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Abstract  
 

This study focuses on the optimization of the plane structure. Sequential quadratic programming 
(SQP) will be utilized, which is one of the most efficient methods for solving nonlinearly constrained 
optimization problems. A new formulation for the second order sensitivity analysis of the two-
dimensional finite element will be developed. All the second order required derivatives will be 
calculated. These values will be used in SQP scheme for structural optimization. Both plane stress and 
plane strain problems are analyzed. Numerical examples show the success and effectiveness of the 
suggested formulation. 
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1. Introduction 
 

The optimization problem considered in this paper consists of minimizing an objective 
function subject to some constraints insuring the feasibility of the structural design. This kind 
of the problem can be written in the following general mathematical form: 

Minimize )(xf  (1) 

Subjects to the constraints: 

mjxc j ,10)( =≥  (2) 

In the classical weight minimization with sizing variables, the objective function (1) is 
very often a linear function of the design variables, ix . For the sake of generalization, )(xf  is 
assumed to be a nonlinear function in the present paper. Consequently, the object function 
can represent any structural characteristic to be minimized, such as stress concentration, with 
sizing or shape design variables. The inequalities (2) are the behavior constraints that impose 
limitations on structural response quantities. For instance, the upper bounds on stresses and  
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Nomenclature 
 

 

[ ]B  strain matrix of the  initial finite element. 

[ ]B̂  strain matrix of the deformed finite element. 

[ ]mD  elasticity matrix. 

{ }D  nodal displacement. 

if  design element shape function. 

[ ]J  Jacobin matrix. 

[ ]Ĵ  Jacobin matrix of the deformed finite element. 

J  determinant of  Jacobin matrix. 

yx
JJ ,  derivatives of J with respect to master node coordinates. 

iN  finite element shape function. 

sr,  local coordinates of the design element. 

[ ]eK  element stiffness matrix. 

YX ,  global coordinates of design element nodes. 

yx,  global coordinates of finite element nodes. 

kk YX δδ ,  design changes related to kth master node. 

ηξ ,  local coordinates of the finite element. 
 
displacements under static loading cases are usually limited. These constraints are regularly 
non-linear functions, but in some situations, they might also include linear functions, as well. 

For the sake of simplicity, no equality constraints are explicitly stated in the presented 
non-linear programming problem. However, it is important to mention that the proposed 
formulation in this paper can easily handle equality constraints. In fact, this kind of the 
constraints can be substituted by two opposed inequalities. For the manufacturing reasons, the 
design variables must frequently be bounded from below and above. To condense the 
formula, these side constraints are not written separately in the optimization problem 
statement. In other words, they are assumed to be included in the general constraints (2). 

There are many practical strategies for solving this design optimization problem, such as: 
the gradient projection method, trust region technique and sequential quadratic programming 
(SQP) tactic. Among these approaches, SQP scheme is an important one. SQP method 
replaces the primary optimization problem with a sequence of quadratic sub-problems. In this 
tactic, each sub-problem is generated through second order Taylor's series' expansion of the 
Lagrangian function. The constraints are also written in terms of intermediate linear 
variables. 

One of the main steps of the gradient-based optimization techniques is the sum of the first 
order derivatives (gradients) of structural response with respect to the design variables. Due 
to the implicit relations of the behavior and design variables, computation of such derivatives, 
which is called sensitivity analysis, is an expensive and time-consuming process in structural 
optimization. Finding this kind of derivative in structural optimization problems is widely 
achieved by using the well known finite difference techniques [1-3].  
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A disadvantage of the mentioned strategies is that a proper step size should be chosen for 
the design variables. Furthermore, for a problem with k design variables, finite difference 
calculations of the displacement derivatives, with respect to design variables, require analysis 
of k+1 different stiffness matrices. On the other hand, a large number of the analysis 
associated with finite difference estimations can be avoided by utilizing analytical 
computation of sensitivity derivatives. It is worth emphasizing that different shape 
optimization tactics for the varieties of structural systems are available in the literature [4-6]. 
Most of the optimization techniques utilize the finite element strategy and sensitivity analysis 
[7-8]. A key role is usually played by the procedure of calculating the sensitivity derivatives 
[9-11]. 

The purpose of this paper is to introduce an efficient second order sensitivity formulation 
for the shape optimization of continuum structures. This study has two different features. The 
first is the use of a limited number of master nodes to characterize the form of an 
isoparametric finite element, and the adoption of their coordinates as design variables for the 
shape optimization. The second is the derivation of analytical formulations for the gradients. 
Finally, the sensitivity analysis is incorporated into authors' finite element computer program. 
To show the effectiveness of the proposed formulation, some numerical examples are solved, 
and the related discussions are presented. 

 
2. Sequential quadratic programming (SQP) method 
 

The structural optimization tactic, which is used in this paper, is based on a well known 
strategy in mathematical programming. The sequential quadratic programming (SQP) 
procedure first was proposed by Wilson and referred to as the solver scheme. Following 
Fletcher, this technique is best interpreted by applying Newton’s method to find the 
stationary point of the subsequent Lagrangian function: 

∑−= )()(),( xcrxfrxL jj  (3) 

In this function, the ,
jr s denote the Lagrangian multipliers associated with the constraints, 

)(xc . Hence, this approach is named ‘Lagrange-Newton method’. It should be reminded; this 
process was initially intended to be a second order technique, i.e. a procedure using second 
derivatives of the objective and constraint functions. Because,   second derivatives are usually 
quite cumbersome to evaluate and to store, the Lagrange-Newton method was later modified 
to replace second order information with updated formulas based on the first order 
derivatives. This quasi-Newton implementation, using the now well established DFP or 
BFGS update formulas, is widely used by the numerical optimization community. The 
method can be found in most general purposed non-linear programming packages under the 
appellation Sequential Quadratic Programming (SQP) approach. To set up the related 
formulation, analyst can transform the primary optimization problem (1,2) with a sequence of 
the following quadratic approximations: 

Minimize  )()()(
2
1

000 xxbxxAxx TT −+−−  (4) 

subject to   )()( 00 xxCxc T −+                                                              (5) 

In this optimization problem, the vector b and the matrix C  contain the first derivatives of 
the objective and constraint function, respectively. They can be evaluated at 0x , as follows: 

0xdx
dfb

i
i =  (6) 
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0xdx
dcc

i

j
ij =  (7) 

In the original Lagrange-Newton strategy, the symmetric matrix, A, represents the Hessian 
of the Lagrangian function. The next formula is used to find the required entries: 

∑−=

=

ki

j
jki

ki
ik

dxdx
cd

rdxdxfd

rxdxdx
fdA

2
02

00

2
,

 

 

(8) 

 

 

In this relation, the ,
jr s denote the current values of the Lagrangian multipliers associated 

with the constraints ( 0
jr is zero if the constraint c is inactive). As it was mentioned earlier, 

each quadratic programming (4,5) is generated from the primary problem (1,2) by replacing 
the constraints c(x) with their first order Taylor series' expansions at the current design point. 
In addition, the objective function, f(x), is replaced with a quadratic approximation (4). This 
is a second order Taylor series' expansion, with the addition of constraint curvature terms in 
the Hessian. The inclusion of the constraint curvature terms is very important, because it 
insures a second order rate of convergence, even if the constraints are non-linear. It is worth 
emphasizing, in the case of linear objective function, the process would degenerate into a 
sequential linear programming approach if the constraint curvature term was omitted. One 
example of linear objective function occurs in classical minimum weight design problems 
involving sizing variables. 

The application of the sequential quadratic programming method needs some usual 
computations. A sensitivity analysis provides the first derivatives of the objective function 
and all the constraint functions that have been identified as potentially active. Furthermore, 
the A matrix needs evaluation of the second derivatives for the objective function and all the 
currently active constraints (i.e. the constraints associated with non-zero Lagrangian 
multipliers). In many cases, the required second order sensitivity analysis is not available, or 
it is computationally too expensive. For this reason, in the most commonly used SQP 
implementation, the A matrix is only an approximation to the Hessian of the Lagrangian 
function, gradually built up at each iteration from the first order derivatives. 

 
3. Second order sensitivity analysis 
 

Obviously, the SQP approach based upon quasi-Newton approximation will not, in 
general, converge as fast as a pure Newton scheme using the true second order derivatives. 
This paper develops an efficient formulation in order to generate the required second order 
sensitivity information with little computational time. The second order sensitivity analysis 
presented in this section is restricted to design optimization problems involving constraints on 
static structural responses. However, it is important to mention, for many other types of 
behavior constraints similar developments could probably be accomplished. For simplicity, 
only one applied static load case is assumed for the suggested equations. If there are several 
real load cases, the related equations should be repeated for each one. 

The evaluation of sensitivity derivatives for static displacement and stress constraints is 
now well established and documented. This process starts by differentiating the following 
governing equilibrium equations of the finite element model: 

[ ]{ } { }PqK =  (9) 
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In this equation, [k] is the global stiffness matrix of the structure, {q} is the nodal 
displacements, and {p} is the global vector of equivalent nodal forces. Both [k] and {p} are 
available by assembling all the element stiffness matrices, ek][ , and the element nodal forces, 

ep}{ , respectively. The result of differentiation has the below form: 

[ ] { }
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

=⎥⎦
⎤

⎢⎣
⎡
∂
∂

+
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

X
Pq

X
K

X
qK  (10) 

{ } { }

[ ] { }1

1

~

~

P
X
qK

q
X
K

X
Pp

=
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

⎥⎦
⎤

⎢⎣
⎡
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

=
 

 

(11) 

Differentiating once again gives the succeeding relation: 

[ ] { }
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂∂
∂

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂∂
∂

ijjijijij X
q

X
K

X
q

X
Kq

XX
K

XX
P

XX
qK

i

222  (12) 

Matrix ]/[ 2
ji xxq ∂∂∂  is the second order derivatives of the nodal displacements with 

respect to design variables. For practical sizing problems, where the number of design 
variables might be large, computing and storing the matrix ]/[ 2

ji xxk ∂∂∂ could become 
burdensome. On the other hand, for the shape optimal design applications, the stiffness 
matrix can no longer be expressed as a simple explicit form of the design variables. 
Moreover, its second derivatives can be difficult to evaluate. Hence, it is worth a lot to 
neglect the coupling between design variables, and also to restrict the  matrix to its diagonal 
terms. Therefore, equation (12) will be reduced to the following form:  

[ ] { }
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

=
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

kkkkk X
q

X
Kq

X
K

X
P

X
qK 22

2

2

2

2

2
 

 

(13) 

{ } { }

[ ] { }22
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2ˆ
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X
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X
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⎭
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⎩
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⎢
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⎡
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−⎥
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⎤
⎢
⎣

⎡
∂
∂

−
⎭
⎬
⎫

⎩
⎨
⎧
∂
∂

=  
 

(14) 

In these relations, }~{ 1p and }~{ 2p are referred to the vectors of pseudo-loads. 
 

4. New formulation  
 

To perform second order sensitive analysis, a new formulation for finding ]/[ 22
kxk ∂∂  is 

developed. In two-dimensional elasticity problem, the stiffness matrix of an isoparametric 
element can be formulated as follows: 

[ ] [ ] [ ] [ ] tdxdyBDBk T

A
e ∫∫=  

[ ] [ ] [ ] ηξddJtBDB
T

∫ ∫=
− −

1

1

1

1
 

 

(15) 

In this equation, [B] is the strain matrix, which operates on the nodal displacements to 
produce element strains, [D] is the elasticity matrix, which relates the element stresses and 
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strains, and J  is the determinant of the Jacobin matrix. It should be reminded, [J] maps the 
area dxdy , in global coordinates, to ηξdd , in curvilinear local coordinates or vice versa.  

In most optimal design problems, the mechanical properties of material are prescribed and 
do not change during the optimization process. Based on this fact, the first and second order 
derivatives of the element stiffness matrix with respect to a shape variable kX can be written 
in the usual manner as follows: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ηξdtd
X
J

BDBJ
X
BDBJBD

X
B

X
K

k
m

T

k
m

T
m

k

T

ek
∫ ∫− − ⎟

⎟
⎠
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⎜
⎜
⎝

⎛

∂

∂
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∂
∂

+
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∂
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⎢
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⎡
∂
∂ 1

1

1

1
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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X
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∂
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(16) 

It is well known that a typical coefficient in [B] depends on local coordinates and has ηξ ,
polynomials in both numerator and denominator. Therefore, the parametric integration of the 
stiffness matrix and its derivatives are complex. However, this can be calculated numerically. 
It is obvious that the evaluation of equation (16) requires the derivatives of J and [B] with 
respect to shape variables. A new technique for finding such derivatives is introduced 
hereafter. In order to develop this formulation, an m-node isoparametric design element is 
selected with natural coordinates r and s. Figure 1 shows this kind of element, which is called 
the design element, and consists of several finite elements. 

 
 

 
 

Figure 1. Design element and its associated finite element. 
               ■ Design element nodes; ● Finite element nodes. 

 
Once the nodal coordinates of the design element are determined, the coordinates of its 

internal nodes, such as finite elements nodal points, can be computed by using the technique 
of isoparametric mapping. It should be noted that a comprehensive description of this 
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approach for the shape representation of structures is available in the literature [12]. Using 
this technique, the coordinates of finite element nodal points are generated in the following 
form: 

i

m

i
i Y

X
srf

y
x

∑
= ⎭

⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

1
),(  (17) 

In this relation, iX , iY  and x, y are global coordinates of the design element and its 
associated finite element, respectively. Furthermore, if  shows the isoparametric shape 
function corresponding to the ith node of the design element. By changing the coordinates kX
and kY , which are related to the kth master node of the design element, the shape of structure 
can be updated. Denoting the aforementioned changes by kXδ  and kYδ , the nodal coordinates 
of the deformed finite element, which are shown by ˆ, can be calculated by next equation:  

⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

k

k
k Y

X
srf

y
x

y
x

δ
δ

),(
ˆ
ˆ

 (18) 

In this scheme, the components of an element stiffness matrix are computed in terms of 
the variation of a master node coordinates. At first, by using the equation (18), the Jacobin 
matrix and its determinant for an n-node deformed finite element are calculated as follows: 

[ ] ∑
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⎥
⎦
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⎢
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[ ] [ ] [ ] [ ] kykx YJXJJJ δδ ++=ˆ  (24) 

According to these formulations, the Jacobin matrix of the finite element has a linear form 
in terms of the design changes, kXδ and kYδ . It should be noted that ][J , xJ ][ , and yJ ][ are the 
Jacobin matrix of the initial finite element and its derivatives with respect to the kth master 
node coordinates, kX and kY . In the subsequent lines, the determinant of the Jacobin matrix is 
calculated by using equations (18) and (19): 
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kykx YJXJJJ δδ ++=ˆ  (29) 

According to the last equation, the determinant of Jacobin matrix for the deformed finite 
element has a linear form in terms of the design changes, as well. It should be noted that

x
J

and 
y

J denote the derivatives of Jacobin determinant with respect to the design variables, 

which are calculated from equations (27) and (28), respectively. These are not equal to the 
determinants of matrix xJ ][ and yJ ][ . In the next step, the derivatives of strain matrix [B] , 
with respect to the design variables, are calculated. The components of this matrix are the 
derivatives of finite element shape function with respect to the global coordinates x and y . 
The latest values are related to the problem type. When the n-node isoparametric element is 
used in the optimization process, its related strain matrix and the derivatives of shape 
functions are written as follows: 
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(32) 

The components of the strain matrix can be computed by using equation (32). It is obvious 
that for calculating the derivatives of shape function in global coordinates, the inverse of 
Jacobin matrix is required. In the same manner, to find these derivatives for the deformed 
finite element, the inverse of Jacobin matrix for this element must be calculated. Based on 
these points, the results have the subsequent appearance: 
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In these formulations, aJ ][ , a
xJ ][  and a

yJ ][  are the adjoint of the Jacobin matrix for the 
initial finite element, and its derivatives with respect to the coordinates of kth master node. 
According to equation (37), the adjoint of Jacobin matrix for the deformed finite element, has 
a linear form with respect to the design variables. On the other hand, the inverse of the 
Jacobin matrix for the deformed element is a nonlinear function of the design variables. This 
is because of the existing determinant of Jacobin matrix in the denominator of the fraction of 
equation (33). In the following lines, the derivatives of the shape functions and strain matrix 
of the deformed finite element are computed by using equations (18) and (19): 
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Up to this stage, the required components for calculating the derivatives of the element 
stiffness matrix are obtained. It should be added, another approach can be used to find these 
components, as well. In the following relation, the difference between the stiffness matrix of 
the initial and deformed finite element is computed and the general definition of the 
derivative is used to calculate the first-order derivative of the stiffness matrix: 
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To simplify the presented formulation, the matrices [E], [F] and [G] are used. In the 
succeeding lines, these matrices are defined. Afterward, equation (49) is used with the 
assumption of 0=kYδ . Based on this fact, the components of the stiffness matrices for the 
initial and deformed finite element are computed. 
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x BDBG =  (56) 

By using presented formulation, the stiffness matrices of the initial and deformed finite 
elements are computed. As it is written below, by using equation (53), the derivative of the 
stiffness matrix with respect to the design variable kX  is obtained: 
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By utilizing equation (59), the second order derivatives of the stiffness matrix can be 
formulated as follows: 
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It should be noted that equations (59) and (61) are applicable to each of the nodal 
coordinates of the design element. Both ]/[ kXK ∂∂  and ]/[ 22

kXK ∂∂  are used to calculate the 
vector of the pseudo-loads. Subsequently, the pseudo-loads are utilized to compute the first 
and second order derivatives of the displacements.  

In general, the global constraints involve stresses and displacements of the finite element 
model. To this end, the first and second order derivatives of the displacements were 
computed. In the next stage, a new formulation for finding { } 22 / kX∂∂ σ  is presented. The 
stresses of an isoparametric element can be found as below: 

{ } [ ] [ ] { }eqBD=σ  (62) 

The derivative of the stress with respect to shape variable can be written in the usual manner 
as follows: 
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Differentiating this equation once again will lead to following relation: 
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It is clear that the calculation of the derivatives of the stresses requires finding the 
derivatives of the displacements and strain matrix. In the succeeding lines, the first and 
second derivatives of the strain matrix are computed: 
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Differentiating the last relation once again gives the following results: 
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By using these formulations, the second order derivatives of stresses can be formulated as 
follows: 
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5. Numerical steps 
 

To perform the second order sensitivity analysis, and solving the optimization problem, 
the first and second derivatives of the nodal displacements are required. In the following 
lines, the numerical steps for computing these values are given: 

1. Computing the Jacobin matrix. 
2. Calculating the determinant of the Jacobin matrix. 
3. Picking up the adjoin entries of the Jacobin matrix. 
4. Computing the adjoin derivatives of  the shape functions as follows: 
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5. Forming the adjoin entries of the strain matrix. 
6. Computing the following matrices: 

[ ] [ ]( ) [ ] [ ]am

Ta
x BDBE =  (72) 

[ ] [ ]( ) [ ] [ ]am

Ta BDBF =  (73) 
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[ ] [ ]( ) [ ] [ ]axm
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x BDBG =  (74) 

7. Computing the first and second derivatives of the finite element stiffness matrix with 
respect to the design variables: 
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8. Calculating the vector of pseudo-load related to each finite element as follows: 
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9. Repeating steps 1 through 8 for all finite elements and assembling the structural 
pseudo-load. 

10. Finding  the derivatives of the nodal displacements with respect to design variables by 
solving the following system of equations: 
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11. Forming the vector of pseudo-load related to each finite element as follows: 
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12. Computing the second order derivatives of the nodal displacements with respect to 
design variables by solving the following system of equations: 

[ ] { }22

2

p̂
X

qK
k

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

 

(80) 

 
6. Numerical examples 
 
6.1. Plane stress problems 
 

Most of the three-dimensional design problems can be converted to the two-dimensional 
ones using some simplification assumptions. In the cases where one dimension of the 
structure is too small compared to the other dimensions, the stress components in the small 
direction can be neglected and a two-dimensional state of stress can be considered. This is the 
case of the plane stress problems, which is considered here. In this paper, the optimum 
solution is obtained by writing a computer program. This program consists of several 
subroutines, which can be run on microcomputers. The correct performances of the writers' 
program are checked by   solving some benchmark problems.  
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 6.1.1. Cantilever beam 
 

For the first example, a design of a two-dimensional cantilever beam is considered here. 
The structure is under a concentrated moment of 518 kg cm at its free end. The initial shape 
of the beam is shown in Figure 2. The properties of the structure are: length L = 25.4 cm, 
thickness t = 2.54 cm, modulus of elasticity E = 700000 kg/cm², and Poisson’s ratio v = 0.3. 
In this problem, the y-coordinate of the master nodes i, j and k are selected as design 
variables. Two behavior constraints are considered for the design of this beam. The first 
behavior constraint is the vertical displacement of the free end of the structure, which is 
limited to 1.27 cm. Furthermore, the second behavior constraint is the bending stress at the 
beam cross section, which is limited to 2100 kg/cm².  

As it is shown in Figure 2, the solution of this problem has been found after eight design 
iterations. It is evident that the initial volume of the structure (i.e. 163.87 cm³) is reduced to 
54.19 cm³. The optimum shape of the beam is presented in Figure 3 and in Table 1, the 
results obtained by the proposed formulation are presented along with the pervious findings 
by Rezaiee and Salary [1], Prasad and Ding [12], Haftka [13], and Braibant and Fleury [14]. 
Based on the presented values, it is observed that all of the results are comparable to each 
other. 

 
Figure 2. Initial shape of the beam. 

 
 

 

 
Figure 3. Final design of the beam. 

 

 
Figure 4. Volume reduction history of the beam. 
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Table1. Comparison of the result. 

Height of the beam (cm) 

x(cm) This paper Ref. [1] Ref. [12] Ref. [13] Ref. [14] 
0.00 94.00 1.152 1.121 1.076 1.178 
2.54 0.92 1.094 1.064 1.036 1.137 
5.08 0.90 1.040 1.017 0.996 1.095 
7.62 0.88 0.990 0.977 0.956 1.053 

10.16 0.86 0.944 0.940 0.918 1.011 
12.70 0.84 0.922 0.905 0.882 0.969 
15.24 0.82 0.881 0.868 0.846 0.928 
17.78 0.80 0.826 0.833 0.813 0.886 
20.32 0.78 0.794 0.803 0.783 0.845 
22.86 0.76 0.764 0.782 0.765 0.803 
25.40 0.74 0.740 0.775 0.763 0.762 

Volume (cm³) 54.19 59.09 59.48 58.04 63.61 
 
 

6.1.2. Cantilever beam under a uniformly distributed load 
 

The initial shape of this structure is shown in Figure 5. In the second numerical example, 
the cantilever beam is under a uniformly distributed load. The density of the distributed load 
is equal to 100 kg/m. The properties of the structure are: length L = 8 m, thickness t = .8 m, 
modulus of elasticity E = 210000 kg/cm², and Poisson’s ratio v = 0.2. To optimize the shape 
of this beam, the y-coordinate of master nodes i and j are selected as design variables. 
Moreover, the behavior constraint is the stress at the beam cross section, which is limited to 
25 and 250 kg/cm², for the tension and compression, respectively.  

After performing six design iterations, the solution of this problem has been archived. In 
the optimization process, the initial volume of the structure (i.e. 38.4 cm³) is reduced to 23.47 
cm³. The structural volume variation is shown in Figure 6. 

 

 
 

Figure 5. Initial and final design of the beam.  
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Figure 6. Volume reduction history of the beam. 

 
6.1.3. Concrete pole 
 

An optimized design of a concrete pole is considered, as a third example for plane stress 
problem. The initial shape of the pole is shown in Figure 7. A uniform load of 1000 kg/m is 
applied throughout the pole. The allowable strength of the concrete is 25 and 250 kg/cm², for 
the tension and compression, respectively. Furthermore, the modulus of elasticity and 
Poisson’s ratio have the values of E = 210000 kg/cm² and v = 0.2. The thickness of the pole is 
80 cm, and it is considered fixed during the design process. The design variables contain the 
x-coordinates of the master nodes i , j, k and l.  

As it is shown in Figure 7, the optimum design is obtained after 9 design iterations. The 
structural volume is reduced from the initial value of 76.8 m³ to the optimum one of 23.36 
m³. The variation of the pole volume is shown in Figure 8. 

 

 
Figure 7. Initial and final shape of the concrete pole. 
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Figure 8. Volume reduction history of the concrete pole. 

 
6.2. Plane strain problems 
 

For all of the plane problems, depending on the geometry of the structure and the applied 
loads, only the in-plane components of the strains may be considered. In fact, the other 
components of strains can be neglected. The finite element solutions of a few such continua, 
which are referred to as plane strain problems, are considered in the following lines.   

 
6.2.1. Gravity dam 
 

The first plane strain problem, an optimum design of the down-stream side of a gravity 
dam, is considered. The initial shape of the dam is shown in Figure 9. The dam is built of the 
concrete materials with the following properties: modulus of elasticity E = 210000 kg/cm², 
Poisson’s ratio v = 0.2, tensile allowable stress 10 kg/cm², compressive allowable stress 100 
kg/cm². This structure is designed only against water pressure loads, and principal stresses at 
the Gauss points are limited to the maximum allowable values. In this problem, the width of 
the dam at its head has a limited value of 6.0 m.  

To optimize this structure, the shape of the downstream wall is controlled by using three 
design variables: iX , jX and kX . After performing 11 design iterations, the volume of the dam 
is reduced from 3000 to 1351 m³. The variation of the structural volume is shown in Figure 
10. To demonstrate the finding, the final shape of the dam is presented in Figure 9. It is worth 
emphasizing that this problem was solved previously by Rezaiee and Salary [1], and the 
optimized volume of the dam was reported 1665 m3. 

 

 
Figure 9. Initial and final shape of the dam. 
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Figure 10. Volume reduction history of the dam. 

 
6.2.2. Tunnel 
 

In this example problem, an optimum design of the internal face of a tunnel is considered. 
This structure is shown in Figure 11. The initial shape of the tunnel is a semi-ellipse with 
long and short diameters of 13 and 9 m, respectively. This tunnel is running through 
unconsolidated clay with a saturated density of γ = 2 t/m³. The earth pressure is considered 
equal to the weight of the earth column of height z (i.e. γz), which is applied as radial forces 
at any point of the tunnel face. This plane strain   structure is built of un-reinforced concrete 
with the tensile and compressive strengths of 20 and 200 kg/cm², respectively. The principal 
stresses at the tunnel are considered as the stress constraints. To perform the optimization 
process, the nodal coordinates: iX , jX , jY  and kY are selected as the design variables. The 
solution of the problem is found after 5 design iterations. Figure 12 reveals the optimum 
shape of the structure. It is evident that the volume of the tunnel is reduced from the initial 
value of 9.4 m3 to the optimized one of 6.59 m3. This problem was solved previously by 
Rezaiee-Pajand and Salary [1]. According to the reported results, the final volume of the 
tunnel was found to be 6.0 m3 , after 13 iterations.  

 

 
Figure 11. Initial shape of the tunnel. 
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Figure12. Final shape of the tunnel. 
 

7. Conclusion 
 

This study deals with the second order sensitivity analysis of the plane structural problem. 
The goal is to find the optimized continuum shaped. To perform the optimization process, the 
finite element method and the design element technique were utilized. In this article, the 
required formulations for calculating the sensitivity derivatives of a general finite element 
were presented. Afterward, the developed formulations are used to compute the second order 
derivatives of the stiffness matrix of an eight-node isoparametric element. According to the 
numerical results, it is proven that the proposed second order sensitivity analysis has the 
effective capability for the shape optimization of the continuum structures, when used along 
with SQP method. 
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