
Integration of nonlinear mixed
hardening models

Mohammad Rezaiee-Pajand
Department of Civil Engineering, Ferdowsi University of Mashhad,

Mashhad, Iran

Cyrus Nasirai
Department of Civil Engineering, Islamic Azad University – Mashhad Branch,

Mashhad, Iran, and

Mehrzad Sharifian
Department of Civil Engineering, Ferdowsi University of Mashhad,

Mashhad, Iran

Abstract

Purpose – The purpose of this paper is to present a new effective integration method for cyclic
plasticity models.

Design/methodology/approach – By defining an integrating factor and an augmented stress
vector, the system of differential equations of the constitutive model is converted into a nonlinear
dynamical system, which could be solved by an exponential map algorithm.

Findings – The numerical tests show the robustness and high efficiency of the proposed integration
scheme.

Research limitations/implications – The von-Mises yield criterion in the regime of small
deformation is assumed. In addition, the model obeys a general nonlinear kinematic hardening and an
exponential isotropic hardening.

Practical implications – Integrating the constitutive equations in order to update the material state
is one of the most important steps in a nonlinear finite element analysis. The accuracy of the
integration method could directly influence the result of the elastoplastic analyses.

Originality/value – The paper deals with integrating the constitutive equations in a nonlinear finite
element analysis. This subject could be interesting for the academy as well as industry. The proposed
exponential-based integration method is more efficient than the classical strategies.

Keywords Differential equations, Vectors, Plasticity, Exponential based integration method,
Discrete consistent tangent matrix, Cyclic plasticity, Nonlinear mixed hardening,
Exponential isotropic hardening

Paper type Research paper

1. Introduction
The real material behavior under severe loading conditions, is usually explained by
plasticity models obeying hardening mechanisms. When the load increases
monotonically and no unloading occurs, the linear isotropic and kinematic hardening
models present a reasonable description of the material behavior. However, many
structures are exposed to cyclic loads, such as earthquake excitations or ocean waves.
In these cases, only precise nonlinear isotropic and kinematic hardening constitutive
models can predict structural responses.
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In the kinematic hardening mechanism, the yield surface is assumed to undergo the
translation in the stress space. Therefore, the hardening rule must consider anisotropy
and Bauschinger effect exhibited by real materials. The simplest kinematic hardening
mechanism was proposed by Prager (1956). According to this rule, the incremental
translation of the yield surface occurs in the direction of the plastic strain increment
(Chakrabarty, 2006). As this model could not predict ratcheting, numerous efforts in
developing hardening rules have been carried out. All the kinematic hardening models
are classified into coupled and uncoupled models (Bari and Hassan, 2000). In the
coupled models, the calculating of the plastic modulus is coupled with its kinematic
hardening mechanism through the yield surface consistency condition. Several coupled
models are suggested by Armstrong and Frederick (1966), Chaboche (1986, 1991, 2008),
Ohno and Wang (1993), Abdel-Karim and Ohno (2000), Kang (2004), Abdel-Karim
(2009) and Rezaiee-Pajand and Sinaie (2009). In another class of models, the plastic
modulus might be indirectly influenced by the kinematic hardening rule but its
calculation is not coupled to the kinematic hardening rule through the consistency
condition. A number of uncoupled models are suggested by Mroz (1967), Dafalias and
Popov (1976) and Tseng and Lee (1983).

A simple mathematical formulation for isotropic hardening is obtained by assuming
that the yield surface uniformly expands without any change in shape. This isotropic
hardening mechanism has a linear behavior, and the yield surface expansion is a
function of the accumulated plastic strain. Although this theory is very straightforward,
it is unsuitable to express the behavior of the real materials. For isothermal plastic
deformation, Chaboche (1986) suggested a nonlinear isotropic hardening in which the
yield surface size reaches saturation after several load cycles. Under cyclic conditions,
for some polycrystalline materials, e.g. OFHC copper and stainless steels, plastic strain
range memorization can be observed. The phenomenon means that after applying a
large cyclic strain range, the subsequent material behavior has been hardened. For lower
strain ranges, the stabilized cyclic strength is higher than under normal cyclic conditions
without a prior hardening at a larger strain range (Chaboche, 2008). This behavior
cannot be taken into account by the isotropic hardening model, in which the yield surface
size saturates only once into a fixed value. In this subject, many efforts were done such as
Ohno (1982), Ohno and Kachi (1986), Zhang et al. (2002) and Kang et al. (2003).

One of the key parts in the nonlinear analysis for the elastoplastic evolution problems is
the integration of constitutive equations. As analytical solutions for these problems are not
commonly available, this process is usually performed by approximate methods. This kind
of approximation is mostly carried out by the numerical integration, and normally requires
numerous computations. Therefore, the accuracy and robustness of the numerical tactic
can play a significant role in elastoplastic analyses. Generally, the integration strategies in
plasticity are divided into explicit and implicit categories. In the explicit techniques,
updated quantities are only obtained based on the known values at the onset of the load
step. In other words, there is no need for any iterative process. One of the well-known
explicit schemes is the forward Euler approach. On the other hand, in the implicit methods,
updated quantities are determined based on the unknown values at the end of the new load
step. Therefore, the solution will have an iterative nature. The return map algorithms, such
as the numerical strategies proposed by Wilkins (1964), Rice and Tracey (1973) and Ortiz
and Popov (1985) belong to this group. In the past several years, the implicit backward
Euler integration methods for cyclic plastic or visco-plastic constitutive models are
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provided by Kobayashi and Ohno (2002), Kobayashi et al. (2003), Kang (2006) and Kan et al.
(2007). These tactics give converged solutions even with large load steps.

In the recent decade, the integration methods based on exponential maps are
introduced, which are developed in an augmented stress space. First, Hong and
Liu (1999) presented the augmented stress space by addition of a component of time
and represented the plasticity model in the Minkowski space-time. The researchers
showed that the von-Mises plasticity model with linear kinematic hardening could be
converted into a system of linear differential equations in the augmented stress space.
Afterward, the characteristics of the Minkowski space-time in the constitutive model of
the perfect elastic-plastic models and also the models with mixed hardening were
investigated (Hong and Liu, 2000a, b; Liu, 2003, 2004). Auricchio and Beirão da Veiga
(2003) proposed the exponential maps for solving the differential equation system in
the augmented stress space and presented a first-order integration algorithm for the
constitutive model with a linear mixed hardening mechanism. Subsequently, this
technique was extended to a second-order accuracy scheme (Artioli et al., 2006;
Rezaiee-Pajand and Nasirai, 2007). Also, Artioli et al. (2007) presented an integration
procedure based on exponential maps by considering the von-Mises plasticity with a
linear isotropic and Armstrong-Frederick kinematic hardening. A numerical
integration based on exponential maps for the Drucker-Prager’s elastoplastic models
was presented by Rezaiee-Pajand and Nasirai (2008). Rezaiee-Pajand et al. (2010)
proposed an exponential-based scheme in integrating the constitutive equations along
with multi-component nonlinear kinematic hardening. Finally, Rezaiee-Pajand et al.
(2011) derived an accurate solution and two exponential-based integrations for
Drucker-Prager plasticity with linear mixed hardening.

In the present study, the von-Mises criterion with combined multi-component
nonlinear kinematic and exponential isotropic hardening are studied for its integration
algorithm and consistent tangent modulus. Furthermore, the classical forward Euler
method and its discrete consistent tangent operator are presented in detail for the sake
of the comparison with the results of the proposed technique. In order to confirm the
validity, effectiveness, robustness and performance of the exponential-based method,
a wide range of numerical examinations is performed in this study.

To simplify the descriptive relations, all second-rank tensors are considered as
nine-dimensional vectors by ordering the tensor components in a vector format. Owing to
the symmetry of the second-rank tensors, the number of independent components is
reduced to 6. The definition of the trace operator and the Euclidean norm must be modified.

2. Basic equations
A von-Mises yield criterion, with nonlinear isotropic and nonlinear kinematic
hardening, in the small strain regime may be written as:

F ¼ kSk2 R ð1Þ

where, k · k is the Euclidean norm and R denotes the radius of the yield surface in the
deviatoric stress space. Furthermore, S is the shifted stress and is defined as follows:

S ¼ s2 a ð2Þ

In the above equation, s and a represent the deviatoric part of the stress and the back
stress, respectively. The back stress indicates the center of the yield surface, which evolves
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with the kinematic hardening rule. It should be noted, assuming plastic incompressibility,
the total back stress and its deviatoric part are identical. The deviatoric stress, s, can be
determined by splitting the stress vector s, in the following form:

s ¼ sþ pi with p ¼
1

3
trðsÞ ð3Þ

where, p is the hydrostatic pressure and “tr” is the trace operator. Also, idenotes the vector
corresponding to the second-rank unit tensor. The total strain 1 can be composed of
deviatoric part, e, and volumetric part 1v, as:

1 ¼ eþ
1

3
1vi with 1v ¼ trð1Þ ð4Þ

Since the plastic volumetric strain is equal to zero, the volumetric strain is related to the
hydrostatic pressure, with the material bulk modulus K, by the following relation:

p ¼ K1v ð5Þ

Decomposition of the deviatoric strain into elastic and plastic parts yields:

e ¼ ee þ ep ð6Þ

The deviatoric stress is related to the elastic deviatoric strain through the
below-generalized Hooke’s law:

s ¼ 2Gee ¼ 2Gðe2 epÞ ð7Þ

where,G is the elastic shear modulus. Using the associative flow rule, the rate of the plastic
deviatoric strain can be written as:

_ep ¼ _gn ð8Þ

The term _g is a proportionality factor, and the vectorn is normal to the yield surface at the
contact stress point. Thus, the direction of the vector _ep is n and its magnitude is equal to
_g. In the von-Mises criterion, n may be obtained by the following relation:

n ¼
›F

›S
¼

S

kSk
¼

S

R
ð9Þ

In this study, a nonlinear isotropic hardening rule for the plastic deformation is used,
which was originally presented by Chaboche (1986) as follows:

_R ¼ �bðR0 þ Rs 2 RÞ _g ð10Þ

Here, R0 is the initial radius of the yield surface, �b and Rs are the material constants for
isotropic hardening. The off-switch for the evolution of the radius of the yield surface is
defined by:

_g ¼ 0 or R $ R0 þ Rs ð11Þ

The second condition in the above equation shows that the radius of the yield surface will
be stabilized if it reaches R0 þ Rs. Solving the differential equation (10), with the initial
conditions R ¼ R0 and g ¼ 0, leads to:

R ¼ R0 þ Rs½1 2 expð2�bgÞ� ð12Þ
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The kinematic hardening mechanism defines the translation of the yield surface during a
plastic phase. In this work, a decomposed form of the back stress for the nonlinear
kinematic hardening is considered. The most important feature of this rule is the ability to
simulate ratcheting in the cyclic plasticity constitutive models. This kinematic hardening
rule in its general form can be expressed by the following equations:

_a ¼
Xm
i¼1

_ai; _a i ¼ Hkin;i _gn2 _gAiai ð13Þ

where, m is the number of components of the deviatoric back stress vector and Hkin,i’s are
material parameters. The scalar functions that express the dynamic recovery of each
component of deviatoric back stress are shown by Ai’s. Five different relations for Ai

function relevant to five well-known nonlinear kinematic hardening models are given
below:

(1) Chaboche (1986) model:
Ai ¼ Hnl;i ð14Þ

(2) Chaboche (1986) model-fourth rule with a threshold:

Ai ¼ Hnl;i for i # 3

Ai ¼ Hnl;i 1 2 �a
ka ik

D E
for i ¼ 4

8><
>: ð15Þ

(3) Ohno and Wang (1993) model-1:

Ai ¼ Hnl;i nT ai

kaik

� �
H aT

i ai 2
3

2

Hkin;i

Hnl;i

� �2
( )

ð16Þ

(4) Ohno and Wang (1993) model-2:

Ai ¼ Hnl;i nT ai

kaik

� �
Hnl;i

Hkin;i

� �
kaik

� �qi
ð17Þ

(5) Abdel-Karim and Ohno (2000) model:

Ai ¼ Hnl;imi þ Hnl;i nT ai

kaik
2 mi

� �
H aT

i ai 2
3

2

Hkin;i

Hnl;i

� �2
( )

ð18Þ

In equations (12) through (16), �a, qi’s, Hnl,i’s and mi’s are all material constants.
Also, H is the Heaviside’s step function and , . is the MacCauley brackets,
i.e. kxl ¼ ðxþ jxjÞ=2. The Kuhn-Tucker loading-unloading conditions are as follows:

_g $ 0; F # 0; _gF ¼ 0 ð19Þ

The material behaves plastically if _g . 0 and elastically when _g ¼ 0. Using the
consistency condition during the plastic phase, i.e. _F ¼ 0, and employing equations
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of the hardening rules and the associative flow rule, the proportionality factor will be
achieved by the following equation:

_g ¼
2GðnT _eÞ

2 �Gþ �bðRs þ R0 2 RÞ2 nT
Pm

i¼1Aiai

ð20Þ

where, �G is defined with the following relation:

2 �G ¼ 2Gþ
Xm
i¼1

Hkin;i ð21Þ

3. Integration based on forward Euler method
The forward Euler algorithm is a classical explicit numerical scheme for the
stress-updating integration. This integration scheme is straightforward and its results
are satisfactory. It uses the first derivative of the yield function and does not require
iterative calculations to obtain the updated stress. On the other hand, the final stress at
the end of each load step should be corrected to lay on the yield surface because the
consistency condition is not involved in the procedure automatically. In this section,
the stress-updating algorithm, based on forward Euler method for the von-Mises
criterion with combined multi-component nonlinear kinematic and exponential
isotropic hardening, is developed. In addition, the tangent operator consistent with the
stress-updating algorithm is provided.

3.1 Integration algorithm
In order to integrate the elastoplastic constitutive equations, it is assumed that the rate
of strain _e is kept constant over each time increment. Therefore, a strain increment De
over the time interval [tn, tnþ1] is considered. At time tn, the constitutive variables
en; e

p
n; sn;an

� �
which characterize the material state are known. The integration

algorithm must update the material state at time tnþ 1. Applying a strain
increment De ¼ enþ1 2 en, a trial solution at the end of the time step is obtained as
follows:

sTR
nþ1 ¼ sn þ 2GDe

aTR
nþ1 ¼ an

ep;TR
nþ1 ¼ ep

n

gTR
nþ1 ¼ gn

ð22Þ

In this stage, the trail solution must be verified to be acceptable. This requires the
following condition:

ksTR
nþ1 2 aTR

nþ1k # RTR
nþ1 with RTR

nþ1 ¼ R0 þ Rs 1 2 exp 2�bgTR
nþ1

	 
� �
ð23Þ

If equation (23) was not satisfied, the step should be divided into an elastic part and a
plastic one. Consequently, a scalar parameter a [ [0,1) is introduced to define the
elastic part aDt, and the plastic portion [(1 2 a)Dt ] of the step. The parameter a can be
obtained by these equations:
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k2GaDeþ sn 2 ank
2
¼ R2

n

Da 2 þ 2CaþM ¼ 0

D ¼ k2GDek
2
; C ¼ 2GDeTðsn 2 anÞ; M ¼ ksn 2 ank

2
2 R2

n

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 2 2 DM

p
2 C

D

ð24Þ

Utilizing this scalar parameter, the stress at the end of the elastic part of time step,
i.e. at the contact point with the yield surface, can be computed as below:

S
c
¼ sn 2 an þ 2GaDe ð25Þ

Using equations (8) and (20), the increment of the deviatoric plastic strain can be
written in the following form:

l ¼ _gð1 2 aÞDt ¼
2GðncÞTð1 2 aÞDe

2 �Gþ �bðRs þ R0 2 RnÞ2 ðncÞT
Pm

i¼1A
c
ian;i

ð26Þ

Dep ¼ lnc ð27Þ

Then, the deviatoric stress, the center of the yield surface and its radius can be updated
by the subsequent equations:

s0nþ1 ¼ 2G enþ1 2 ep
nþ1

	 

anþ1;i ¼ an;i þ Hkin;iDe

p 2 lAc
ian;i

anþ1 ¼
Xm
i¼1

anþ1;i

S0
nþ1 ¼ s0nþ1 2 anþ1

Rnþ1 ¼ R0 þ Rs½1 2 expð2�bgnþ1Þ�

ð28Þ

where:

gnþ1 ¼ gn þ l ð29Þ

It is evident, since the consistency condition is not automatically satisfied in the
forward Euler method, the final stress point will not be laid on the yield surface. In fact,
the following correction is required for the solution to guarantee the satisfaction of the
consistency condition:

af ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT
nþ1S

0
nþ1

	 
2
2kS0

nþ1k
2
þ R2

nþ1

q
2 nT

nþ1S
0
nþ1

Snþ1 ¼ S0
nþ1 þ afnnþ1

snþ1 ¼ s0nþ1 þ afnnþ1

ð30Þ

In these equations, af is a scalar parameter that enforces the consistency condition by
scaling the stress vector.
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3.2 Discrete consistent tangent operator
The consistent tangent matrix is required to preserve the quadratic convergence of the
Newton’s method in structural analyses. In the following, the discrete consistent
tangent operator, i.e. (›s/›1)nþ1 will be presented. Taking the derivative of equation
(3) with respect to 1nþ1, and utilizing equations (2) and (5), lead to:

›snþ1

›1nþ1
¼

›Snþ1

›enþ1
þ

›anþ1

›enþ1

� �
Idev þ KðiiTÞ ð31Þ

Idev ¼ I2
1

3
ðiiTÞ ð32Þ

The derivatives (›Snþ1/›enþ1) and (›anþ1/›enþ1), which are appeared in equation (31)
are presented by:

›Snþ1

›enþ1
¼

›S0
nþ1

›enþ1
þ

›af

›enþ1
nT
nþ1 þ af

›nnþ1

›enþ1
ð33Þ

›anþ1

›enþ1
¼
Xm
i¼1

›anþ1;i

›enþ1
ð34Þ

where:

›anþ1;i

›enþ1
¼ Hkin;i

›Dep

›enþ1
2

›l

›enþ1
Ac

ian;i

	 
T
2lan;i

›Ac
i

›enþ1

� �T

ð35Þ

The derivative ð›Ac
i =›enþ1Þ in the last equation is dependent on the kinematic hardening

mechanisms, i.e. equations (14) through (18), and presented in Appendix 1. Furthermore,
the other derivatives appeared in equations (33) and (35) are addressed in Appendix 2.

4. A new integration method based on exponential maps
By defining an integrating factor and an augmented stress vector, the system of
differential equations of the constitutive model could be converted into the following
dynamical system, which can be solved by an exponential map algorithm:

_X ¼ BX ð36Þ

In this equation, X is an augmented stress vector with n þ 1 components, and B is a
matrix that in nonlinear hardening models is depended on the vectorX. In this section, the
dynamical system for the von-Mises plasticity model, with combined multi-component
nonlinear kinematic and exponential isotropic hardening, is developed. Subsequently,
a numerical algorithm for solving the system of differential equations is presented.
Finally, the tangent operator consistent with the integration algorithm is provided.

4.1 Mapping to augmented stress space
Initially, a system of differential equations for the shifted stress is developed, and then
an integrating factor will be introduced. This will lead to a dynamical system in the
augmented stress space. Taking the derivative in time from equation (2) and using
equations (7), (13) and (21) lead to:
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_S ¼ 2G _eþ _g
Xm
i¼1

Aiai 2 2 �G _ep ð37Þ

Substituting equation (8) into above relation and performing some manipulations yield:

_Sþ 2 �G
S

R
_g ¼ 2G _F ð38Þ

where, the vector _F is defined by the following equation:

_F ¼ _eþ
_g

2G

Xm
i¼1

Aia i ð39Þ

In this stage, a dimensionless shifted stress is introduced as follows:

�S ¼
S

R
ð40Þ

Note that in the plastic phase, the vector �S is equal to n. Taking the derivative in time
from the last equation and using equation (12) will give:

_�S ¼
_S

R
2

Rs
�b expð2�bgÞ

R
_g �S ð41Þ

Using equations (40) and (41), the system of nonlinear differential equations, which is
presented in equation (38), can be rewritten in the following form:

_�Sþ
2 �Gþ Rs

�b expð2�bgÞ

R

� �
_g �S ¼

2G

R
_F ð42Þ

This equation is valid for both elastic and plastic phases. To solve equation (42), an
integrating factor X 0 is introduced by the following relation:

X 0 _�Sþ X 0 2 �Gþ Rs
�b expð2�bgÞ

R

� �
_g �S ¼

d

dt
ðX 0 �SÞ ð43Þ

Equation (43) gives an ordinary differential equation as:

_X 0 ¼
2 �Gþ Rs

�b expð2�bgÞ

R

� �
_gX 0 ð44Þ

Solving the recent equation with the initial value X 0(0) ¼ 1, yields the following result:

X 0ðgÞ ¼

ðR0þRsÞ expð�bgÞ2Rs

R0

� �1=b

expð2�bgÞ for �b – 0

exp 2 �G
R0

g
� �

for �b ¼ 0

8>><
>>: ð45Þ

b ¼
�bðR0 þ RsÞ

2 �Gþ �bðR0 þ RsÞ
ð46Þ
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Multiplying equation (42) by the integrating factor X 0 and using equation (43) lead to:

d

dt
ðX 0 �SÞ ¼ X 0 2G

R
_F ð47Þ

Taking the scalar product of the last equation by the vector �S, gives the coming next
equation:

X 0

2

d

dt
k �Sk

2
þ _X 0k �Sk

2
¼

2G

R
_FTðX 0 �SÞ ð48Þ

Noting that in the plastic phase, k �Sk ¼ knk ¼ 1 and inserting this into the last
equation, one can easily obtain:

_X 0 ¼
2G

R
_FTðX 0 �SÞ ð49Þ

Using equations (47) and (49), a system of differential equations in the augmented
stress space will be achieved:

d

dt

X 0 �S

X 0

( )
¼

2G

R

O9£9
_F

_FT 0

" #
X 0 �S

X 0

( )
ð50Þ

Now, a vector and a matrix in the n þ 1 dimensional space are defined by:

X ¼
X 0 �S

X 0

( )
¼

Xs

X 0

( )
ð51Þ

B ¼
2G

R

O9£9
_F

_FT 0

" #
10£10

ð52Þ

where, X is an augmented stress vector and O9£9 is a null matrix. Consequently,
equation (50) can be written in the form of a dynamical system in the augmented stress
space:

_X ¼ BX ð53Þ

In the elastic phase, the control matrix B can be expressed as:

B ¼
2G

R

O9£9 _e

0T 0

" #
10£10

ð54Þ

Here,0 is a null vector with nine dimensions. Note that, in the plastic phase, the matrixB is
dependent on the vector X. As a result, the differential equation (53) will be nonlinear.

The ON-OFF switch for the plastic phase in the augmented stress space can be
expressed by the next conditions:

. The stress state must be on the yield surface, i.e.:

kXsk
2
¼ ðX 0Þ2 ð55Þ
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. The rate of the deviatoric strain must be outward with respect to the yield
surface, i.e.:

ðXsÞT _e . 0 ð56Þ

Whenever these conditions are satisfied simultaneously, the switch is ON.

4.2 Augmented stress-updating algorithm
Updating stress in the augmented stress space requires to solve the system
of differential equation (53). It is clear, the vector X ¼ X(t) is a function of time.
If B is assumed independent of time, equation (53) will be a system of linear ordinary
differential equations. Considering initial condition X(0), the solution of this system
can be expressed by the following relation:

XðtÞ ¼ expðBtÞXð0Þ ð57Þ

As the strain-controlled path is assumed to be a rectilinear path, in a fully explicit
manner, R and a are constant over each time step. The known values of these
parameters at the beginning of each time step, i.e. Rn and an, are the values considered
throughout the time interval. Consequently, the matrix B will be independent of the
vector X, and the augmented stress vector at the time tnþ1 can be updated as:

Xnþ1 ¼ expð �BnÞXn ¼ GnXn ð58Þ

where, �Bn ¼ DtBn in the plastic phase can be expressed by:

�Bn ¼

O9£9
2G
Rn
DF

2G
Rn
DFT 0

2
4

3
5 ð59Þ

In this equation, DF ¼ Dt _F leads to the below result:

DF ¼ Deþ
nT
nDe

2 �Gþ �bðRs þ R0 2 RnÞ2 nT
n

Pm
i¼1An;ian;i

Xm
i¼1

An;ian;i ð60Þ

It should be mentioned that the matrix exponential in the equation (58) can be presented
by a matrix power series or in the following compact form:

Ge
¼

I9£9
2G
Rn
De

0T 1

2
4

3
5 elastic phase ð61Þ

Gp ¼
I9£9 þ ða2 1ÞDF̂DF̂T bDF̂

bDF̂T a

" #
plastic phase ð62Þ

where, DF̂ is the unit vector of DF, i.e. DF̂ ¼ ðDF=kDFkÞ. Also, the parameters a and
b are defined as:

a ¼ coshðgÞ; b ¼ sinhðgÞ; g ¼
2G

Rn
kDFk ð63Þ
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As it was mentioned before, the initial value of X 0 is equal to 1. Therefore, the initial
value for the augmented stress vector will be as follows:

Xð0Þ ¼
Xs

0

1

( )
¼

S0

R0

1

( )
ð64Þ

On the other hand, the normal vector to the yield surface in the augmented stress space
may be expressed by the following equation:

n ¼
Xs

X 0
ð65Þ

4.3 Updating the radius of the yield surface
As the radius of the yield surface is a function of the proportionality factor g, this
parameter must be updated. To satisfy the consistency condition with the yield surface,
g must be updated with the use of equation (45). This means that the integrating factor
X 0, which is resulted at the end of a time step, is used to calculate the parameter g at the
beginning of the next step. Whenever the radius of the yield surface changes, i.e. �b – 0,
equation (45) is a nonlinear equation and must be solved with numerical techniques.
Utilizing equation (20), a near approximation of g in the general time step tnþ1 can be
achieved by the following relation:

g
ap
nþ1 ¼ gn þ

2GðnT
nDeÞ

2 �Gþ �bðRs þ R0 2 RnÞ2 nT
n

Pm
i¼1An;ian;i

ð66Þ

Since gap
nþ1 is a neighboring value of gnþ1, the perturbation method is useful in obtaining

a near exact solution. The Newton-Raphson procedure gives:

g kþ1
nþ1 ¼ g k

nþ1 2
f g k

nþ1

	 

f 0 g k

nþ1

	 
 ð67Þ

In this equation, k is the counter for iteration. The functions f g k
nþ1

	 

and f 0 g k

nþ1

	 

(where, f 0 ¼ df/dg) can be calculated by equation (45) as follows:

f g k
nþ1

	 

¼ exp 2�bg k

nþ1

	 

h g k

nþ1

	 
� �1=b
2X0

nþ1 ð68Þ

f 0 g k
nþ1

	 

¼

�bðRs þ R0Þ

bR0
h g k

nþ1

	 
� �ð1=bÞ21
2�b exp 2�bg k

nþ1

	 

h g k

nþ1

	 
� �1=b
ð69Þ

where:

h g k
nþ1

	 

¼

ðR0 þ RsÞ exp �bg k
nþ1

	 

2 Rs

R0
ð70Þ

The above algorithm has a second-order convergence and only a few iterations might be
required to obtain a near exact solution. Consequently, using equation (12), the radius of
the yield surface can be updated as follows:

Rnþ1 ¼ R0 þ Rs½1 2 expð2�bgnþ1Þ� ð71Þ

Nonlinear mixed
hardening

models

277



Note that the iteration begins withg0
nþ1 ¼ g

ap
nþ1 as an initial value. In addition, whenever

the material is saturated, i.e. �b ¼ 0, gnþ1 can be obtained by the following closed-form
solution:

gnþ1 ¼
R0

2 �G
ln X0

nþ1

� �
ð72Þ

4.4 Updating the center of the yield surface
Since the kinematic hardening mechanism is existed, the back stress must be updated in
the plastic phase. Updating the center of the yield surface is one of the important parts of
the numerical solution in a plasticity problem, and it has the extra effect on accuracy of
results. In this section, the augmented stress vector at the end of a time step, i.e. Xnþ1, is
used to calculate the back stress vector at the beginning of the next step. In general, the
following relation provides the exact updated components of the back stress vector:

anþ1;i 2 an;i ¼

Z tnþ1

tn

ðHkin;i _e
p 2 _gAiaiÞdt ð73Þ

In each time step, the last equation has three parameters, _ep, Ai and ai, which are all time
variables (except for the parameter Ai in equation (14) for Chaboche model). Here, it is
assumed that Ai is constant throughout each time step with its value at the start of time
step, An,i. Also, ai may be approximated by an average of its value at the start and end of
the time step, i.e.a i ¼ 1/2(a n,i þ a nþ1,i). Thus, equation (73) can be expressed as follows:

anþ1;i 2 an;i ¼ Hkin; i

Z tnþ1

tn

_epdt 2 An; i
ðan;i þ anþ1;iÞ

2

Z tnþ1

tn

_gdt ð74Þ

anþ1; i 2 an; i ¼ Hkin;iDe
p 2

l

2
An;iðan;i þ anþ1;iÞ ð75Þ

where, l is defined by l ¼ gnþ1 2 gn. By some manipulations, the last equation may be
converted to:

anþ1;i ¼
1

2 þ lAn;i
2Hkin;iDe

p þ ð2 2 lAn;iÞan;i

� �
ð76Þ

Now, the center of the yield surface can be obtained by the next relationship:

anþ1 ¼ �HkinDe
p þ a ð77Þ

where:

�Hkin ¼
Xm
i¼1

2Hkin;i

2 þ lAi

ð78Þ

a ¼
Xm
i¼1

2 2 lAn;i

2 þ lAn;i
an;i ð79Þ

Note that the increment of the deviatoric plastic strain in equation (77) is unknown.
Using equations (2) and (7), the following equation at time tnþ1 is achieved:

Snþ1 ¼ sn þ 2GðDe2 DepÞ2 anþ1 ð80Þ
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Inserting equation (77) into equation (80) and rearranging the result, the vectorDep will be
obtained as:

Dep ¼
1

2Gþ �Hkin

ðsn þ 2GDe2 a2 Snþ1Þ ð81Þ

Finally, referring to equations (76) and (77), the back stress vector and its components
are completely determined. Moreover, the shifted stress at time tnþ1 can be obtained by
the following equation:

Snþ1 ¼
Xs

nþ1

X0
nþ1

Rnþ1 ð82Þ

4.5 General elastic-plastic load steps
Following a standard methodology, a predictor-corrector algorithm can be used for
integration process. Here, a general load step begins by calculating an elastic trial
value in the augmented stress space as follows:

XTR
nþ1 ¼ GeXn ð83Þ

Now, the trail estimation must be checked to be acceptable, i.e.:

kXs;TR
nþ1 k # X0;TR

nþ1 ð84Þ

If this condition is satisfied, then the load step is in the elastic phase, and the final
solution is equal to XTR

nþ1. Otherwise, the load step is an elastic-plastic one.
Consequently, the elastic part of the load step may be separated from the plastic part
by means of the scalar parameter a, which is introduced in equation (24) but with the
following definition for parameters C, D and M in the augmented stress space:

D ¼
2G

Rn
X0

nkDek

� �2

; C ¼
2G

Rn
X0

n Xs
n

	 
T
De; M ¼ kXs

nk
2
2 X0

n

� �2

ð85Þ

Using the parameter a, the augmented stress vector of the contact point can be
computed by the following equation:

Xc ¼ GcXn ð86Þ

Utilizing equation (61), the matrix Gc is obtained by:

Gc
¼

I9£9
2G
Rn

aDe

0T 1

2
4

3
5 ð87Þ

Since (1 2 a)De denotes a fully plastic step, the updated augmented stress at the end
of the load step can still be computed by equation (62) with the following modifications:

g ¼
2G

Rn
k 1 2 að ÞDFk ð88Þ
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DF ¼ Deþ
ðncÞTDe

2 �Gþ �bðRs þ R0 2 RnÞ2 ðncÞT
Pm

i¼1A
c
ian;i

Xm
i¼1

Ac
ian;i ð89Þ

In the above equation, Ac
i and n c are the values at the contact point,

i.e. Ac
i ¼ Aiðan;n

cÞ, and n c may be expressed as follows:

nc ¼
Xs;c

nþ1

X0;c
nþ1

; Xc ¼

Xs;c
nþ1

X0;c
nþ1

8<
:

9=
; ð90Þ

4.6 Discrete consistent tangent matrix
By linearizing the discrete time procedure, as it was done in Section 3.2, the
elastoplastic consistent tangent matrix can be developed. Here, equation (31) can be
used as a relation for the discrete consistent operator, and only the terms (›S/›e)nþ1

and (›a/›e)nþ1 must be determined. Taking the derivative with respect to enþ1 from
equation (82), leads to the next relation:

›Snþ1

›enþ1
¼

Rnþ1

X0
nþ1

›Xs
nþ1

›enþ1
2

Rnþ1

X0
nþ1

� �2
Xs

nþ1

›X0
nþ1

›enþ1

 !T
2
4

3
5

þ
1

X0
nþ1

Xs
nþ1

›Rnþ1

›enþ1

� �T
" # ð91Þ

The derivatives that are appeared in the last equation are very complicated, and they
are fully addressed in Appendix 3. Finally, the derivative ð›a=›eÞnþ1 will be
determined by utilizing equation (77) as follows:

›anþ1

›enþ1
¼ Dep › �Hkin

›enþ1

� �T

þ �Hkin
›Dep

›enþ1
þ

›a

›enþ1
ð92Þ

The derivatives of the parameters �Hkin,Dep anda are computed with the use of equations
(78), (79) and (81), respectively. The results are presented by the following equations:

› �Hkin

›enþ1
¼ 2

Xm
i¼1

2lHkin;i

2 þ lAc
i

	 
2

›Ac
i

›enþ1
2
Xm
i¼1

2Ac
i Hkin;i

2 þ lAc
i

	 
2

›l

›enþ1
ð93Þ

›a

›enþ1
¼ 2

Xm
i¼1

4l

2 þ lAc
i

	 
2
an;i

›Ac
i

›enþ1

� �T
" #

2
Xm
i¼1

4Ac
i

2 þ lAc
i

	 
2
an;i

›l

›enþ1

� �T
" # ð94Þ
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›Dep

›enþ1
¼ 2

1

2Gþ �Hkin

	 
2
ðsn þ 2GDe2 a2 Snþ1Þ

�
› �Hkin

›enþ1

� �T

þ
1

2Gþ �Hkin

2GI2
›a

›enþ1
2

›Snþ1

›enþ1

� � ð95Þ

Finally, the derivatives of the parameters Ac
i and l are presented in Appendixes 1 and 3,

respectively.

5. Numerical examples
An incremental nonlinear finite element analysis has two major algorithms. The first one,
which is normally Newton like, is used for solving nonlinear simultaneous equations. This
process needs tangential stiffness matrix of structure for rapid convergence and a tangent
operator, i.e.›s/›1, at each Gauss point of every element must be calculated. The other one
is the integration algorithm and is used to determine the stress increment corresponding to
a strain increment. The integration procedure must be performed at every Gauss point for
each load step, and also, their corrective iterations. The tangent operator in the first
algorithm must be consistent with the integration scheme of the second one.

This study is focused on the integration scheme, and all numerical presentations are
point-wise. The robustness and performance of the new exponential-based integration
method are investigated by many numerical tests in this section. The results of the
suggested technique are compared with the responses of the classical forward Euler,
which was presented in detail in Section 3. The numerical examples are classified in
three categories. First, the piecewise strain load histories with different time steps are
considered, and the relative errors along with the average error of the stress outputs
are plotted. In other words, the accuracy and the rate of convergence of the new
stress-updating algorithm are studied. Second, to explore the validity of the consistent
tangent operator, the input stress load histories with a variety of the time steps are
assumed and the relative error and the average error of the strain outputs are shown.
Third, the error contour plots for different states and the piecewise mixed stress-strain
load histories are presented. This is an efficient tool to explore the accuracy of an
integration scheme in plasticity.

Since the exact solutions of the investigated problems are not available, the results of
the forward Euler algorithm with very fine time steps (Dt ¼ 1 £ 1025 s) are assumed to
be the exact solutions. The material is considered as aluminum 7050-T7451 that is used
for the aft fuselage stub frames on F/A-18 fighter planes (Hu et al., 1999). The material
has the Young’s modulus of E ¼ 69 GPa (10,000 ksi) and the Poisson’s ratio of n ¼ 0.33.
Its mechanical characteristics for the isotropic hardening are as follows:

R0 ¼ 328 MPa; Rs ¼ 25 MPa; �b ¼ 10

Moreover, the mechanical properties of the kinematic hardening rule for the Chaboche
model-3 decomposed rule are as follows:

Hkin;1 ¼ 63; 930 MPa; Hnl;1 ¼ 734

Hkin;2 ¼ 9; 980 MPa; Hnl;2 ¼ 728
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Hkin;3 ¼ 6; 620 MPa; Hnl;3 ¼ 73

5.1 Strain-controlled histories
Two non-proportional strain-controlled histories are adopted. All other strain
components are considered equal to zero. The strain components are assumed to
change proportionally to the strain value of the first yielding of the uniaxial loading
state, i.e. 1y0 ¼

ffiffiffiffiffiffiffi
3=2

p
ðR0=EÞ. Updated stress histories are computed with the new

exponential-based formulation and also the forward Euler method for the sake of
comparison. The results are obtained using three practical load step sizes (Dt ¼ 0.0500,
0.0250, 0.0125 s). The non-dimensional or relative error of the updated stresses is
introduced as stress relative error by the following equation:

Es
n ¼

ksn 2 s*nk

Rn
ð96Þ

In the last equation, s*n denotes the exact stress at time tn. Also, sn and Rn are the stress
vector and the yield surface radius pertaining to the practical load step at the time tn.
In order to investigate the rate of convergence of the new integration method,
the average stress error of the updated stresses is defined by:

Es
T ¼

1

N

XN
n¼1

ksn 2 s*nk

Rn
ð97Þ

where, N is the total number of the load steps. By adopting different size of load steps,
the average error is computed for both strategies and the results are plotted in a
logarithmic space.

Figures 1 and 2 show the strain-controlled history 1 and its path, respectively.
The stress relative error of the new scheme and the forward Euler algorithm are shown in
Figures 3-5. Figure 6 shows the average stress error for these techniques. For a better
demonstration of the performance of the proposed integration formulation, another strain

Figure 1.
Strain-controlled history 1
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history is considered. The strain-controlled history 2 and its path are shown in Figures 7
and 8, respectively. The stress relative error of the suggested procedure in comparison
with the forward Euler method is shown in Figures 9 through 11. Figure 12 shows the rate
of the convergence of the average stress error for these procedures. The related diagrams
show that the accuracy of the present work is much better than the classical forward
Euler one. Another finding is the linear rate of the convergence of the new integration
algorithm, which is illustrated by the diagrams of the average stress error.

For a convincible demonstration, the formulation of backward Euler method, which
is an implicit algorithm and was presented comprehensively by Kobayashi and
Ohno (2002), is also tested. The stresses for strain path 1 and 2 are updated by backward
Euler scheme with different time step sizes. Since the errors of the forward and

Figure 3.
Stress relative error

of strain path 1Note: ∆t = 0.0500 s

Figure 2.
Strain path 1

Nonlinear mixed
hardening

models

283



backward Euler are very close, the results are presented in the tabulated form. Tables I
and II give average errors for strain path 1 and 2, respectively. These show that the new
presented integration method significantly improves accuracy.

At this stage, it is intended to compare the efficiency of three different integration
algorithms. Here, efficiency is given by the following definition:

Figure 4.
Stress relative error of
strain path 1 Note: ∆t = 0.0250 s

Figure 5.
Stress relative error of
strain path 1 Note: ∆t = 0.0125 s
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Efficiency ¼
Accuracy

Computational effort
¼

1

CPU time ðsÞ £ Average error ð%Þ
ð98Þ

It is of great importance for finite element applications. In a point-wise problem, the
computation time on a normal CPU is very short. To give a measurable CPU time,
the strain history 1 in Figure 1 is repeated 150 times with a total time of 1,050 s. Time
step size is considered as Dt ¼ 0.0250 (s) and average errors based on equation (97)
are computed. For a better demonstration, efficiencies are normalized with respect to
the efficiency of exponential maps method. Results presented in Table III show the
superior efficiency of the new integration algorithm.

Figure 7.
Strain-controlled history 2

Figure 6.
Average stress error

of strain path 1
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5.2 Stress-controlled histories
In these point-wise problems, the objective is to test the second-order convergence rate
of the elastoplastic consistent tangent through a Newton algorithm in a load-driven
manner with the iterative process. Two non-proportional stress-controlled histories are
considered. All other stress components are assumed zero. The stress components are
varied proportionally to the stress value of the first yielding of the uniaxial loading
state, i.e. sy0. The strain histories are updated with the exponential-based method and
with the forward Euler algorithm. The results are reported by three practical load step
sizes (Dt ¼ 0.0500, 0.0250, 0.0125 s). The strain relative error of the updated strains can
be defined by the following equation:

Figure 8.
Strain path 2

Figure 9.
Stress relative error
of strain path 2 Note: ∆t = 0.0500 s
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E1
n ¼ 2G

k1n 2 1*nk

Rn
ð99Þ

where, 1*n is the exact strain vector at time tn. Also, 1n and Rn are calculated by the
numerical solutions with practical time steps. The average strain error of the updated
strain vectors is defined by the following equation:

Figure 11.
Stress relative error

of strain path 2Note: ∆t = 0.0125 s

Figure 10.
Stress relative error

of strain path 2Note: ∆t = 0.0250 s
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E1
T ¼

1

N

XN
n¼1

2G
k1n 2 1*nk

Rn
ð100Þ

The stress-controlled history 1 and its path are shown in Figures 13 and 14,
respectively. The accuracies of the new formulation, in comparison with forward Euler
method, are shown in Figures 15 through 17. The average strain error for the stress

Figure 12.
Average stress error of
strain path 2

Size of time step (s) Present work Forward Euler Backward Euler

0.0500 1.555 3.357 2.646
0.0250 0.769 1.279 1.377
0.0125 0.385 0.672 0.704

Table I.
Average error (%)
by different algorithms
for strain path 1

Size of time step (s) Present work Forward Euler Backward Euler

0.0500 0.431 1.146 1.083
0.0250 0.210 0.586 0.573
0.0125 0.105 0.292 0.291

Table II.
Average error (%)
by different algorithms
for strain path 2

Algorithm
Average
error (%) CPU time (s) Efficiency

Normalized
efficiency

Exponential maps (present study) 0.84 8.27 0.1440 1
Forward Euler (present study) 1.38 6.79 0.1067 0.74
Backward Euler (Kobayashi and Ohno, 2002) 1.46 13.65 0.0501 0.35

Note: Dt ¼ 0.025 s

Table III.
Efficiency of the
algorithms for 150 cycles
of the strain path 1
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history 1 is illustrated in a logarithmic space in Figure 18. The stress-controlled history
2 and its path are shown in Figures 19 and 20, respectively. The strain relative errors
for the new technique and also for forward Euler strategy are shown in Figures 21
through 23. Moreover, its average strain error is shown in Figure 24.

The diagrams of the stress-controlled histories demonstrate robustness of the new
technique versus the classical forward Euler method. Furthermore, the average strain
error diagrams illustrate the first-order convergence for both the classical forward
Euler and the exponential-based approaches.

To examine the rate of convergence, the relative Euclidean norms of error in the
Newton iterations for each time step are defined by the following relation:

Ei
n ¼

1in 2 1n

�� ��
11
n 2 1n

�� �� ð101Þ

Figure 14.
Stress path 1

Figure 13.
Stress-controlled history 1
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where, 1n and 1in are the converged strain and its ith estimation in time tn, respectively.
To demonstrate the second-order convergence of tangent operators, the relative
Euclidean norms, Ei

n, for successive iterations in two arbitrary times, are presented in
Tables IV and V for stress path 1 and 2, respectively. These tables show the
second-order convergence rate of the elastoplastic consistent tangent operator.

Figure 16.
Strain relative error
of stress path 1 Note: ∆t = 0.0250 s

Figure 15.
Strain relative error
of stress path 1 Note: ∆t = 0.0500 s
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5.3 Error contour plots
To examine the integration accuracy of the elastic-perfectly plastic von-Mises model, the
error contour plots, or iso-error maps, were first presented by Krieg and Krieg (1977).
Subsequently, the iso-error maps were used by Ortiz and Popov (1985), Ortiz and Simo
(1986), Simo and Hughes (1998), Artioli et al. (2006, 2007) and Rezaiee-Pajand and Nasirai
(2008). In this study, by considering a plane stress state, three different positions of
the stress point on the yield surface are adopted for starting points. The positions
are corresponded to uniaxial, biaxial and pure shear, which are labeled A, B and C
in Figure 25, respectively. Afterward, to obtain error contour plots, by controlling

Figure 18.
Average strain error

of stress path 1

Figure 17.
Strain relative error

of stress path 1Note: ∆t = 0.0125 s
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the strain increments D111 and D122, a purely plastic step is considered, while keeping
all the remaining stresses zero. In the following, the strain increments for 111 and 122

components are selected from zero to 21y;0
11 and 21y;0

22 , respectively:

D111

1
y;0
11

¼ 0; 0:05; 0:10; . . . ; 2

D122

1
y;0
22

¼ 0; 0:05; 0:10; . . . ; 2

The stress updating of 41 £ 41 mixed stress-strain histories for each one of the
uniaxial, biaxial and pure shear states are computed. Furthermore, for every
mixed history, the percent of the error for the updated stress is calculated by the
following equation:

Figure 20.
Stress path 2

Figure 19.
Stress-controlled history 2
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Es
iso ¼

ks2 s*k

ks*k
£ 100% ð102Þ

where,s* ands are the exact stress vector and the numerical stress vector, respectively.
The error contour plots for each starting state and both mentioned techniques are shown

Figure 21.
Strain relative error

of stress path 2Note: ∆t = 0.0500 s

Figure 22.
Strain relative error

of stress path 2Note: ∆t = 0.0250 s
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in Figures 26 through 31. In all diagrams, the areas correspond to the error percentage
less than 10 percent are hatched. These shaded areas show that the new presented
algorithm even with large load steps gives very accurate results.

6. Conclusions
The von-Mises plasticity model in the small strain regime with a mixed nonlinear
hardening mechanism is considered. An exponential formulation for the nonlinear
isotropic hardening is assumed. Moreover, a class of multi-components form with

Figure 23.
Strain relative error of
stress path 2 Note: ∆t = 0.0125 s

Figure 24.
Average strain error
of stress path 2
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a recovery term for the nonlinear kinematic hardening is adopted. A new integration
strategy based on the exponential maps for integrating the nonlinear constitutive
equations is proposed. In this scheme, the updated stress satisfies automatically
the condition of consistency with the yield surface. Furthermore, the discrete consistent
tangent operator for the new integration technique is provided. For the forward

t ¼ 3 s t ¼ 7 s
Iteration Present work Forward Euler Present work Forward Euler

1 1.0000 £ 10þ00 1.0000 £ 10þ00 1.0000 £ 10þ00 1.0000 £ 10þ00

2 9.5530 £ 10202 1.3984 £ 10202 8.1247 £ 10202 1.3193 £ 10202

3 1.5481 £ 10203 2.2979 £ 10203 7.7282 £ 10204 2.3258 £ 10203

4 5.2445 £ 10205 1.2757 £ 10205 2.5355 £ 10205 1.5108 £ 10205

5 1.8142 £ 10208 1.3747 £ 10206 3.0359 £ 10208 2.0044 £ 10206

Note: Dt ¼ 0.025 s

Table V.
Typical convergence

value, the relative
Euclidean norms
for stress path 2

Figure 25.
Plane stress von-Mises
yield surface and start

points for error contour
plots

t ¼ 4 s t ¼ 8 s
Iteration Present work Forward Euler Present work Forward Euler

1 1.0000 £ 10þ00 1.0000 £ 10þ00 1.0000 £ 10þ00 1.0000 £ 10þ00

2 1.0024 £ 10201 1.2807 £ 10202 8.4559 £ 10202 1.2214 £ 10202

3 2.7474 £ 10204 1.8792 £ 10203 6.2085 £ 10204 1.1267 £ 10203

4 4.0372 £ 10205 4.0933 £ 10206 4.4698 £ 10205 6.0571 £ 10207

5 3.5543 £ 10208 1.4173 £ 10207 7.6092 £ 10208 4.9765 £ 10209

Note: Dt ¼ 0.025 s

Table IV.
Typical convergence

value, the relative
Euclidean norms
for stress path 1
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Figure 27.
Iso-error map
corresponding to uniaxial
state on the yield surface
for the present work

Figure 26.
Iso-error map
corresponding to uniaxial
state on the yield surface
for the forward Euler
method
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Euler approach, the numerical integration algorithm and its consistent tangent
operator are presented. This kind of formulation for the nonlinear mixed hardening is
not available in the literature.

In this investigation, a broad set of numerical tests is performed. The piecewise
loading histories with different load steps are considered. These studies confirm

Figure 29.
Iso-error map

corresponding to biaxial
state on the yield surface

for the present work

Figure 28.
Iso-error map

corresponding to biaxial
state on the yield surface

for the forward
Euler method
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the robustness and high efficiency of the suggested formulation. To clarify the
accuracy, the iso-error maps are provided for both the new exponential algorithm and
forward Euler technique. The findings of the paper demonstrate that the proposed
scheme gives very accurate results, even with large load steps.

Figure 30.
Iso-error map
corresponding to pure
shear state on the yield
surface for the forward
Euler method

Figure 31.
Iso-error map
corresponding to pure
shear state on the yield
surface for the present
work
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Appendix 1. Derivatives of the parameter Ac
i for different kinematic hardening

models
For Chaboche models, which are presented in equations (14) and (15):

›Ac
i

›enþ1
¼ 0 ðA1Þ

For Ohno-Wang model-1, which is given in equation (16):
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For Ohno-Wang model-2, which is presented in equation (17):
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For Abdel Karim-Ohno model, which is given equation (18):
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Appendix 2. Derivatives, which are appeared in the discrete consistent tangent
matrix, for the forward Euler method
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Appendix 3. Derivatives, which are appeared in the discrete consistent tangent
matrix, for the exponential-based method

To calculate ›Xs
nþ1=›enþ1

	 

and ›X 0

nþ1=›enþ1

� �
, which are appeared in equation (91), the

expressions for Xs
nþ1 and X0

nþ1 are required. Utilizing equation (58) and assuming an
elastic-plastic load step, the following equation can be obtained:
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Now, taking the derivatives of Xs
nþ1 and X0

nþ1 with respect to enþ1, the following equations will
be achieved:
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Moreover, the term (›Rnþ1/›enþ1), which is appeared in equation (91), will be obtained by taking
the derivative of equation (71) with respect to enþ1, as follows:

›Rnþ1

›enþ1
¼ �bRs expð2�bgnþ1Þ
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The derivative (›gnþ1/›enþ1) in the last equation can be calculated by using equation (45). For
the case �b ¼ 0, the result is as follows:
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Also, for the case �b – 0, the derivative may be obtained by the following equation:
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