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The main idea of the paper is to present a dynamic relaxation algorithm that does not require the damp-
ing matrix and velocity terms. The general formulation suggested in this article covers the common DRM
as well. In order to verify the ability of the new technique, the obtained static and dynamic solutions are
checked with the ones found by the other scheme. When the loads are variable and the behavior of the
system is extremely nonlinear, the proposed procedure works efficiently.
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1. Introduction

The dynamic relaxation method (DRM), as an explicit process,
has merit versus the implicit algorithms. The principal virtues
are the use of less memory and the elimination of the round-off er-
rors. The DRM converts a static problem to a dynamic one by con-
sidering the virtual masses, damping and time steps. If one uses the
proper values for the fictitious variables, then the system response
will converge to the exact solution. Frankel utilized a finite differ-
ence approximation and the linear assumption for the error varia-
tion to find the numerical convergence conditions for a system of
differential equations [1]. The Frankel method has been applied
by other researchers for the solution of elastic problems [2–5]. In
addition, there have been many efforts to automatically obtain
the DR parameters [6–9]. Recently, investigations on the dynamic
relaxation techniques were presented and the merits of this pro-
cess for solving nonlinear dynamic problems were shown [10–13].

In addition to the fundamental studies, many applications of the
DRM have been reported. The researchers, such as Kadkhodayan,
Turvey, Salehi and their co-workers, have studied the both geomet-
ric nonlinear [14–19] and material nonlinear analyses of the plates
[20–22]. Turvey and Salehi have also used the dynamic relaxation
process to analyze composite plates [23,24]. Utilizing the adaptive
DRM, Oakley et al. considered the analysis of nearly incompressible
materials too [25,26]. It should be noted; the dynamic relaxation
algorithm searches the stable situation of a structure among the
ll rights reserved.
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infinitely many unstable cases. It is worth emphasizing, the DR
process achieves this target by using a simple algorithm for mini-
mizing the value of the system’s total energy. The mentioned prop-
erty is very useful for analyzing the complicated and very
nonlinear problems, such as buckling behavior, and analysis of
the tension structures. For example, Ramesh and Krishnamoorthy
utilized the DRM to study the post-buckling behavior of truss
structures [27,28]. The other researchers performed the buckling
analysis of the plates and shells by the DR tactic [29–32].

Another important point is that; the DRM does not require the
tangent stiffness matrix. Consequently, it has been used as a simple
method for finding the stable state of the cable or tensegrity struc-
tures [33–35]. The stable shape of a membrane also can be found
using the DR technique [36–41]. It should be added; the real ten-
sion structures have many degrees of freedoms. In other words,
analyses of these systems require an appreciable time and memory
storages. Therefore, the parallel dynamic relaxation algorithms
have been also developed [42–44]. Beyond the aforementioned
topics, the DR procedure is used for other applications, which
require finding the steady state of a system. Among this scatter
of subjects, crack propagation [45,46], fluid–structure interaction
[47], study granular materials [48] and refinement on the distor-
tion of the membrane elements [49] can be named.

In this paper, a short overview of DR is presented. Afterwards, a
general formulation is utilized to evaluate the damping factor via
the lowest eigenvalue and the time-step ratio. Consequently, a
new method of DR is found by making the critical damping zero.
In other words, the parameters of the new algorithm are lumped
masses and the time-step ratio. The proposed scheme is an alterna-
tive procedure for the common DRM, which uses the critical
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damping and the constant time step. The suggested method can be
applied to the dynamic problems. Accordingly, the bases of the dy-
namic analysis and also some numerical time integration schemes
are described. Two strategies of the numerical integration are uti-
lized, which have been recently presented by Bathe [50], and Re-
zaiee-Pajand and Alamatian [12]. The Wilson-h [51] and the
Newmark-b [52] algorithms are also used. Finally, the capabilities
of the new method for analyzing static and dynamic problems
are shown using several numerical examples. The responses of
the selected integration algorithms are compared with each other.
According to the results, using the new formulation will improve
the solutions and reduce the total number of the iterations.

2. A short overview of the DRM

A system of linear or nonlinear equations is present whenever a
mathematical model is created for a structure. In the stiffness for-
mulation, the displacements X are the major unknown variables
and the loads P are usually known. The stiffness matrix S relates
these parameters as follows:

SX ¼ P: ð1Þ

In nonlinear systems, the stiffness matrix, and sometimes the forces
vector, is related to the displacement vector. There are several iter-
ative techniques used to solve Eq. (1) and one of them is the DRM.
This tactic inserts the inertial and damping forces to Eq. (1) to set up
the following equation:

M€Xþ C _Xþ SX ¼ P: ð2Þ

In order to solve this equation, two approximations are applied to
the DR scheme. The first one approximates the derivatives of the
displacements by the central finite difference method. For this pur-
pose, two intervals of the time about tk should be used. The kth and
(k + 1)th time steps are denoted by sk and sk+1, respectively. There-
fore, the velocity _X and the acceleration €X are approximated as
below:

_Xkþ1=2 ¼ 1
skþ1 Xkþ1 � Xk
� �

_Xk ¼ 1
2

_Xk�1=2 þ _Xkþ1=2
� �

€Xk ¼ 1
sk

_Xkþ1=2 � _Xk�1=2
� �

8>>>><>>>>: ð3Þ

where, _Xk�1=2 is the velocity vector at the middle of the interval
time. For simplification, the time step sk and the sk+1/sk ratio are
shown by h and c, respectively. By utilizing Eq. (3), Eq. (2) can be
expressed in the below non-differential form:

M

ch2 Xkþ1 � Xk � c Xk � Xk�1
� �h i

þ C
2ch

Xkþ1 � Xk þ c Xk � Xk�1
� �h i

þ SXk ¼ P: ð4Þ

One can derive Xk+1 from Eq. (4) to obtain the following iterative
process:

Xkþ1 ¼ Xk þ DXkþ1;

DXkþ1 ¼ cf2h2½2Mþ hC�Rk þ ½2Mþ hC��1½2M� hC�DXkg;
Rk ¼ P� SXk:

8><>: ð5Þ

Eq. (5) has convergence ability, if the unknown values of X 0, c, h,
C, and M are properly selected. Mass is a diagonal matrix and has
n parameters, where n is the number of degrees of freedom.
Researchers determine the mass parameters via some conditions
over eigenvalues of [M�1 S] matrix. They use the Gerschgörin the-
orem to find the upper bound of the eigenvalues [6,7]. The min-
imum values of the masses, which guarantee the convergence,
are obtained. It should be noted that another scheme is to focus
on the viscous dynamic relaxation [53], which eliminates the
inertial term from Eq. (2). Other authors focus their efforts to-
wards the selection of the initial displacements [54,55]. It is clear
that choosing a good initial displacement vector reduces the total
number of the iterations.

The time step and the time-step ratio are other unknowns. It
can be shown that the value of the constant time step does not af-
fect the convergence rate. In fact, the constant time step in Eq. (5)
makes all the unit of parameter consistence. On the other hand, the
damping matrix is usually a factor of the mass matrix in the DRM.
The fastest rate of the convergence is obtained when the structure
is critically damped. As a result, two unknown variables remain to
be defined. They are the critical damping factor and either the opti-
mal time-step ratio or the optimal time step.

Several strategies have been proposed to evaluate the critical
damping factor. Most of them use the Rayleigh principle [7,9,56],
which can be written in the following form:

ccr ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieXTeS eXeXT MeX
s

; ð6Þ

where, eX is a generalized displacement vector. The structure re-
sponse or difference of displacement between the two sequential
steps may be used for eX [57]. The matrix eS is usually the stiffness
matrix. However, some authors use the diagonal of S or the tangen-
tial stiffness matrix [8,57]. It should be noted that the Rayleigh quo-
tient usually gives an upper estimation of the critical damping
factor [4] and the structure response is over damped. Thus, some
researchers tried to estimate a better value for the critical damping
factor via the convergence curve [54,58]. These methods have two
major difficulties. They require performing several iterations to esti-
mate the critical damping, and the convergence curves do not have
simple shapes for the real structures [55].

The optimal time step decreases the total number of iterations.
Mathematical relations show that the highest eigenvalue is re-
quired to calculate the optimal time step. Therefore, h = 1 is usually
used. For example, Papadrakakis suggested calculating the optimal
time step as follows [6]:

h2
opt ¼

4
k1 þ kn

: ð7Þ

In this relation, k1 and kn are the lowest and the highest eigenvalues
of [D�1 S], respectively. It is important to note that the matrix D is a
diagonal one, and it includes the diagonal terms of the stiffness ma-
trix. In contrast to utilize the highest eigenvalues, Kadkhodayan
et al. proposed a process that does not require these values. They
used the Rayleigh principle to calculate the damping factor, and also
minimized the residual force, as given in the following relation [9]:

RFF ¼
Xndof

i¼1

rkþ1
i

� �2 ¼
Xndof

i¼1

rk
i � skþ1 _f kþ1=2

i

� �2
; ð8Þ

where, _f kþ1=2
i is the internal force increment at the middle of the

time interval for the ith degree-of-freedom and is defined as below:

_f kþ1=2
i ¼

Xndof

j¼1

sij _x
kþ1=2
j : ð9Þ

Moreover, Alamatian suggested minimizing the residual energy in
addition to the residual force [59]. This technique is effective using
just a few initial iterations. The function of the residual energy is de-
fined by following equation:

Pr ¼
Xndof

i¼1

Dxkþ1
i rkþ1

i

� �2 ¼ skþ1� �2Xndof

i¼1

_xkþ1=2
i rk

i � skþ1 _f kþ1=2
i

� �h i2
:

ð10Þ
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It should be mentioned that using the optimal time step leads to a
very large or a very small h, after iteration. These values may cause
numerical instability. Therefore, experimental limits are required to
guarantee process stability. It is worth emphasizing that utilizing
the optimal time-step ratio has no such problem. Among the vari-
ous DR procedures, there is no strategy that eliminates the damping
term of Eq. (2). One aim of this effort is to present a DR algorithm
that does not require the damping matrix and velocity terms.

3. A general formulation for the DRM

Eq. (2) has several unknown variables and governs a general dy-
namic system. The finite difference approximation converts Eq. (2)
to a simple iterative formula. In general, the iterative scheme re-
quires certain conditions to provide the fastest convergence rate.
By transferring from the displacement space to the error space,
and assuming linear changes for the errors, Frankel derived the
convergence conditions [1]. He defined the error function as
ek ¼ Xk � X�, where X⁄ is the exact solution. Furthermore, a linear
relation between two progressive steps was assumed. It is clear
that the maximum error value is related to eigenvalues of the coef-
ficients’ matrix. If qk denotes the eigenvalues matrix, then the sec-
ond assumption for the DRM will be derived as below:

ekþ1 ¼ qkþ1ek: ð11Þ

In addition, the error ratios of the kth and (k + 1)th steps are
assumed to be equal. Consequently, the third assumption of the
dynamic relaxation method is written in the following form:

qkþ1 ¼ qk ¼ q ) ek ¼ qek�1; ekþ1 ¼ qek: ð12Þ

One can substitute the error vectors, in place of the displacements,
into Eq. (4), and find the following relation:

M

ch2 q� ð1þ cÞIþ cq�1� �
þ C

2ch
q� ð1� cÞI� cq�1� �

þ S

( )
ek

¼ 0:

ð13Þ

It should be noted; the mass and damping matrices are related to
the stiffness matrix in the DR scheme. Moreover, these matrices
must have compatible units. Consequently, the mass and damping
matrices are calculated as below:

M ¼ h2D; C ¼ hcD; ð14Þ

where, D is a diagonal matrix and a function of the stiffness matrix,
and c is called the damping factor. It is shown in Appendix A, that
the following definition of D guarantees the convergence of the
proposed DR procedure:

dii ¼
1
4

X
j

jSijj; ð15Þ

where, Sij is the general entry of the stiffness matrix S. Eq. (14) show
two other assumptions in the DR method, which reduce the large
number of unknown variables to n + 2. Here, n is the number of
error ratios related to system’s modes. The time-step ratio and
the damping factor are two other unknowns. In the sixth assump-
tion of the DRM, the equality D�1Sek ¼ kek is held. The eigenvalues
matrix of [D�1 S] is k. In other words, ek acts as an eigenvector of
[D�1 S] matrix. The last three assumptions for Eq. (13) are used to
produce the following equation:

1
c
½q� ð1þ cÞIþ cq�1� þ c

1
2c
½q� ð1� cÞI� cq�1� þ k

	 

ek ¼ 0:

ð16Þ
Moving from the displacement space to the error space converts the
DR system into a free oscillation system. It is clear that the non-zero
responses for Eq. (16) will be on hand, when the determinant of the
coefficients matrices is zero. The result is the below relation:

q2
i � ð1þ cÞqi þ c

cqi
þ c

q2
i � ð1� cÞqi � c

2cqi
¼ �ki; ð17Þ

where, qi and ki are ith diagonal terms of the matrices q and k,
respectively. It should be added that the error ratio is either a com-
plex or a real number. When all qi are complex numbers, the error e
and the displacement X are also complex. This means that the re-
sponse of the structure oscillates, and it is under damped. Con-
versely, the structure will be over damped if all components of
the error ratio are real. Based on this discussion, q is written in
the following complex form:

q ¼ qr þ id; qr ;d 2 R; i ¼
ffiffiffiffiffiffiffi
�1
p

: ð18Þ

Substituting the definition (18) into Eq. (17) yields the below
relation:

ðqrþ idÞ2�ð1þcÞðqrþ idÞþc
cðqrþ idÞ þc

ðqrþ idÞ2�ð1�cÞðqrþ idÞ�c
2cðqrþ idÞ ¼�ki: ð19Þ

The separation of the real and the imaginary parts of Eq. (19) gives
two relations. In the critical case, and in the over damping one,
some or all the error ratios are real numbers. Therefore, to achieve
critical damping, one can cancel off the imaginary part of q. In other
words, d is zero, and the following equations can be obtained:

q2
i ð2þ ciÞ � qi½2cð2� kÞ þ ð2þ ciÞð1� cÞ� þ cð2� ciÞ ¼ 0;

q2
i ð2þ ciÞ � cð2� ciÞ ¼ 0:

(
ð20Þ

However, the maximum value of ||q|| defines the convergence rate.
This objective function is added to Eq. (20) to achieve an optimiza-
tion problem given as below:

minðmax
i

q2
i Þ;

q2
i ð2þ ciÞ � qi½2cð2� kÞ þ ð2þ ciÞð1� cÞ� þ cð2� ciÞ ¼ 0;

q2
i ð2þ ciÞ � cð2� ciÞ ¼ 0;

8>><>>:
ð21Þ

As a result, c, ccr, qcr and the mode number, which defines the max-
imum value of the error, are the unknown variables. In other words,
Eq. (20) shows n damping cases for a specific value of c. These n
points in the c � q space are obtained by the following relations:

qi ¼
ac

2
ðnci �

ffiffiffiffi
D
p
Þ; nci ¼ 2� kci; D ¼ n2

ci � 4bc=a2
c ; ð22Þ

ci ¼
1

ðcþ 1Þ2
4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki½2þ cð2� kiÞ�

p
� 2ðc� 1Þðcki � c� 1Þ

n o
: ð23Þ

New parameters are defined as below:

ac ¼
1þ bc

2
; bc ¼ cb; kci ¼ c

a
ac

ki; a ¼ 2
2þ ci

;

b ¼ 2� ci

2þ ci
: ð24Þ

One of the n damping cases causes the highest error value. Compar-
ing the values of ||q|| for the first and the last modes usually give
maxiq2

i . In other words, i is usually either 1 or n. If c changes, the
value of maxiq2

i will change, as well. The optimal time-step ratio
will be obtained when maxiq2

i reduces to a minimum. It can be
shown that when c is less than 1, the maximum value of the error
is relevant to k1, and min kqnk is less than min kq1k. Increasing c
from 1 increases the minimum value of kqnk, and decreases



Fig. 1. The effect of the new process on the total number of iterations.
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min kq1k. Consequently, the number of the required iterations de-
creases until the minimum values of kq1k and kqnk became the
same. After that, kn defines the maximum value of the error and
the rate of convergence decreases. The value of c can increase until
the maximum value of the error does not become equal or greater
than 1. Otherwise, the DR process will diverge. When the damping
factors related to k1 and kn are identical, the error value is reduced
to a minimum value. Consequently, using cjk¼k1

¼ cjk¼kn
gives the

optimal time-step ratio. The result is given by the following
equation:

k1

kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcþ 1Þ

k1
� c

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcþ 1Þ

kn
� c

s
¼ 1

2
1� k1

kn

� �
1� cð Þ: ð25Þ

Solving Eq. (25) gives the value of the optimal time-step ratio. One
can substitute copt and k1 into Eq. (23) to obtain ccr. As a result, all of
unknown parameters are found. It should be noted that in a few
rare cases, the first and the last modes might not be significant
and utilizing Eqs. (23) and (25) may reduce the convergence rate.

Finding the optimal time-step ratio requires the highest eigen-
value. Therefore, analysts prefer to use a time-step ratio less than
the optimal one. The common choice is the constant time step.
When the time-step ratio is 1, Eq. (23) will be converted to the fol-
lowing form:

max
i

q2
cri;

q2
crið2þ cÞ � 2qcrið2� kiÞ þ ð2� ccriÞ ¼ 0;

q2
crið2þ ccriÞ � ð2� ccriÞ ¼ 0:

8>><>>: ð26Þ

If Eq. (26) are solved simultaneously, the following relations will
result:

ccr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ð4� k1Þ

p
;

qcr ¼ 2�ccr
2�k1
¼

ffiffiffiffiffiffiffiffiffi
2�ccr
2þccr

q
:

8<: ð27Þ

For large structures, k1 takes a very small value. Therefore, the value
of k2

1 compared to 4k1 can be ignored and the following approxi-
mated relation can be used:

ccr � 2
ffiffiffiffiffi
k1

p
: ð28Þ

Relation (28) has been utilized by several authors. In fact, the gen-
eral DR formulation suggested in this investigation covers the com-
mon dynamic relaxation method. In the next section, the other
special case of Eq. (23) is used. This new procedure does not require
damping terms.

4. Proposed method

Finding the optimal time-step ratio from Eq. (25) is too difficult.
Utilizing the constant time step is a method to simplify the prob-
lem, which is used in the common DRM. The corresponding critical
damping for c = 1 is presented in Eq. (27). Another approach is to
select a damping factor and determine its corresponding time-step
ratio. This technique has not been utilized by any researchers so
far. A simple value for the critical damping is zero. Therefore, the
time-step ratio must be less than one and the maximum error va-
lue is related to k1. Based on Eq. (23), the critical damping factor is
calculated from the following relation:

ccr ¼
1

ðcþ 1Þ2
4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1½2þ cð2� k1Þ�

p
� 2ðc� 1Þðck1 � c� 1Þ

n o
:

ð29Þ

This equation shows that the critical damping is reduced when the
value of c decreases from 1. Therefore, one can find a time-step ratio
that corresponds to zero ccr. This value is expressed as below:
c ¼ 1

1þ
ffiffiffiffiffi
k1
p� �2 : ð30Þ

Utilizing the last equation along with the zero damping, instead of
the critical damping factor, as well as the constant time step,
slightly increases the total number of the iterations. The following
discussion shows that this increment is negligible for real struc-
tures. Numerical experiences show that the number of the itera-
tions is approximately equal to A/ln||q||. Parameter A is related to
the allowable error and initial error in displacement, and can be
evaluated from below equation:

eA ¼ ke
kk
ke0k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXk � X�ÞTðXk � X�Þ
ðX0 � X�ÞTðX0 � X�Þ

s
: ð31Þ

When the damping factor is zero, the error ratio becomes
q ¼ 1=ð1þ

ffiffiffiffiffi
k1
p
Þ. Conversely, the error ratio is given by Eq. (27),

when the time step is constant. Fig. 1 shows the differences in the
number of the iterations between these two cases for A = �20.

As shown in Fig. 1, there is a little difference in the total number
of the iterations between the proposed method and the common
DR process. In large structures, k1 is very small, and increases in
the total number of the iterations can be ignored. It should be
noted that the zero damping method does not eliminate the
requirement for the calculation of the lowest eigenvalue. It is just
an alternative scheme for the DRM with a constant time step.
The lowest eigenvalue of G = [D�1 S] is usually calculated using
the Rayleigh principle as follows:

k1 ¼
XT SX
XT MX

; ð32Þ

The Rayleigh quotient usually gives an upper bound of k1. In this
case, the first frequency mode is in under the damped condition.
Therefore, the response of the structure converges slowly. The sim-
plest scheme for computing a better value of k1 is the power itera-
tion technique. The power iteration algorithm can be written as
below [60]:

u1 ¼ f1;1;1; . . . ;1gT
;

vk ¼ Guk;

kk ¼maxðvkÞ;
ukþ1 ¼ vk=kk;

k ¼ 1;2;3; . . .

8>>>><>>>>: ð33Þ
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The result converges to the dominant eigenvalue, kn. It may also be
possible to choose the shift G-aI, such that a P kn [60]. Conse-
quently, the iterative process (33) converges to k1 � a. As it is shown
in Appendix A, all eigenvalues of the proposed DR system are less
than or equal to four. In other words, it is not necessary to calculate
the parameter a, and the value a = 4 can be used. The convergence
rate of this procedure depends on the k2=k1 ratio. If the first and
the second natural frequencies are close to being equal, the proce-
dures will converge slowly. Nevertheless, from a practical point of
view, the power iteration strategy converges faster than the DR
technique, and they can be combined together. The proposed
scheme uses only one step of the power method in each DR step
to update the lowest eigenvalue. It should be noted, utilizing several
steps of the power technique in each DR step improves the value of
k1. However, this process increases the number of computations
sharply and decreases the total number of the DR iterations slightly.
As a result, the following algorithm is suggested:

ð1Þ k ¼ 0; a ¼ 4; Xk ¼ DXk ¼ 0; Rk ¼ P� SXk; ck ¼ 1;

ukþ1 ¼ f1;1;1; . . . ;1gT
;

ð2Þ DXkþ1 ¼ ckðD�1Rk þ DXkÞ;
ð3Þ Xkþ1 ¼ Xk þ DXkþ1; ðRkþ1 ¼ P� SXkþ1 or

Rkþ1 ¼ Rk � SDXkþ1Þ
ð4Þ ifkRkþ1k 6 er and kDXkþ1k 6 ex then STOP;

ð5Þ k ¼ kþ 1; vk ¼ ½G� aI�uk; kk ¼maxðvkÞ; ukþ1 ¼ vk=kk;

kk
1 ¼ kk þ a;

ð6Þ ck ¼ 1

ð1þ
ffiffiffiffiffi
kk

1

q
Þ2
;

ð7Þ GOTO2:

ð34Þ
5. Dynamic analysis

The modal analysis or numerical time integration schemes are
common tactics used in the structural dynamic analysis. The modal
technique is limited to analyzing linear systems, which include
classical damping [61]. On the other hand, numerical integration
algorithms are widely applied to both linear and nonlinear analy-
ses. Starting from initial conditions, the unknown variables are cal-
culated step by step in these schemes. Utilizing a proper time step
guarantees the stability for finding the true solutions. The dynamic
equilibrium equations at time tn + Dt are written below in matrix
form:

M€Xnþ1 þ Cnþ1 _Xnþ1 þ Snþ1Xnþ1 ¼ Pnþ1: ð35Þ

The velocities and the accelerations at time tn+1 are written in terms
of the displacements at this time and the known variables of time tn.
Consequently, an equivalent system of equations is obtained. The
unknown variables of this linear or nonlinear system are Xn+1. The
DR algorithm is appropriate to solve the equivalent system.

Four numerical integration techniques are utilized in this work.
These are the second-order method of Bathe [50], the Wilson-h
scheme [51], the 7th-order procedure of Rezaiee-Pajand and Ala-
matian [12], and the Newmark-b [52] algorithm. The aforemen-
tioned methods are denoted by BM2, WTM, IHOA-7, and NLA,
respectively. The abilities of these strategies are numerically com-
pared and the merits of the DRM for solving equivalent equations
are investigated.

The linear acceleration method of Newmark is a well-known
algorithm. The time step should be bounded in this scheme. Wilson
applied an additional parameter h to obtain an unconditional
method. It is important to remember that when the value of this
parameter is 1, the WTM coincides with the NLA, and the stability
of the WTM depends on the time step. However, it is uncondition-
ally stable when the value of h is greater than 1.37. The optimal va-
lue of h is approximately 1.42. The WTM uses the below relations
for the velocities and the accelerations at time tn + hDt:

_Xnþh ¼ 3
hDt ðX

nþh � XnÞ � 2 _Xn � 1=2€XnhDt;
€Xnþh ¼ 2

hDt ð _Xnþh � _XnÞ � €Xn;

(
ð36Þ

Recently, Bathe presented a second-order unconditional tactic
that has two sub-steps [50]. Using the trapezoidal rule in the first
stage, the unknown’s variables are evaluated at time t + Dt/2.
Afterwards, the three-point Euler backward scheme is utilized to
calculate the nodal variables at time t + Dt. The BM2 uses the fol-
lowing relations to evaluate the velocities and the accelerations:

Stage 1 :
_Xnþ1=2 ¼ 4

Dt ðX
nþ1=2 � XnÞ � _Xn;

€Xnþ1=2 ¼ 4
Dt ð _Xnþ1=2 � _XnÞ � €Xn

(

Stage 2 :
_Xnþ1 ¼ 3

Dt Xnþ1 � 4
Dt Xnþ1=2 þ 1

Dt Xn;

€Xnþ1 ¼ 3
Dt

_Xnþ1 � 4
Dt

_Xnþ1=2 þ 1
Dt

_Xn:

( ð37Þ

A few higher-order strategies have been presented for numerical
integration. Recently, Rezaiee-Pajand and Alamatian suggested a
new family, which were related to the formulation previously
developed by Zhai [62]. This new family of the algorithms uses
the following relation to calculate the increment of acceleration
vector [12]:

D€Xnþ1 ¼ g0ð€Xnþ1 � €XnÞ þ
Xor�1

i¼1

gið€Xn�i � €XnÞ; ð38Þ

where, or is the order of the proposed integration scheme and gi are
the weighted factors. Eq. (38) is an implicit relation. However, it can
be converted to the explicit one by applying g0 = 0. The implicit
higher-order methods use the below equations for the velocity
and the accelerations at time tn + Dt:

_Xnþ1 ¼ g0
n0Dt ðX

nþ1 � XnÞ � 1� g0
n0

� �
_Xn þ 1�

Por�1

i¼0
gi

� �

þg0

n0
ð
Por�1

i¼0
ni � 1=2Þ

�
Dt€Xn þ Dt

Por�1

i¼1
ðgi �

g0
n0

niÞ€Xn�i

€Xnþ1 ¼ 1
g0Dt ð _Xnþ1 � _XnÞ � 1

g0
1�

Por�1

i¼0
gi

� �
€Xn � 1

g0

Por�1

i¼1
gi

€Xn�i

8>>>>>>>><>>>>>>>>:
ð39Þ

To find the optimal values of gi and ni, the accelerations of the pre-
vious steps are written in terms of the higher-order derivatives at
time tn. Consequently, the displacements and the velocities at time
tn + Dt are obtained in the following form:

Xnþ1 ¼ Xn þ Dt _Xn þ
Por

i¼0
akDtiþ2ðXðiþ2ÞÞn

_Xnþ1 ¼ _Xn þ
Por

i¼0
bkDtiþ1ðXðiþ2ÞÞn;

8>>><>>>: ð40Þ

where, X(i+2) shows the (i + 2)th derivatives of the displacement.
Furthermore, ak and bk are functions of ni and gi, respectively. Com-
paring Eq. (40) and the Taylor expansions of the displacement and
the velocity, one can find ak and bk. The values of ni and gi are
now known. These factors are independent of the system specifica-
tions and can be stored in the memory of the computer. For exam-
ple, for the case of or = 1, there are two parameters, n0 = 1/6 and g0

= 1/2. In this special case, the Rezaiee-Pajand and Alamatian algo-
rithm coincides with NLA. The weighted factors for the accuracy or-
der are reported to be between 1 and 10 [12]. In this work, the
seventh-order method from this family is selected for comparison



Fig. 2. Truss TR1.

Table 1
The number of iterations for all structures.

Structure DOFs Behavior Methods

M1 M2 M3

TR1 1 Linear 12 15 103
Nonlinear 100 135 750

TR2 42 Linear 736 2057 2103
Nonlinear 16,576 29,431 30,592

TR3 36 Linear 195 293 285
Nonlinear 1770 2440 2396

The steel Frame 51 Linear 686 1425 1403
Nonlinear 5094 10,419 10,303

The dome truss 147 Linear 274 336 314
Nonlinear 2048 2596 2469
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with the other schemes. This member of the family is not stable for
all values of the time steps. A time step of approximately less than
0.25T is necessary, where T is the first period of the structure. Eqs.
(36), (37), and (39) show the velocity and the acceleration vectors
at time tn + Dt in terms of the displacements at that time, and the
known variables of the previous steps. The velocity and acceleration
vectors can be substituted into dynamic equilibrium Eq. (35) to find
Xn+1 by solving the following relation:

n

Dt2 Mþ g
Dt

Cnþ1 þ Snþ1
	 


Xnþ1 ¼ Pnþ1 �Mf1 � Cf2

� SeqXnþ1 ¼ Peq; ð41Þ

where, n and g are the constant factors and f1 and f2 are functions of
the displacement, velocity and the acceleration vectors of step n and
the previous ones. The values of these parameters depend on the
extrapolations’ terms of the velocities and the accelerations. In gen-
eral, Eq. (41) is a nonlinear relation and should be solved using an
iterative method. The DRM is a simple and a powerful procedure
to solve the linear and nonlinear equations. Because of this merit,
the algorithm (34) and the numerical time integration are com-
bined to solve dynamic problems.

Two kinds of the errors may be observed in the dynamic analy-
sis. They are the inaccuracy in the amplitude of the displacements
and the period elongation. The values of these errors depend on the
time step magnitude, the order of the integration technique, and
also the numerical errors that occur when the equivalent equations
are solved. It is clear that using the large Dt reduces the number of
the integration steps. However, the external forces and earthquake
accelerations can change very rapidly with time, and the time step
should be chosen small enough to cover the significant points of
the force function. In addition, when the time step is large and
the structure behavior is nonlinear, solving the equivalent system
of the equations causes more numerical errors. The final inaccu-
racy of the solution is controlled in the DRM. Therefore, when
the value of the time step increases, the required number of the
iterations also increases. In other words, increasing the value of
Dt does not always decrease the overall required calculations.

6. Numerical examples

Five static structures are chosen to verify the proposed algo-
rithm. Specific aspects of the suggested DRM process are studied
by solving the first four problems. A large dome truss is then ana-
lyzed. According to the prevalent way, the common DRM is com-
pared with the new scheme for all aforementioned structures. It
should be noted, the displacements are the major variables in the
stiffness method, and the stresses are located in the secondary
importance level. Therefore, the displacements’ values are consid-
ered in these examples. In addition, three other dynamic nonlinear
structures will be analyzed after the static problems. The suggested
algorithm will be used to analyze the dynamic systems. This study
includes all four mentioned numerical time integration strategies.
In order to verify the new formulation, the dynamic solutions are
checked with the ones obtained by the Rezaiee-Pajand and Alama-
tian algorithm [11]. This investigation shows the responses errors
belong only to the numerical time integration techniques, and
the suggested DR procedure has no effect on the solution’s accu-
racy. In other words, utilizing the presented dynamic relaxation
tactic with zero damping just affects the total number of the iter-
ations to achieve the nonlinear answers.

6.1. The rod structure

A system having a single degree of freedom is first analyzed.
This example consists of a truss shown in Fig. 2. For TR1, the value
of AE is 107 lb and P equals to 1 lb [57]. The maximum value of the
load factor is 1.5. Furthermore, the geometrical properties of this
structure are H = 1 and L0 cosu = 100 in. The value of G is 4 for this
truss. The minimum eigenvalue and the value of c are 4 and 1/9,
respectively. Consequently, the value of kqkis1=ð1þ

ffiffiffi
4
p
Þ < 1, and

the DR process converges. The number of the iterations shown in
Table 1 indicates good results for the rod structure. A comparison
of the proposed process and the common DR algorithm in the anal-
ysis of the rod structure is also presented in Section 6.5.

6.2. Truss TR2

Truss TR2 is shown in Fig. 3. This structure is a 28-DOF truss
that was solved by Chan and Lau [63,64]. The values of EA, k and
P are 9000, 5 and 1, respectively. The geometric nonlinear analysis
of this structure is performed by utilizing the procedure (34). The
maximum value of k is 5 and the incremental load factor is 0.5.
As it can be seen in Fig. 4, the load–displacement curve for TR2,
which was obtained by Chan and Lau, and the one found by using
the new method are equivalent. It is obvious that the proposed
algorithm is a very appropriate technique for the nonlinear
analysis.

6.3. Truss TR3

In order to study the effects of the time-step ratio on the num-
ber of the iterations, a 36-DOF truss is solved. Fig. 5 presents the
geometry and loading of TR3. The structural properties are
A = 300 mm2, E = 210,000 N/mm2, H = 4 m and P = 100 KN.

TR3 is analyzed for different values of c. In Fig. 6, the number of
the iterations (k) is plotted versus the time-step ratio (c). The low-
est eigenvalue for TR3 is 0.0162. Therefore, Eq. (30) gives 0.787 for
c. According to the Fig. 6, the optimal time-step ratio will be known
if Eq. (30) is used. In this formulation, the DR process will diverge,
when the value of c is 1. This is because the damping factor is zero,
and the structure will behave as an un-damped free vibration sys-
tem. In fact, the common DRM with zero damping cannot analyze
the structure.



Fig. 3. Truss TR2.

Fig. 4. The load–displacement curve for TR2.

Fig. 5. Truss TR3.

Fig. 6. The curve showing the number of iterations versus c for TR3.
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6.4. The steel frame

A steel moment resistant frame is adopted from Barbato’s Paper
[65] to study the effect of the time-step ratio on the numerical con-
vergence. Fig. 7 shows this structure. Columns and beams are
W2150 and W1835, respectively. The modulus of elasticity is
2 � 107 t/m2.

Three time-step ratios are initially utilized to run the DR pro-
cess. In the first, c is calculated based on Eq. (30). It is noted that
the lowest eigenvalue for this frame is 0.00185. Consequently,
the time-step ratio becomes 0.919. Two other approaches use
0.85 and 0.98 for c. The norm of the displacement vector ||X|| is
plotted versus the iteration number, k, in Fig. 8. It can be seen,
when the time-step ratio is less than the optimal case, the struc-
ture response will behave as an over damped system. However,
values of c > 0.919 cause an under damped vibration.

6.5. Comparison study

In this section, some comparisons of the proposed method with
the common DR process in solving static problems are presented.
For this purpose, all structures that were introduced in the previ-
ous sections are analyzed. In addition, the dome truss of Fig. 9 is
solved as well. This 3D truss has 147 DOFs [66]. The structural
properties are AE = 105 N and P = 1000 N. The maximum value of
the load factor for this structure is 1.

Both linear and geometric nonlinear analyses are performed for
each structure. The incremental load factor for the nonlinear
analysis is 0.1 of the final loads. In addition, the allowable error
for the residual force is er = 10�4. In other words, the solutions of
different strategies for each structure are the same and the total
numbers of the required iterations will show the proficiency of
the algorithms. The numbers of the iterations to achieve the neces-
sary precision are reported in Table 1. In this Table, M1 and M2 are
the DR methods with zero damping. The power iteration scheme is



Fig. 7. The steel frame.

Fig. 8. The convergences curves for the steel frame.

Fig. 9. The do
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utilized to calculate the lowest eigenvalue in M1. On the other
hand, M2 uses the Rayleigh quotient to find k1. The common
DRM, which was introduced by Underwood [7], is called M3. This
tactic assumes mii ¼ ð1:1=4Þ

P
jjsijj and c ¼ 2

ffiffiffiffiffi
k1
p

¼ 2x1, where x1

is the natural frequency of the structure and is evaluated using
the Rayleigh principle. In addition, the time-step ratio is 1 for the
M3 method. It should be noted, the new schemes presented by
the researchers are usually compared with the common DR process.

As it is shown in Table 1, utilizing the same allowable error, the
performance of M1 is better than M2 and M2 is almost the same as
M3. Therefore, each of the new proposed algorithms has a good
ability and can be introduced as an alternative method for the
common DRM. According to the results presented in Table 1, the
suggested formulation requires a lesser number of the iteration.
By paying just a little cost and using the power iteration procedure
to calculate k1 causes an appreciable improvement in the conver-
gence rate. It is important to note that too many iterations in the
analysis of the TR2 roots on the vicious nonlinear behavior of the
structure. In fact, more than 50% of the iterations belong to the last
three load increments. In addition, there is a significant difference
between the iteration number of M3 and other procedures for the
SDOF truss. This is because the value of the mass in the Underwood
method is far from exact. The proper mass of SDOF system is 2S/4
in the common DRM. However, Underwood assumed m = 1.1S/4.

6.6. The geodesy dome

TR5 is a 3D truss that has 156 elements and 111 DOFs. This
structure is shown in Fig. 10. The sections’ areas of all members
are 2 in2 (1290.32 mm2). The modulus of elasticity and density
are 3 � 104 Ksi (2.068 � 105 MPa) and 7.77 � 10�4 lb/in3

(8303 Kg/m3), respectively. The weights of the elements are ig-
nored and a concentrated load is applied on the top of the dome
for 0.5 s. All base joints of the dome are fixed. A nonlinear dynamic
analysis of this structure is performed by the suggested technique.

Four numerical integration strategies are applied to analyze
TR5. They are: BM2, WTM with h = 1.42, NLA and IHOA-7. The non-
linear analyses are done for the three time steps 0.01, 0.001 and
0.0001 s. The vertical displacement of the top truss joint is plotted
versus the time in Figs. 11 and 12.

As shown in Fig. 11, the behavior of the IHOA-7 and the NLA
techniques are the same in this example. They are unstable for
Dt = 0.001s, and the time-displacement curves for these schemes
coincide at Dt = 0.0001 s. In other words, the higher-order terms
in the IHOA-7 algorithm had no more effect on the analysis of
TR5, since the required time step is too small. The first period of
me truss.



Fig. 10. The TR5 truss.

Fig. 11. Time–displacement curve for TR5.

Fig. 12. Time–displacement curve for TR5.

Fig. 13. The error magnitude of x.

Fig. 14. The curves of x.
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this structure is T = 0.016 s. Therefore, the NLA and the IHOA-7 are
unstable even for Dt = .06255T.

Fig. 12 shows that the BM2 and the WTM methods give approx-
imately identical results. Furthermore, they are stable even for
Dt = .6255T. This example also shows the merit of the proposed
DR algorithm, when the loads are variable and the behavior of
the system is extremely nonlinear.

6.7. Van-Der-Pol equation

Numerical time integration causes two kinds of errors. One is
the error in the displacement magnitude. If the value of the error
increases too much, the response of a structure will be unstable.
Incorrect estimation of the structural period is the other error. This
causes a difference in phase amplitude between the numerical and
the exact solutions of the system. In this example, the phase differ-
ence error is studied by solving the Van-Der-Pol equation. The dif-
ferential equation of this problem and its approximate analytical
solution are written below:

€x� lð1� x2Þ _xþ x ¼ 0; x0 ¼ 2; _x0 ¼ 0; l ¼ 0:1;



Fig. 15. The pylon structure (TR6).
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x ¼ ðx0 � l2

8
Þ cosðxtÞ þ 3

4
l sinðxtÞ þ 3

16
l2 cosð3xtÞ

� 1
4
l sinð3xtÞ � 1

16
l2 cosð5xtÞ;

x ¼ 1� l2

16
:

Fig. 16. The vertical displacemen
Using Dt = 0.1 s, the Van-Der-Pol equation is solved by all men-
tioned methods, which were utilized in solving the geodesy dome.
The difference between the near exact solution and the numerical
integration schemes’ versus the time is plotted in Fig. 13.

Fig. 13 shows that the maximum values of the error belong to
the WTM. The NLA and the BM2 cause similar errors. Therefore,
the curve of NLA is not plotted. However, the error of the
higher-order scheme is insignificant. The errors in this example
arise from phase differences. To show this type of the error, the
time–displacement curves from 590 to 600 s are plotted in
Fig. 14. This figure indicates that all tactics give good results for
the displacement magnitude. However, the numerical schemes
estimate the period of the system with some errors. Among all
the time integration techniques tested, the higher-order terms of
the integration reduce this type of the error.

6.8. The pylon structure

TR6 is a 2D model of an electricity pylon and has 40 DOFs. The
material properties of this structure are: q = 7850 Kg/m3 and
E = 2 � 105 MPa. The truss members are constructed from two
kinds of the sections. As shown in Fig. 15, the section areas, which
are denoted by s, are 600 mm2, and the rest is equal to 3000 mm2.
Two lumped masses, m = 150 Kg, and two concentrated forces are
applied at the top-left and the top-right joints of the structure.
The concentrated loads change with time according to the below
equations:

P1 ¼ 120 sinðpt=2Þ KN;

P2 ¼ 120 cosðpt=2Þ KN:

It should be noted that the weights of the members are ignored.
Moreover, the consistent mass matrix for each member is utilized
to assemble the structural mass matrix.

Linear dynamic analyses are performed for the pylon structure
by using the BM2, WTM, NLA and the IHOA-7 methods. The main
period of this truss is 0.145 s. However, the external forces cause
much more rapid oscillation. There is not an exact solution avail-
able for this problem. Therefore, the solutions are compared with
the answers of the BM2, when a fine time step, such as
Dt = 0.0001 s, is utilized. As shown in Figs. 16 and 17, the BM2
and the WTM give good results even for the time step of 0.01 s.
However, the NLA and IHOA-7 are unstable even for Dt = 0.001 s.

The analysis of this structure shows that the stability of the
numerical time integration method is more important than the or-
der of the integration algorithm. However, analyzing TR6 with the
t of the truss top-right joint.



Fig. 17. The vertical displacement of the truss top-right joint between times 0.9 and 1 s.
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BM2 and the WTM requires a fine time step, like Dt = 0.007T.On the
other hand, the IHOA-7 needs a smaller Dt. Previous results from
the geodesy dome showed that the IHOA-7 was stable with
Dt = 0.006, T.

7. Conclusions

A new DR method is presented that has no damping terms. This
study shows that the proper time-step ratio guarantees the conver-
gence of the proposed formulation. Furthermore, utilizing the
time-step ratio in the analysis means that a very small time step
is no longer necessary. The suggested algorithm is an alternative
process for the common dynamic relaxation tactic, which uses crit-
ical damping, and a constant time step. Using one step of the power
iterative strategy to update the value of the lowest eigenvalue will
improve the new process and reduce the total number of the iter-
ations. Furthermore, the suggested approach is shown to be appli-
cable to nonlinear dynamic problems. Besides the study on the
ability of the DRM, the merits of two new numerical time integra-
tion schemes, and two other older ones, are compared. The results
show that the stability of the time integration technique in the pro-
posed nonlinear structural analysis algorithm is more important
than its order.

Appendix A. The proof of the stability for the proposed method

The upper bound of the highest eigenvalue of G = [D�1 S] matrix
can be calculated by Gerschgörin theorem, as follows:

jki � giij 6
X
j–i

jgijj ) 0 < ki 6
X

j

jgijj ¼
1
dii

X
j

jsijj: ð42Þ

Substituting Eq. (15) into Eq. (42), leads to 0 < ki 6 4. On the other
hand, the error ratio of the suggested process is obtained by using
Eqs. (22) and (30) and zero damping factor

q ¼ 1= 1þ
ffiffiffiffiffi
k1

p� �
: ð43Þ

Consequently, when the eigenvalues are bounded between zero and
four, the relation 1=3 6 q < 1 is satisfied. In other words, the value
of the error ratio is less than one. As a result, the proposed algo-
rithm always converges.
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