumptions of Theorem 1.1, we have

h−2
n

√
nQn1

�−→ N�0� �2
1�� (2.3)

where �2
1 ∈ �0� �2

01�� and �2
01 is defined in (1.5).

Proof. It has been shown by Cai (1998a) that

F̂n�t�− F�t� = �F�t���̂n�t�−��t��+ Rn�t�� (2.4)

where

sup
t≥0

	Rn�t�	 = O�a2
n� a�s�� (2.5)

and

an =
(
log log n

n

)1/2

�
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1340 Jomhoori et al.

Simple algebra shows

�̂n�t�−��t� =
(∫ t

0

d�Nn�s�

�H�s�
−
∫ t

0

�Yn�s�
�H2�s�

dH∗�s�
)

+
∫ t

0

(
1

�Yn�s�
− 1

�H�s�

)
d�Nn�s�

+
∫ t

0

�Yn�s�− �H�s�

�H2�s�
dH∗�s�� (2.6)

Integration by parts in conjunction with (2.4) and (2.6) implies

fn�t�− �fn�t� = −h−1
n

∫
�F�x���̂n�x�−��x��dK

(
t − x

hn

)
− h−1

n

∫
Rn�x�dK

(
t − x

hn

)
= �nhn�

−1
n∑

i=1

∫
�F�x�
�Zi� �i� x�dK

(
t − x

hn

)
− h−1

n

∫
�F�x�

∫ x

0

(
1

�Yn�s�
− 1

�H�s�

)
d�Nn�s�dK

(
t − x

hn

)
− h−1

n

∫
�F�x�

∫ x

0

(�Yn�s�− �H�s�

�H2�s�

)
dH∗�s�dK

(
t − x

hn

)
+ rn�t��

where

sup
t≥0

	rn�t�	 = O�h−1
n a2

n� a�s� (2.7)

Denote the second and the third terms in the above equality In1 and In2,
respectively. To estimate In1, divide the interval �0� �� into subintervals �xi� xi+1�� i =
1� � � � � mn� where mn = O�a−1/2

n � and 0 = x1 < x2 < · · · < xmn+1 = � are such that
H∗�xi+1�−H∗�xi� = O�an�� Using Theorem 1 of Cai (1998a), we conclude that

	In1	 = h−1
n

∣∣∣∣∫ �F�x�
∫ x

0

(
1

�Yn�s�
− 1

�H�s�

)
d�Nn�s�dK

(
t − x

hn

)∣∣∣∣
= h−1

n

∣∣∣∣∫ 1

−1

�F�t − hnu�
∫ t−hnu

0

(
1

�Yn�s�
− 1

�H�s�

)
d�Nn�s�dK�u�

∣∣∣∣
≤ h−1

n max
1≤i≤mn

sup
xi≤t−hnu≤xi+1

∫ 1

−1

∣∣∣∣∫ t−hnu

xi

(
1

�Yn�s�
− 1

�H�s�

)
d�Nn�s�

∣∣∣∣ 	dK�u�	
+ h−1

n max
1≤i≤mn

∫ 1

−1

∣∣∣∣∫ xi

0

(
1

�Yn�s�
− 1

�H�s�

)
d�Nn�s�

∣∣∣∣ 	dK�u�	
≤ O�h−1

n an� max
1≤i≤mn

∫ 1

−1
	�Nn�xi+1�− �Nn�xi�		dK�u�	

+ O�h−1
n an� max

1≤i≤mn

∫ 1

−1

∣∣∣∣∣i−1∑
j=1

∫ xj+1

xj

d�Nn�s�

∣∣∣∣∣ 	dK�u�	
= O�h−1

n a3/2
n � a�s� (2.8)
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Central Limit Theorem for ISE of Kernel Density 1341

Similarly, we conclude that

	In2	 = O�h−1
n a3/2

n � a�s� (2.9)

Therefore,

Qn1 =
1

nhn

n∑
i=1

Vni + Jn1 + Jn2 + O�hna
2
n� a�s�� (2.10)

where

Vni = 2
∫ �

0
��fn�t�− f�t��

∫
�F�x�
�Zi� �i� x�dK

(
t − x

hn

)
w�t�dt�

and

Jn1 = −2h−1
n

∫ �

0

(
f̄n�t�− f�t�

)
w�t�

∫
�F�x�

∫ x

0

(
1

�Yn�s�
− 1

�H�s�

)
d�Nn�s�dK

(
t − x

hn

)
dt�

Jn2 = −2h−1
n

∫ �

0

(
f̄n�t�− f�t�

)
w�t�

∫
�F�x�

∫ x

0

(�Yn�s�− �H�s�

�H2�s�

)
dH∗�s�dK

(
t − x

hn

)
dt�

Using Taylor’s expansion

f̄n�t�− f�t� = h2
n

2
f ′′�t�

∫ 1

−1
u2K�u�du+ o�h2

n�� (2.11)

Therefore, (2.11) in conjunction with (2.8) and (2.9) implies that

Jn1 = O�a3/2
n hn� a�s�� (2.12)

Jn2 = O�a3/2
n hn� a�s� (2.13)

It is clear to see that �Vni	 is a sequence of stationary �-mixing bounded random
variables. It can be easily checked that

E�Vni� = 0�

E�V 2
ni� = 4

∫ �

0

∫ �

0

(
f̄n�t�− f�t�

)(
f̄n�s�− f�s�

)[ ∫ ∫
�F�x��F�y�

× g�x ∧ y�dK

(
t − x

hn

)
dK

(
s − y

hn

)]
w�t�w�s�dtds

≤ 4
∫ �

0

∫ �

0

(
f̄n�t�− f�t�

)(
f̄n�s�− f�s�

)[ ∫
K

(
t − x

hn

)
K

(
s − x

hn

)
× f�x�

1−G�x�
dx

]
w�t�w�s�dtds

≤ h6
n

(∫ 1

−1
u2K�u�du

)2 ∫ (
f ′′�x�w�x�

)2 f�x�

1−G�x�
dx + o�h6

n��
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1342 Jomhoori et al.

We may write, Vni = Vni1 − Vni2, where

Vni1 = 2
∫ �

0

(
f̄n�t�− f�t�

) ∫ �F�x�
∫ x

0

I�Zi ≥ u�

�H2�u�
dH∗�u�dK

(
t − x

hn

)
w�t�dt�

and

Vni2 = 2
∫ �

0

(
f̄n�t�− f�t�

) ∫ �

0

�F�x�
�H�Zi�

I�Zi ≤ x� �i = 1�dK
(
t − x

hn

)
w�t�dt�

By easy computations, we derive

E	Vni1	m ≤ h3m
n

∣∣∣∣∫ 1

−1
u2K�u�du

∣∣∣∣m ∫ 	f ′′�x�w�x�	m f�x�

�Gm�x�
dx + o�h3m

n ��

E	Vni2	m ≤ h3m
n

∣∣∣∣∫ 1

−1
u2K�u�du

∣∣∣∣m ∫ 	f ′′�x�w�x�	m f�x�

�Hm�x�
dx + o�h3m

n ��

Therefore,

E1/m	Vni	m ≤ 2h3
n

∣∣∣∣∫ 1

−1
u2K�u�du

∣∣∣∣ (∫ ∣∣∣∣f ′′�x�w�x�
�H�x�

∣∣∣∣m f�x�dx

)1/m

+ o�h3
n��

Applying Eq. (1.3) with p = q = 4, we get

	E�Vn1Vnj�	 ≤ 8�h6
n�

1/2�j− 1�
(∫ 1

−1
u2K�u�du

)2
(∫ (

f ′′�x�w�x�
�H�x�

)4

f�x�dx

)1/2

+ o�h6
n��

So, we have

Var

(
n∑

i=1

Vi

)
= n�2�1+ o�1���

where

�2 = E�V 2
nj�+ 2

�∑
j=2

E�Vn1Vnj�

≤ h6
n

(∫ 1

−1
u2K�u�du

)2 ∫
�f ′′�x�w�x��2

f�x�

1−G�x�
dx

+ 16�h6
n

�∑
j=2

�1/2�j − 1�
(∫ 1

−1
u2K�u�du

)2
(∫ (

f ′′�x�w�x�
�H�x�

)4

f�x�dx

)1/2

+ o�h6
n��

Applying Theorem 18.5.4 in Ibragimov and Linnik (1971), we obtain the result.

Lemma 2.2. Under assumptions of Theorem 1.1, we have∫ �

0
�f ∗

n �t�− �fn�t��2w�t�dt = �nhn�
−1
(∫

K2�u�du
)(∫ f�x�

�G�x�
w�x�dx

)
+ op�n

−1/2h2
n��
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Central Limit Theorem for ISE of Kernel Density 1343

Proof. It can be checked easily that

∫ �

0
�f ∗

n �t�− �fn�t��2w�t�dt =
1

�nhn�
2

∫ �

0

(
n∑

i=1

Xi�t�

)2

w�t�dt�

where Xi�t�’s are bounded random variables defined by

Xi�t� = K

(
t − Zi

hn

)
�i

�G�Zi�
− E

(
K

(
t − Zi

hn

)
�i

�G�Zi�

)
�

It is easy to find out

∫ �

0
E
(
f ∗
n �t�− �fn�t�

)2
w�t�dt ≤ 1

nh2
n

∫ �

0
E
(
X2

i �t�
)
w�t�dt

+ 2
n2h2

n

∫ �

0

∑
1≤i<j≤n

E
(
Xi�t�Xj�t�

)
w�t�dt

= In1 + In2�

Simple algebra shows

In1 =
1

nhn

(∫
K2�u�du

) ∫ f�x�

�G�x�
w�x�dx + o�n−1�� (2.14)

To estimate the second term, define A1 and A2 as follows:

A1 = ��i� j� 	 i� j ∈ �1� � � � � n	� 1 ≤ j − i ≤ �n	�

A2 = ��i� j� 	 i� j ∈ �1� � � � � n	� �n + 1 ≤ j − i ≤ n− 1	�

where �n = h−1
n log n� Assumption (5) implies that for all i < j

∣∣E(Xi�t�Xj�t�
)∣∣ = ∣∣∣∣∫ ∫

K

(
t − x

hn

)
K

(
t − y

hn

)
f1�j−i+1�x� y�dxdy

−
∫

K

(
t − x

hn

)
f�x�dx

∫
K

(
t − y

hn

)
f�y�dy

∣∣∣∣
≤ h2

n

∫ ∫
K�u�K�v�	f1�j−i+1�t − hnu� t − hnv�

− f�t − hnu�f�t − hnv�	dudv
≤ Mh2

n� (2.15)

We have

∑
1≤i<j≤n

∣∣E(Xi�t�Xj�t�
)∣∣ = ∑

�i�j�∈A1

∣∣E(Xi�t�Xj�t�
)∣∣+ ∑

�i�j�∈A2

∣∣E(Xi�t�Xj�t�
)∣∣�
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1344 Jomhoori et al.

Using (2.15), we can write

∑
�i�j�∈A1

∣∣E(Xi�t�Xj�t�
)∣∣ = n−�n∑

i=1

i+�n∑
j=i+1

	E(Xi�t�Xj�t�
)	

= O�nhn log n�� (2.16)

We conclude from Eq. (1.3) that

	E (Xi�t�Xj�t�
) 	 = O

(
���j − i�

{
E�X

2
1−�
i �t��E�X

2
1−�
j �t��

} 1−�
2
)

= O�h1−�
n ���j − i��� (2.17)

Therefore, we have

∑
�i�j�∈A2

∣∣E(Xi�t�Xj�t�
)∣∣ = O

(
h1−�
n

n−1∑
q=�n

n−q∑
i=1

���q�

)
= O

(
nh1−�

n

n−1∑
q=�n

���q�

)

= O

(
nh1−�

n

n−1∑
q=�n

(
q

�n

)�

���q�

)
� (2.18)

Now choose � such that �
− 1�� > 1, then (2.18) implies that∑
�i�j�∈A2

∣∣E(Xi�t�Xj�t�
)∣∣ = o�nhn�� (2.19)

Hence, (2.16) and (2.19) implies

In2 = o�n−1/2h2
n�� (2.20)

By means of Holder’s inequality,

Var

∫ �

0

(
n∑

i=1

Xi�t�

)2

w�t�dt


≤
∫ �

0

∫ �

0
E

[ n∑
i=1

Xi�t�

]2 [
n∑

i=1

Xi�s�

]2
w�t�w�s�dt ds

≤
∫ �

0

∫ �

0
E1/2

(
n∑

i=1

Xi�t�

)4

E1/2

(
n∑

i=1

Xi�s�

)4

w�t�w�s�dt ds�

Obviously, we could write

E

(
n∑

i=1

Xi�t�

)4

=
n∑

i=1

E
(
X4

i �t�
)+∑

i �=j

E
(
X2

i �t�X
2
j �t�

)+∑
i �=j

E
(
X3

i �t�Xj�t��

+ ∑
i �=j �=k

E
(
X2

i �t�Xj�t�Xk�t�
)+ ∑

i �=j �=k �=l

E
(
Xi�t�Xj�t�Xk�t�Xl�t�

)
� (2.21)
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Central Limit Theorem for ISE of Kernel Density 1345

Note that 	Xi�t�	 < C for all i ≥ 1� where C is a positive constant. Therefore,

n∑
i=1

E
(
X4

i �t�
) = O�n�� (2.22)

On the other hand,

E
(
X2

i �t�X
2
j �t�

) ≤ C2	E�Xi�t�Xj�t��	� (2.23)

To the second expectation in (2.21) above, we will apply the same method of
computing (2.16) and (2.19) on (2.23), therefore∑

i �=j

E
(
X2

i �t�X
2
j �t�

) = O�nhn log n�� (2.24)

Similarly, we conclude ∑
i �=j

E
(
X3

i �t�Xj�t�
) = O�nhn log n�� (2.25)

To estimate the forth expectation, we proceed as follows:

∑
i �=j �=k

E
(
X2

i �t�Xj�t�Xk�t�
) = O

( ∑
i<j<k

	E (X2
i �t�Xk�t�

) 	) � (2.26)

By (2.17) we have

∑
i<j<k

	E (X2
i �t�Xk�t�

) 	 = O

(
h1−�
n

n∑
i=1

n∑
j=i+1

n∑
k=j+1

���k− i�

)

= O

(
h1−�
n

n∑
i=1

n∑
p=1

n∑
q=p+1

���q�

)

= O

(
h1−�
n

n∑
i=1

n∑
p=1

n∑
q=p+1

(
q

p

)2

���q�

)

= O

(
nh1−�

n

n∑
p=1

1
p2

n∑
q=p+1

q2���q�

)
� (2.27)

Now, choose � such that 
� > 3, then (2.27) implies that∑
i �=j �=k

E
(
X2

i �t�Xj�t�Xk�t�
) = O�nh1−�

n �� (2.28)

We apply similar procedure to derive fifth term in (2.21),

∑
i �=j �=k �=l

E
(
Xi�t�Xj�t�Xk�t�Xl�t�

) = O

( ∑
i<j<k<l

	E(Xi�t�Xl�t�
)	)
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1346 Jomhoori et al.

= O

(
h1−�
n

n∑
i=1

n∑
j=i+1

n∑
k=j+1

n∑
l=k+1

���l− i�

)

= O

(
h1−�
n

n∑
i=1

n∑
m=1

n∑
p=m+1

n∑
q=p+1

(
q

p

)3

���q�

)

= O

(
nh1−�

n

n∑
m=1

1
m3/2

n∑
p=m+1

1
p3/2

n∑
q=p+1

q3���q�

)
� (2.29)

Now, choose � such that 
� > 4, then (2.29) implies that∑
i �=j �=k �=l

E
(
Xi�t�Xj�t�Xk�t�Xl�t�

) = O�nh1−�
n �� (2.30)

Equations (2.22), (2.24), (2.25), (2.28), and (2.30) imply that

�nhn�
−4Var

∫ �

0

(
n∑

i=1

Xi�t�

)2

w�t�dt

 = o�n−1h4
n�� (2.31)

Finally, the result follows from (2.14), (2.20), and (2.31).

The next lemma exhibits an asymptotic expansion for Qn2�

Lemma 2.3. Under the assumptions of Theorem 1.1, we have

Qn2 = �nhn�
−1
(∫

K2�u�du
) ∫ f�t�

�G�t�
w�t�dt + op�n

−1/2h2
n�� (2.32)

Proof. Equation (2.4), in conjunction with simple computations, implies

Qn2 = Dn1 +Dn2 +Dn3 +Dn4 +Dn5 +Dn6� (2.33)

where

Dn1 =
∫ �

0
�f ∗

n �t�− �fn�t��2w�t�dt�

Dn2 =
∫ �

0

[
h−1
n

∫ �H�x�−�Yn�x�
�Yn�x��G�x�

K

(
t − x

hn

)
dNn�x�

]2
w�t�dt�

Dn3 =
∫ �

0

[
h−1
n

∫
Rn�x�dK

(
t − x

hn

)]2
w�t�dt�

Dn4 = 2
∫ �

0
�f ∗

n �t�− �fn�t��
[
h−1
n

∫
Rn�x�dK

(
t − x

hn

)]
w�t�dt�

Dn5 = 2
∫ �

0
�f ∗

n �t�− �fn�t��
[
h−1
n

∫ �H�x�−�Yn�x�
�Yn�x��G�x�

K

(
t − x

hn

)
dNn�x�

]
w�t�dt�

Dn6 = 2
∫ �

0

[
h−1
n

∫
Rn�x�dK

(
t − x

hn

)][
h−1
n

∫ �H�x�−�Yn�x�
�Yn�x��G�x�

K

(
t − x

hn

)
dNn�x�

]
w�t�dt�
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Central Limit Theorem for ISE of Kernel Density 1347

Lemma 2.2 implies

Dn1 = �nhn�
−1
(∫

K2�u�du
)(∫ f�x�

�G�x�
w�x�dx

)
+ op�n

−1/2h2
n�� (2.34)

Applying Theorem 1 in Cai (1998a), we can get easily that

	Dn2	 ≤
(
sup
x≥0

	�H�x�−�Yn�x�	
)2 ∫ �

0

[
h−1
n

∫
K

(
t − x

hn

)
dNn�x�

�Yn�x��G�x�

]2

w�t�dt

= o�n−1/2h2
n� a�s� (2.35)

Equation (2.5) implies

	Dn3	 ≤
(
sup
x≥0

	Rn�x�	
)2 ∫ �

0

[
h−1
n

∫
dK

(
t − x

hn

)]2
w�t�dt

= o�n−1/2h2
n� a�s�� (2.36)

	Dn4	 ≤ 2	Dn1	1/2	Dn3	1/2 = op�n
−1/2h2

n� a�s� (2.37)

Likewise, applying Theorem 1 in Cai (1998a), we obtain

	Dn5	 ≤ 2	Dn1	1/2	Dn2	1/2 = op�n
−1/2h2

n� a�s�� (2.38)

	Dn6	 ≤ 2	Dn2	1/2	Dn3	1/2 = op�n
−1/2h2

n� a�s� (2.39)

The result follows from (2.33)–(2.39).

Proof of Theorem 1.1. By expanding the square in (1.4), we have

ISE�fn�t�� = Qn1 +Qn2 +
∫ �

0
��fn�t�− f�t��2w�t�dt�

where Qn1 and Qn2 are defined in (2.1) and (2.2). Applying Lemmas 2.1 and 2.3, we
obtain the result.

Proof of Corollary 1.1. Let

�n�t� =
√
fn�t�−

√
f�t�√

fn�t�+
√
f�t�

�

It follows from (2.4) that

sup
0≤t≤�

	�n�t�	 = sup
0≤t≤�

	fn�t�− f�t�	
�
√
fn�t�+

√
f�t��2

≤ sup
0≤t≤�

	fn�t�− f̄n�t�	
�
√
fn�t�+

√
f�t��2

+ sup
0≤t≤�

	f̄n�t�− f�t�	
�
√
fn�t�+

√
f�t��2

≤ sup
0≤t≤�

h−1
n 	 ∫ �Fn�x�− F�x��dK� t−x

hn
�	

f�t�
+ sup

0≤t≤�

	f̄n�t�− f�t�	
f�t�
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1348 Jomhoori et al.

≤
(
sup
x≥0

	�̂n�x�−��x�	
)
sup
0≤t≤�

h−1
n 	 ∫ �F�x�dK ( t−x

hn

)
	

f�t�
+ O

(
a2
n

hn

)
+ O�h2

n�

≤ O

(
an

hn

)
+ O

(
a2
n

hn

)
+ O�h2

n� = o�1� a�s�

Therefore,

HD�fn� =
∫ �

0

�fn�t�− f�t��2

4f�t�
dt +

∫ �

0

�2
n�t�− 2�n�t�

4f�t�
�fn�t�− f�t��2dt

=
∫ �

0

�fn�t�− f�t��2

4f�t�
dt + o�1�

∫ �

0

�fn�t�− f�t��2

4f�t�
dt� (2.40)

Equation (2.40), in conjunction with the main theorem, in the case that the weight
function is 1

4f�t� , completes the proof.
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