
Vibration analysis of plane frames by
customized stiffness and diagonal mass
matrices
M Rezaiee-Pajand1* and R Khajavi2

1Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2Earthquake Research Center, Ferdowsi University of Mashhad, Iran

The manuscript was received on 21 April 2010 and was accepted after revision for publication on 9 March 2011.

DOI: 10.1177/0954406211405435

Abstract: This article presents a formulation for the vibration analysis of plane frames. The
strain gradient notation is utilized to determine the mass and stiffness matrices. The obtained
matrices can easily be parameterized due to their simple structure. Both Euler-Bernoulli- and
Timoshenko-beam elements are investigated in this study. The parameterized stiffness and mass
matrices are optimized for accurate performance in the vibration analysis of frame structures.
Some numerical examples are solved to show the advantages of the presented scheme. Results of
these sample vibration problems indicate that the proposed technique increases the accuracy of
analysis, when these new stiffness and diagonal mass matrices are used.
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1 INTRODUCTION

Vibration analysis is mostly performed by utilizing

the finite element method (FEM) to determine the

dynamic behaviour of the frame structures. There

are some sophisticated well-performed numerical

methods to deal with the problem [1, 2]. The process

for vibration analysis needs to solve eigenproblems,

which require structural mass and stiffness matrices.

These matrices are assembled from the constituent

element mass and stiffness matrices. The element

mass and stiffness matrices thus significantly con-

tribute to the accuracy and performance of structural

analysis.

Many researchers have focused on creating FEs,

characterized by their mass and stiffness matrices,

with higher performance or specialized application.

Their attempts have generated a number of stiffness

and mass matrices. Non-conforming shape

functions, mixed and hybrid formulations, reduced

and selective integration, and a variety of others are

some well-known approaches to develop well-

behaved stiffness matrices [3]. Several others tried

to derive well-performed mass matrices for dynamic

analysis by FEs. Special attention was paid to formu-

late efficient diagonal mass matrices to replace con-

ventional lumped mass (LM) matrix introduced by

Duncan and Collar [20] and the consistent mass

matrix (CM) proposed by Archer [4]. The CM

matrix, though is sufficiently accurate, frustrates for

some explicit time integration methods [5], for exam-

ple, the well-known central-difference method.

A familiar approach for developing well-performed

mass and stiffness matrices is to scale the matrix

entries by some parameters. These scalable matrices

may then be customized for special applications.

While this scheme has been employed by different

investigators, e.g. [6, 7], the most general and

matured one was proposed by Felippa, who intro-

duced a new term in FE terminology denoted by

‘template’.
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Templates are parameterized algebraic forms that

provide a continuum of consistent and stable FEs for

a given configuration. Optimal and custom elements

can be found by setting appropriate values to free

parameters through non-classic optimization proce-

dures. There are some valuable articles that have sur-

veyed the development of FE templates [8–11].

Furthermore, Felippa has introduced some tactics to

establish FE mass and stiffness templates [12–14].

From analysis point of view, templates contribute to

FEM technology by their generality and customability

features [11]. It is important to note that the proce-

dure to formulate and optimize a FE template is

almost complicated and may require some innova-

tion, especially for complex configurations.

Felippa proposed different methods to construct

the mass matrix for beam elements [15]. He custom-

ized mass template for the two cases of vibration

analysis and wave propagation. However, the authors

are not aware whether these templates have been

used in the frame vibration analysis or not. Archer

and Whalen [6] presented a one-factor scalable diag-

onal stiffness matrix to account for the angular

momentum conservation. They observed that lower

frequency modes of vibration are estimated fairly well

when their rotationally consistent mass (RCM)

matrix, rather than the conventional LM matrix, is

employed. Nevertheless, this trend ceases for higher

frequency modes.

This article presents a new technique to formulate

parameterized mass and stiffness matrices for the two

types of Euler-Bernoulli and Timoshenko beam

elements. The strain gradient notation (SGN) is

utilized in this study. It should be reminded, this

innovative displacement-based FE formulation,

which can deal with both C0 and C1 elements, was

first used by Dow [16]. He admirably employed the

notation to detect and omit modelling errors at the

element level. However, the approach could not

replace well-known classical FE formulations for

other applications, due to its inability to consider

boundary conditions for visible degrees of freedom

(DOF) at element nodes. SGN is especially character-

ized for its physical and microscopic view towards FE

method at the element level, as well as its ability to

separate rigid body motions (RBMs) from other strain

states. The proposed formulation, which is based on

SGN, will significantly simplify the procedures to

parameterize and optimize mass and stiffness

matrices.

In Section 2, an approach to generate basis func-

tions for strain gradients (SGs) is introduced. These

functions are then employed in Section 3 to calculate

mass and stiffness matrices in the SG system. In

Section 4, the suggested scheme is implemented for

the Euler-Bernoulli-beam element. A procedure to

parameterize the calculated mass and stiffness matri-

ces will produce a simple representation for the mass

and stiffness templates of the beam element. The

proposed templates include Euler-Bernoulli- and

Timoshenko-beam, as well. In Section 5, the mass

and stiffness templates are customized for exact eval-

uation of natural frequencies for the first and second

modes of the Euler-Bernoulli-beam with different

end conditions. The same process will be repeated

in Section 6 for the Timoshenko-beam element. In

all cases, mass templates are customized so that the

calculated mass matrices are diagonal. It is worth

emphasizing that these diagonal matrices will be dif-

ferent from the well-known LM matrices. In Section 7,

the obtained customized matrices will be utilized in

some numerical experiments, to verify the efficiency

of the method for the vibration analysis of plane

frame structures.

2 STRAIN STATES AND BASE FUNCTIONS

In the FE method, analysts seek an unknown field of

displacement, stress, or strain over the structural

domain. This field is assumed to be a linear combi-

nation of some basic sub-fields. In the displacement

formulation scheme, element deformation is consid-

ered as a superposition of a set of basic functions,

known as the standard basis. From an FE point of

view, these basic deformations are also called shape

functions. Such functions display how the element

deforms when subjected to a unit displacement at

each DOF, while others are constrained against

movement.

The following displacement function, u, is pre-

sumed to be a linear combination of the shape func-

tions, with its coefficients representing the unknown

nodal displacements

u ¼ ND ð1Þ

where N is the matrix of shape functions and D the

vector of nodal displacements. It should be added

that the standard basis is just one of an infinite

number of base functions which can be considered

for the element deformation space. The standard

shape functions have a vast practical use in the FE

technique, since their coefficients are simply the

nodal displacements. In the most convenient way,

these nodal values can easily fulfill the inter-element

compatibility requirements.

From another interesting viewpoint, the element

deformation can be represented by a different

useful set of basic functions, which is called the

strain-state basis in this study. This type of basis con-

tains RBMs, as well as, constant and higher order
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strain states. The RBMs might be called zero-order

strain states. It should be added that each strain

state is associated with a base function, displaying a

corresponding deformation of the element.

The base functions may be reproduced by a novel

formulation denoted by SGN. It is worth emphasizing

that the mentioned strategy turns out to be a revised

form of the displacement-based FE formulation. In

this approach, the displacement field is extrapolated

by SGs at an arbitrary point along the element, mostly

at the mid-point, rather than nodal displacements.

SGs refer to derivatives of the displacement field

with different orders, evaluated at the mid-point.

Each SG might then represent a special strain state,

depending on its corresponding base function.

In the following, a revised form of the SG formula-

tion is introduced. The displacement field is assumed

to be indicated by a polynomial as given below

u ¼ Pa ð2Þ

where P and a are the polynomial matrix and the

coordinate vector, respectively. SGs are obtained by

evaluating appropriate derivatives of equation (2) at

the mid-point having known coordinates x0. Any FE

with n DOFs is capable of modelling n strain states or

SGs, as follows

q1 ¼ Lð1ÞPa
��

x�

q2 ¼ Lð2ÞPa
��

x�

:

:

:

qn ¼ LðnÞPa
��

x�

ð3Þ

Here, L ð i Þ , 0 � i � n is an appropriate differential

operator for the strain state i, and q1, . . . , qn are SGs.

These relations can be rewritten in the following

matrix form

q ¼ Gq a

Gq ¼

L ð1ÞP ðx�Þ

..

.

L ðnÞP ðx�Þ

2
664

3
775

n�n

ð4Þ

where Gq is a transform matrix, which relates the

polynomial coefficient vector a to the SG vector q.

The parameter a can thus be defined as given below

a ¼ G�1
q q ð5Þ

By substituting equation (5) into equation (2), the dis-

placement field is obtained in terms of SGs, as follows

u ¼ P G�1
q q ð6Þ

In the following, a base matrix Nq is introduced,

which extrapolates the displacement field by SGs q

u ¼ N q q ð7Þ

Utilizing equations (6) and (7), the base matrix will

be obtained as shown below

N q ¼ PG�1
q

N q ¼ ½Nq1 Nq2 � � � Nqn�
ð8Þ

Each entry of this matrix denotes a base function

for a strain state. In the next section, this matrix is

employed to calculate the mass and stiffness matrices

in terms of the basis of strain states.

3 MASS AND STIFFNESS MATRICES

From the mathematical point of view, the mass and

stiffness matrices may be interpreted as representa-

tions for linear mappings which map vectors from the

vector space of element displacement, velocity or

acceleration into the vector space of forces. All

spaces have the same dimension, which is equal to

the number of DOFs for that element. Each represen-

tation for a linear mapping is associated with a basis

for the two vector spaces. Moreover, the basis must

meet the criteria of linear independency.

The well-known mass and stiffness matrices used

for structural dynamic analysis are obtained in the

standard or canonical basis, with the following base

vectors

e1 ¼ f 1 0 � � � 0 g

e2 ¼ f 0 1 � � � 0 g

..

.

en ¼ f 0 0 � � � 1 g

ð9Þ

To establish the mass or stiffness matrix in

the standard basis, it is a common procedure to cal-

culate the forces developed at all DOF, when the

element is subjected to a unit acceleration or dis-

placement of a desired DOF, while all others are

constrained against movement. This will develop a

canonical base vector for the element. The analyst

could use these matrices to write the following well-

known equation of motion

M €D þ K D ¼ P ð10Þ

In this equation, the damping term is neglected for

the sake of simplicity. On the other hand, equation

(10) may alternatively be rewritten for SG basis as

below

M q €q þ K q q ¼ Pq ð11Þ
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where

M q ¼ GT M G ð12Þ

Kq ¼ GT K G ð13Þ

q ¼ HD ð14Þ

Pq ¼ GT P ð15Þ

The mass and stiffness matrices for SG basis are

obtained by the following relations

Mq ¼

Z
V

� Nq
T Nq dV ð16Þ

Kq ¼

Z
V

BT
q Dm Bq dV ð17Þ

In equation (17), Bq denotes the strain–SG matrix

that can be calculated from the base functions by the

following relation

Bq ¼ "N q ð18Þ

The FE compatibility relation could be utilized to

obtain ", which is called the differential operator

matrix.

4 PARAMETERIZED MASS AND STIFFNESS

MATRICES FOR BEAM ELEMENT

It is worthwhile to note that the mass and stiffness

matrices, which were developed in the SG basis, are

either the diagonal one or the one near the diagonal

and is sparse. Free parameters can then be easily

replaced with their non-zero entries. Furthermore, a

fundamental feature of SGN is its ability to separate

RBMs from other strain states. In fact, the entries cor-

responding to RBMs could be simply detected in their

mass and stiffness matrices developed by SGN. Since

no strain energy is stored by RBMs, the corresponding

entries in the SG-basis stiffness matrix are equal to

zero. Whereas, the entries corresponding to constant

strain states will not be parameterized to maintain

convergence criteria.

The conservation of linear momentum, as well as

the angular momentum, can be considered in the

RBM entries of the FE SG-basis mass matrix. As the

conservation of linear momentum may not be disre-

garded, its corresponding entry will not accept any

parameterization.

The aforementioned procedure will now be followed

to formulate the parameterized mass and stiffness

matrices for the elastic uniform Euler–-Bernoulli-

beam element. In the following formulation, displace-

ments are assumed to be small and the equilibrium

equations are established for the undeformed state of

the beam element by a Lagrangian coordinate system.

In other words, the geometrical non-linearity is

ignored. The axial and flexural effects are supposed to

be decoupled. For the sake of simplicity, axial deforma-

tion will not be considered in this study. Shear and

torsion deformations are also neglected. Note that

the following relations are established at the element

level.

The beam element has four DOFs, which are ‘a dis-

placement’ and ‘a rotation’ at each end node.

Therefore, it can model four strain states as depicted

in Fig. 1 by the following SGs

q
1
¼ w�

q
2
¼ ��

q
3
¼ �x�

q
4
¼ �xx�

ð19Þ

These SGs are related to the values of deflection,

rotation, constant curvature, and linear curvature at

the mid-point, respectively. The polynomial matrix P

is selected as follows

P ¼ ½ 1 x x2 x3 � ð20Þ

The first four derivatives of the polynomial matrix is

given below

P ¼ ½ 1 x x2 x3 �

P 0 ¼ ½ 0 1 2x 3x2 �

P 00 ¼ ½ 0 0 2 6x �

P 000 ¼ ½ 0 0 0 6 �

ð21Þ

Replacing the mid-point coordinate (x¼ 0) will

result in the following transform matrix, Gq

Gq ¼

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 6

2
664

3
775 ð22Þ

Inverting this matrix and using equation (8), the

base functions in the SG basis are obtained as given

below

N q ¼ 1 x x2

2
x3

6

h i
ð23Þ

At this stage, the transform matrix G is calculated

by substituting the two end coordinates into the base

functions and their first derivatives. The result is

given as follows

G ¼

1 �L
2

L2

8
�L3

48

0 1 �L
2

L2

8

1 L
2

L2

8
L3

48

0 1 L
2

L2

8

2
6664

3
7775 ð24Þ

Columns of G, considered as individual vectors,

represent the strain states for the beam element, as
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shown in Fig. 1. The inverse of G, which will be used

further, has the following form

H ¼

1
2

L
8

1
2

�L
8

�3
2L

�1
4

3
2L

�1
4

0 �1
L 0 1

L
12
L3

6
L2

�12
L3

6
L2

2
664

3
775 ð25Þ

The differential operator ", for the Euler–Bernoulli-

beam element, is the second derivative. By utilizing

equation (18), Bq is obtained as given below

Bq ¼ 0 0 1 x
� �

ð26Þ

In SG basis, the mass and stiffness matrices are cal-

culated by using equations (16) and (17). They appear

as follows

M q ¼

mL
0 mL3

12
mL3

24 0 mL5

320

0 mL5

480 0 mL7

16128

2
664

3
775 ð27Þ

K q ¼

0
0 0
0 0 EIL
0 0 0 EIL 3

12

2
664

3
775 ð28Þ

The parameterized forms of the mass and stiffness

matrices can now be developed by inserting free

parameters in non-zero entries. In addition, the

requirements for the conservation of linear momen-

tum for the mass matrix, as well as, the convergence

criteria for the stiffness matrix should always be con-

sidered [8, 3]. The parameterized mass and stiffness

matrices will finally have the following structure

M q �1, . . . ,�5ð Þ ¼

mL
0 �1mL3

�4mL3 0 �2mL5

0 �5mL5 0 �3mL7

2
664

3
775

ð29Þ

K q �ð Þ ¼

0
0 0
0 0 �EIL
0 0 0 �EIL3

2
664

3
775 ð30Þ

These two equations present a general template for

mass and stiffness matrices of the beam element. In

other words, they can be used in the analysis of Euler–

Bernoulli- and Timoshenko-beams. For instance, the

well-known LM matrix can be retrieved from the pro-

posed mass template by assigning the following

values for the free parameters

�1 ¼
1

4
; �2 ¼

1

64
; �3 ¼

1

2304
; �4 ¼

1

8
; �5 ¼

1

96
ð31Þ

The RCM matrix, which satisfies the conservation

law for both linear and angular momentum, may be

reproduced by the free parameters given below

�1 ¼
27

140
; �2 ¼

3

2240
; �3 ¼ �

37

80640
;

�4 ¼
1

8
; �5 ¼

11

3360

ð32Þ

These values give the same mass matrix as obtained

by Archer and Whalen [6]. Furthermore, the well-

known CM matrix could be obtained by utilizing the

following values

�1 ¼
1

12
; �2 ¼

1

320
; �3 ¼

1

16128
;

�4 ¼
1

24
; �5 ¼

1

480

ð33Þ

The classical Euler–Bernoulli-beam stiffness

matrix may also be determined by substituting

� ¼ 1 and � ¼ 1
12 into equation (30). It should be

added that � ¼ 1 is considered to preserve element

convergence. However, in some cases, for instance,

some versions of Timoshenko-beam, it may take

other values, which will be discussed later. The

procedure to find values for the free parameters

needs some optimality criteria, which will be

explained in the following section.

5 CUSTOMIZED EULER–BERNOULLI-BEAM

ELEMENT

At this stage, after the parameterized mass and stiff-

ness matrices are formulated, they can be customized

to exactly evaluate the natural frequencies of any

arbitrary beam with different end conditions. In this

Fig 1 Strain states for Euler-Bernoulli-beam element
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section, the optimization process is performed for the

three end conditions: pinned-pinned or simple beam,

fixed-free or cantilever beam and fixed-pinned. As

diagonal mass matrices significantly simplify the

analysis procedures, a diagonal instance of the mass

template will be employed for all computations. This

diagonal mass template is defined by the following

parameters

�1 ¼
3

16
þ 4�2; �3 ¼ �

5

9216
þ

1

16
�2;

�4 ¼
1

8
; �5 ¼

1

384
þ

1

2
�2

ð34Þ

These relations are obtained by setting non-

diagonal entries of the parameterized mass matrix in

the standard basis, M (�1, . . . ,�5), to zero. By using the

inverse form of the transformation introduced in

equation (12), this template is obtained from the

mass template Mq (�1, . . . ,�5) in equation (29). It is

easy to notice that all parameters are dependent on

a free parameter �2. In fact, four independent linear

equations having five unknowns, �1, . . . ,�5, are

obtained by setting to zero the six non-diagonal

entries of the symmetric mass template. As the follow-

ing matrix shows, the formulated diagonal mass tem-

plate can be written in terms of only one parameter

M �2ð Þ ¼

mL
2
0 1

32 mL3 64�2 � 1ð Þ

0 0 mL
2

0 0 0 1
32 mL3 64�2 � 1ð Þ

2
664

3
775

ð35Þ

5.1 Pinned-pinned end condition

The parameterized mass and stiffness matrices are

customized to find the exact values for the first two

natural frequencies of the simple beam. By utilizing

the stiffness and diagonal mass templates, respec-

tively from equations (30) and (35), and performing

a simple vibration analysis, the first two natural

frequencies of the simple beam could be obtained.

The results have following forms

!2
1 ¼

64

64�2 � 1

EI

m L4
ð36Þ

!2
2 ¼

2304�

64�2 � 1

EI

mL4
ð37Þ

On the other hand, exact values for the first two

natural frequencies of the simple beam may be

obtained from the analytical solution of the governing

equation. They have the following amounts

!2
1 ¼ �

4 EI

mL4
ð38Þ

!2
2 ¼ 16�4 EI

mL4
ð39Þ

Setting the parameterized values equivalent with

those of the exact ones yield the free parameters as

given below

�2 ¼
1

64
þ

1

�4
¼ 0:025891 ð40Þ

� ¼
4

9
¼ 0:44444 ð41Þ

By substituting these values into the templates, the

customized mass and stiffness matrices turn out to be

M ¼

0:5 mL
0 0:020532 mL3

0 0 0:5 ml
0 0 0 0:020532 mL3

2
664

3
775

ð42Þ

K ¼
EI

L3

64
32L 17L2

�64 �32L EIL
32L 15L2 �32L 17L2

2
664

3
775 ð43Þ

It is worth emphasizing that the value obtained for

the free parameter � in equation (41) will not yield the

exact well-known Euler–Bernoulli-beam stiffness

matrix. This fact is obvious from equation (43). The

obtained mass matrix is not capable of satisfying the

conservation law for angular momentum. A comment

should be made that the presented optimized values

for mass and stiffness matrices are just qualified for a

vibration analysis of a simple beam. In fact, the

formulated mass and stiffness matrices may not be

efficient for other analytical applications.

In an alternative customization procedure, one may

set the free parameter � equal to 1
12 to restore the well-

known stiffness matrix for the Euler-Bernoulli-beam

element. The diagonal mass template may then be

customized for exact evaluation of the first and

second natural frequencies individually. To retrieve

the exact natural frequency for the first mode, the pro-

cedure will yield the same value for �2 as given by

equation (40). This value is not appropriate to esti-

mate the frequency for the second mode. In fact, the

following value for �2 should be used to evaluate the

second mode frequency

�2 ¼ 0:017611 ð44Þ

This will lead to the diagonal mass matrix given as

follows

M ¼

0:5 mL
0 0:0039721 mL3

0 0 0:5 mL
0 0 0 0:0039721 mL3

2
664

3
775

ð45Þ
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This mass matrix may not be efficient to compute

the first natural frequency of the simple beam.

5.2 Fixed-free end condition

In this section, the stiffness and diagonal mass tem-

plates are customized for exact evaluation of the first

two natural frequencies of a cantilever beam. As

a rational approach, � is set to 1
12 to retrieve the

Euler-Bernoulli-beam stiffness matrix, which exactly

includes the bending strain energy. The related mass

and stiffness matrices may then be used uncon-

cernedly for any quasi-static or time history analysis.

As far as the diagonal mass matrix is concerned, �2 is

the only parameter which should be calculated. By

setting the first natural frequency obtained from the

diagonal mass template and Euler–Bernoulli-beam

stiffness matrix to the exact one, �2 will be obtained

as shown below

�2 ¼ �0:0728 ð46Þ

This will result in the following diagonal mass

matrix

M ¼

0:5 mL
0 �0:1768 mL3

0 0 0:5 mL
0 0 0 �0:1768 mL3

2
664

3
775

ð47Þ

The negative rotational inertias appeared in the

mass matrix counterbalance the overestimate

caused by lumping the translational mass to the

extremities of the element [6]. The developed mass

matrix is main suited for dynamic analysis, when the

first mode contribution has a considerable effect.

If the same procedure is performed for the second

natural frequency, then �2 will be equal to the follow-

ing value

�2 ¼ 0:0199 ð48Þ

Consequently, the following mass matrix is

obtained

M ¼

0:5 mL
0 0:00856 mL3

0 0 0:5 mL
0 0 0 0:00856 mL3

2
664

3
775

ð49Þ

In this case, the amount of RBM does not have any

significant effect on the mode shape, and the rota-

tional inertia will not be significantly overestimated.

From this point of view, it would not be a need to

counterbalance the negative rotational inertia for

the second mode.

5.3 Fixed-pinned end condition

In this section, the parameterized mass and stiff-

ness matrices are customized to find an exact

value for the first natural frequency of the beam

having fixed-pinned end condition. The beam

element with this end condition has one free rota-

tional DOF at the pinned end. This structure has

the first natural frequency with the following

parameterized value

!2 ¼
32ð36�þ 1Þ

64�2 � 1

EI

mL4
ð50Þ

If � ¼ 1
12 is utilized to calculate the Euler–Bernoulli-

beam stiffness matrix, an optimized diagonal mass

matrix will be obtained by setting �2 to the following

value

�2 ¼ 0:0240382 ð51Þ

The related mass matrix could be written in the

following form

M ¼

0:5 mL
0 0:0168264 mL3

0 0 0:5 mL
0 0 0 0:0168264 mL3

2
664

3
775

ð52Þ

6 CUSTOMIZED TIMOSHENKO-BEAM
ELEMENT

Free parameters in mass and stiffness templates

can be evaluated to consider the shear as well as

bending deformations. This formulation will be

suitable for the analysis of Timoshenko-beam.

For instance, four typical stiffness matrices for

Timoshenko-beam, which were introduced by

Felippa [17], may be represented in the following

form of SG basis

K E ¼

0
0 0
0 0 EI L
0 0 0 1

12ð1þFÞ EI L3

2
664

3
775 ð53Þ

K R ¼

0
0 0
0 0 EI L
0 0 0 1

12F EI L3

2
664

3
775 ð54Þ

K F ¼

0
0 0
0 0 0
0 0 0 1

F EI L3

2
664

3
775 ð55Þ
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K X ¼

0
0 0
0 0 1þF

F EI L
0 0 0 1

12F EI L3

2
664

3
775 ð56Þ

In these formulas, F ¼ 12 EI
�GA L2 and � is the shear

factor which depends on the shape of beam section.

Some typical features of various Timoshenko-beam

stiffness matrices are discussed by Felippa [17]. They

may easily be explained by considering the diagonal

non-zero entries of the proposed SG-basis matrices,

which represent stiffness values for constant and

linear curvature modes. For example, KE is found to

be unaffected by shear locking, as the diagonal entries

are still bounded when the shear deformations

diminish. Actually, if F! 0, the well-known Euler–

Bernoulli-beam stiffness matrix is recovered from KE.

The two matrices KR and KF, though not shear locked

for constant curvature state, they suffer shear locking

in linear curvature mode and KX suffers shear locking

for both modes.

6.1 Pinned-pinned end condition

In this section, the parameterized mass and stiffness

matrices are customized for exact estimation of the

first two natural frequencies of the Timoshenko-

beam having pinned-pinned end conditions. The

diagonal mass template in equation (35), with a

parameter �2, and the well-behaved stiffness matrix

KE are used for the customization procedure. In this

case, the following values are selected for the free

parameters a and � in the stiffness template

� ¼ 1

� ¼
1

12ð1þ FÞ

ð57Þ

The parameter �2 is found by equaling the natural

frequencies obtained from the selected stiffness

matrix and mass template with those of exact

ones. Karnovsky has reported the exact values for

vibration frequencies [18]. For the exact evaluation

of the first natural frequency of the simple beam, the

free parameter could be written in the following

form

�2 ¼
1

64
þ

1

�4 1� �2

24 	F
� �2

ð58Þ

In this equation, 	 ¼ 1þ �G
E . It is worthwhile to note

that, when F! 0, the value for the free parameter

will be the same as the one derived for Euler-

Bernoulli-beam element in equation (40). The

obtained value yields a customized diagonal mass

matrix to estimate the first natural frequency of the

simple beam as given below

M ¼

0:5 mL
0 11:8264

ð�2 	F�24Þ2
mL3

0 0 0:5 mL
0 0 0 11:8264

ð�2 	F�24Þ2
mL3

2
664

3
775

ð59Þ

Optimizing the template for the second frequency

of the simple beam will lead to the following new

value for �2

�2 ¼
1

64
þ

6:75

�4ð1þ FÞð�2 	F� 6Þ2
ð60Þ

Once again, when F! 0, the value for the free

parameter will be the same as the one obtained for

Euler–Bernoulli-beam element in equation (44). This

value yields a customized diagonal mass matrix to

evaluate the second natural frequency of the simple

beam as follows

M ¼

mL
2

0 13:5mL 3

�4ð1þFÞð�2 	F�6Þ2�108

0 0 mL
2

0 0 0 13:5mL3

�4ð1þFÞð�2 	F�6Þ2�108

2
66664

3
77775

ð61Þ

6.2 Fixed-free end condition

For this case, the free parameters of the stiffness tem-

plate are assumed as previously described by equa-

tion (57). The one-parameter diagonal mass template

is again considered. The customization procedure is

performed for the exact estimation of the first fre-

quency of the cantilever beam. This will lead to �2,

which is a very complicated function of F and 	.

These functions are too lengthy to be reported in

this article.

7 NUMERICAL VERIFICATION

This study is focused on the vibration analysis of

plane frames by customized stiffness and diagonal

mass matrices. The objective of this verification is to

validate the efficiency of the customized mass and

stiffness matrices proposed so far. The selected prob-

lems are a two-span continuous beam and five frame

structures. For the sake of comparison, a near-exact

result is found by a fine mesh of 20 FEs for each struc-

tural member. The accuracy of the presented formu-

lation to find the exact solutions is explored through

some numerical examples. It is also notable that the

eigenproblem can be solved by any well-performed

solution procedure such as Lanczos and QR

algorithms.
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7.1 Example 1

The properties of the sample structure are shown in

Fig. 2. The axial stiffness for the sections of the two

members is assumed to be equal to one (EA¼ 1). This

simple frame is characterized for its two members

representing deformations near to the cantilever

and simple beams. The frame can thus be considered

as a typical example to verify the customized mass

and stiffness matrices. In Tables 1 and 2, the results

for the vibration analysis obtained by different mass

and stiffness matrices are compared with the exact

values.

As it can be seen from the values in Tables 1 and 2,

the results found by using the LM matrix seem to be

the worst among all. However, the CM matrix, RCM

matrix and the customized mass and stiffness matri-

ces present good outcomes. In case 4 of both tables,

the customized mass matrix for the first mode of a

cantilever beam is employed. It should be added

that this mode shape resembles the configuration

adopted by the frame column, for both first and

second modes. Figure 3 illustrates these mode shapes.

The customization introduced in case 4 is modified

in case 5 for the true vibration configuration of the

frame. As the rotational stiffness of the beam does not

provide enough resistance against rotation at the

column end, the column may still be supposed to

behave as a cantilever, with the customized mass

matrix described in equation (47). However, the

beam may experience a high rigid rotation due to

low axial rigidity of the column. This will surely

necessitate assuming negative rotational inertia to

decrease overestimated rotational inertia caused by

lumping the translational mass to the extremities of

the member. Thus, a value �0.055 is assumed for the

free parameter �2. As a result, the accuracy for the

natural frequencies are clearly improved for both

modes as indicated by Tables 1 and 2.

7.2 Example 2

A two-span continuous beam with the properties

shown in Fig. 4 is considered. The two members

of the structure may roughly be regarded as close to

pinned-pinned and fixed-pinned elements. The mass

and stiffness matrices customized for these end con-

ditions are applied to find the frequency for the first

mode of the structure. The proposed method may not

be employed to find the frequency for the second

mode, as customization for fixed-pinned condition

is not defined for higher modes. The results obtained

for the different mass and stiffness matrices are

shown in Table 3.

According to Table 3, while the two lumped and

RCM matrices fail to give acceptable results, the pro-

posed mass matrix with its diagonal form leads to a

better result compared with the CM matrix. In addi-

tion, Archer and Whalen [6] suggested that the nega-

tive frequency obtained by the RCM is caused by

overestimating negative inertias. It is worth empha-

sizing that the same problem may occur for the pro-

posed formulation; and the customized mass

matrices may produce the artificial negative frequen-

cies, especially when sufficient elements with nega-

tive mass entries are interconnected at the same

Table 1 First natural frequency for Example 1 obtained by different methods (!2
1 exact ¼ 1:3677 EI

mL4)

No. Member Mass matrix Stiffness matrix !2
1=

EI
m L 4

Relative
error %

1 Beam Consistent EB (Euler-Bernoulli) 1.2959 5.3
Column Consistent EB

2 Beam Lumped EB 0.1643 88
Column Lumped EB

3 Beam Rotationally
consistent diagonal

EB 1.2087 11.6

Column Rotationally
consistent diagonal

EB

4 Beam From equation (42) From equation (43) 1.2264 10.3
Column From equation (47) EB

5 Beam �2 ¼ �0:055 EB 1.3672 0.05
Column From equation (47) EB
Column From equation (47) EB

Fig. 2 Frame structure of Example 1
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nodes. This will result in the negative entries in the

overall structural mass matrix, which eventually leads

to the negative eigenvalues. While negative masses

may not affect analyses that are performed in the fre-

quency domain, they will produce the unbounded

time-history solutions [19]. However, the customized

mass matrices may still be used for the time-domain

analyses, in the typical structural applications, such

as seismic analyses. Archer and Whalen [6] proposed

a scheme to shift the eigenvalue from the negative

value to positive one, which could be utilized for

the customized mass matrices proposed in this

study, as well.

7.3 Example 3

The proposed formulation is applied to find the first

natural frequency of the portal frame shown in Fig. 5.

The configuration adopted by this frame in the first

mode may intuitively be considered to involve single-

curvature columns and a double-curvature beam.

The column members may then resemble a

cantilever, while the beam member might behave as

a simple beam. The diagonal mass matrix customized

for the first mode of a cantilever and that customized

for the second mode of a simple beam are respec-

tively adopted for the frame columns and beam.

The well-known Euler-Bernoulli-beam stiffness

matrix is used for all members. The results obtained

by different mass matrices are reported in Table 4.

The customized mass matrix, as well as the CM

matrix, seems to yield the best result. However, if

the free parameter �2 is supposed to be 0.026 for

the customized mass matrix of the beam, the near-

exact value for the first natural frequency of the frame

is obtained. This value is close to the one which pre-

sents the diagonal mass matrix customized for the

first mode of a simple beam. It can then be concluded

that the beam configuration resembles to a simple

beam in the first mode having a single-curvature

shape.

7.4 Example 4

The asymmetric frame structure shown in Fig. 6 is

considered. IPE160-section with A¼ 20.1 cm2 and

I¼ 869 cm4, and 2IPE160-section with A¼ 40.2 cm2

and I¼ 1738 cm4 are used for beams and columns,

respectively. Natural frequencies for the first and

second modes are calculated and reported in

Tables 5 and 6. The well-known Euler–Bernoulli-

beam stiffness matrix is utilized for all cases. As it is

shown in the tables, the CM matrix presents near-

accurate results; however, the LM matrix fails to

yield good results. Unlike for the first mode, the

RCM matrix is unable to accurately estimate the nat-

ural frequency for the second vibration mode. As

mentioned by Archer and Whalen [6], the RCM

matrix is mostly efficient for the first mode. In case

4, the mass matrix customized for the first mode of a

fixed-pinned beam and the one customized for the

Table 2 Second natural frequency for Example 1 obtained by different methods (!2
2 exact ¼ 2:8803 EI

m L 4)

No. Member Mass matrix Stiffness matrix !2
2=

EI
m L 4

Relative
error %

1 Beam Consistent EB 2.3951 16.8
Column Consistent EB

2 Beam Lumped EB – –
Column Lumped EB

3 Beam Rotationally
consistent diagonal

EB 2.3073 19.9

Column Rotationally
consistent diagonal

EB

4 Beam From equation (45) From equation (43) 2.3190 19.5
Column From equation (47) EB

5 Beam �2 ¼ �0:055 EB 2.7380 5
Column From equation (47) EB

Fig. 3 First two mode shapes for Example frame 1

Fig. 4 Frame structure of Example 2
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second mode of a simple beam are respectively used

for columns and beams. In fact, a customization for

the first mode of a cantilever beam applied to the

columns which undergo significant drifts would be

more efficient. Therefore, in case 5, mass matrices

customized for the first mode of a cantilever beam

are assigned to the columns. Obviously, the results

are considerably improved due to this modification,

especially for the first mode.

7.5 Example 5

As another example, the first natural frequency for

coupled shear walls shown in Fig. 7 is discussed.

This structure is modelled the same as a simple

portal frame. Due to the considerable depth-to-

length ratio for the members, the shear deformations

may not be neglected, and the Timoshenko-beam

kinematic constraints should thus be applied to the

element formulation. The beam is considered to have

a length of L¼ 2.0 m. Both columns are supposed to

be the same with the length of L¼ 3.0 m. The widths

of the beam and columns are assumed to be of 20 cm.

In this example, two cases of the length-to-depth

ratio are considered as: (1) L/h¼ 2 and (2) L/h¼ 5.

The Timoshenko formulation is employed for L/h

between 2 and 10, and usually the ratio less than 2

cannot theoretically be considered as correct. The

modulus of elasticity, shear modulus, Poisson ratio,

and density are respectively assumed to be 25 and

10 GPa and 0.25 and 2400 Kg/m3. The shear factor is

assumed to be � ¼ 2
3. Table 7 shows the values

obtained by different mass and stiffness matrices

for the first natural frequency of the structure with

L/h¼ 2.

Based on the behaviour of the shear wall structure,

in the first vibration mode, the columns of the frame

deform with double-curvature. This behaviour

opposes the case in Example 3, where columns expe-

rience single-curvature shape due to the small depth-

to-length ratio. The columns deformed in the first

mode may thus closely imitate a simple beam in its

second mode, rather than a cantilever beam in its first

mode. The mass matrix customized for the second

mode of a simple beam is then used for the estimation

of the first natural frequency of the coupled walls. As

it can be seen in Table 7, the result related to case 4

signifies an improvement in accuracy compared with

the three previous cases. The same customized mass

matrix is also applied to the beam member; however,

the vibration analysis turns out to be slightly sensitive

to the beam mass matrix in this case. As implied by

Table 7, the RCM matrix may not be considered as a

reliable choice for this case. It should be added, if�2 is

equal to 0.028, the exact value for the first natural

frequency is acquired.

In Fig. 8, the values for the first six vibration fre-

quencies of the coupled walls obtained by different

mass matrices are demonstrated. The abbreviations

CM, LM, and RCM stand for the consistent mass

matrix, the lumped mass matrix and the rotationally

consistent diagonal mass matrix, respectively. The

two other choices appeared on the legend point to

the customized mass matrices introduced as cases 4

and 5 in Table 7. Obviously, these mass matrices

which are customized for the first natural frequency

may not reliably be used for other vibration modes.

Table 3 First natural frequency for Example 2 obtained by different methods (!2
1 exact ¼ 132:582 EI

m L 4)

No. Member Mass matrix Stiffness matrix !2
1=

EI
m L 4

Relative
error %

1 Beam 1 Consistent EB 177.418 33.82
Beam 2 Consistent EB

2 Beam 1 Lumped EB – –
Beam 2 Lumped EB

3 Beam 1 Rotationally
consistent diagonal

EB Negative value! –

Beam 2 Rotationally
consistent diagonal

EB

4 Beam 1 From equation (51) EB 137.372 3.61
Beam 2 From equation (42) From equation (43)

Fig. 5 Frame structure of Example 3
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Fig. 6 Frame structure of Example 4

Table 4 First natural frequency for Example 3 obtained by different methods (!2
1 exact ¼ 2:8657 EI

m L4)

No. Member Mass matrix
Stiffness
matrix !2

1=
EI

m L 4

Relative
error %

1 Left column Consistent EB 3.1504 9.04
Beam Consistent EB
Right column Consistent EB

2 Left column Lumped EB 4.2204 32.10
Beam Lumped EB
Right column Lumped EB

3 Left column Rotationally
consistent diagonal

EB 2.4251 18.17

Beam Rotationally
consistent diagonal

EB

Right column Rotationally
consistent diagonal

EB

4 Left column From equation (49) EB 2.9485 2.9
Beam From equation (45) EB
Right column From equation (49) EB

Table 5 First natural frequency for Example 4 obtained by different methods (f1 exact ¼ 8:9871 Hz)

No. Member Mass matrix Stiffness matrix Frequency (Hz)
Relative
error %

1 Columns Consistent EB 9.5607 6.38
Beams Consistent EB

2 Columns Lumped EB 6.4696 28.01
Beams Lumped EB

3 Columns Rotationally
consistent diagonal

EB 8.7707 2.41

Beams Rotationally
consistent diagonal

EB

4 Columns From equation (52) EB 8.547 4.50
Beams From equation (45) EB

5 Columns From equation (47) EB 9.0466 0.66
Beams From equation (45) EB
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As shown in Fig. 8, the results offered by customized

mass matrices deteriorate for modes other than 1.

The CM matrix and RCM matrix can generally be

considered as good choices to perform structural

dynamic analysis, which deal with different modes.

Table 8 shows the results for the second case

(L/h¼ 5) obtained by different mass and stiffness

matrices for the first natural frequency of the struc-

ture. The CM matrix offers a near-exact estimation. It

is worth emphasizing that among the three mass

matrices with diagonal form, the proposed method

presents an approximate answer with less error.

7.6 Example 6

To examine this fact that the suggested method is

effective not only for small academic case studies

but for the real large-scale structures, a ten-story

four-bay planar frame in Fig. 9 is analysed. In this

example, few assumptions are considered for the

mass and stiffness distributions of this structure. As

reported in Table 9, some vibration analyses are per-

formed, and the natural period for the first mode of

the frame is found. The near-exact natural period is

assumed to be the converged response resulted from

a sequence of mesh refinements. As a result, the

related period of the frame is equal to

T1 exact ¼ 339:955 L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=EI0

p
s. According to Table 9,

the response obtained by employing the CM matrix

suffers the highest relative error, especially in com-

parison with the lumped and RCM matrices.

Interestingly, the LM matrix presents the best out-

come among the first three. By reviewing the struc-

tural mode shape resulted from vibration analysis

using the CM or LM matrices, two customized

options are considered. First, No. 4 in Table 9,

which approximates mode shapes for columns as

the one for the first mode of the cantilever beam,

and the second mode of the simple beam for the

beams. Second, more sophisticated choice is No. 5

in which the columns of the stories other than the

first one are approximated by the second mode of a

simple beam. The latter seems to be the best assump-

tion among all. It is notable that the exact value for the

natural frequency of the first mode is obtained by

Fig. 8 First six natural frequencies for Example frame 5
by different methods

Table 6 Second natural frequency for Example 4 obtained by different methods (f1 exact ¼ 26:0078 Hz)

No. Member Mass matrix
Stiffness
matrix Frequency (Hz)

Relative
error %

1 Columns Consistent EB 25.2552 2.89
Beams Consistent EB

2 Columns Lumped EB 17.1292 34.14
Beams Lumped EB

3 Columns Rotationally
consistent diagonal

EB 23.2778 10.50

Beams Rotationally
consistent diagonal

EB

4 Columns From equation (52) EB 21.8455 16.00
Beams From equation (45) EB

5 Columns From equation (47) EB 24.5445 5.63

Fig. 7 Frame structure of Example 5
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considering�2 ¼ 2:05. This results the rotational

component of the diagonal mass matrix equal

to 4:07mL2, which is nearly a large value, when com-

pared with other diagonal mass matrices, similar to

the LM or RCM matrices. This outcome may be

related to the huge amount of the rigid body rotations

experienced by the columns, especially at the higher

stories.

8 CONCLUSION

This article presents a new formulation to establish

general parameterized mass and stiffness matrices.

The proposed technique calculates these matrices

by utilizing SG basis. To outline the merit of this pro-

cedure, the following features for the obtained matri-

ces are stated:

1. They benefit simple representations having typi-

cally sparse or diagonal matrix arrangements.

Consequently, this will lead to a simpler parame-

terizing and customizing procedures.

2. The calculated entries of the mass and stiffness

matrices in SG-basis can physically be interpreted,

and accordingly, might be utilized in the analysis.

In this investigation, the parameterized diagonal

mass matrices are customized for exact estimation

of the natural frequencies for the beam elements

with different end conditions. The customized matri-

ces are then applied to vibration analysis of some

sample structures. Based on the numerical findings,

concludingly, the following results are presented:

1. Generally, the mass and stiffness matrices

obtained for the exact evaluation of the beam nat-

ural frequencies, having various end conditions,

provide adequately accurate results in the vibra-

tion analysis of frame structures, especially when

Fig. 9 Frame structure of Example 6

Table 7 First natural frequency for Example 5 obtained by different methods (L/h¼ 2) (f1 exact ¼ 64:81 Hz)

No Member Mass matrix Stiffness matrix Frequency (Hz) Relative error %

1 Columns Consistent T 61 5.9
Beam Consistent T

2 Columns Lumped T 57.2 11.7
Beam Lumped T

3 Columns Rotationally consistent diagonal T 56.6 12.7
Beam Rotationally consistent diagonal T

4 Columns �2 ¼ 0:0157 T 66.3 2.3
Beam �2 ¼ 0:0157 T

5 Columns �2 ¼ 0:028 T 64.8 0.015

Table 8 First natural frequency for Example 5 obtained by different methods (L/h¼ 2) (f1 exact ¼ 33:0 Hz)

No. Member Mass matrix Stiffness matrix Frequency (Hz) Relative error %

1 Columns Consistent T 33 0.01
Beam Consistent T

2 Columns Lumped T 19.8 40
Beam Lumped T

3 Columns Rotationally consistent diagonal T 26.2 20.6
Beam Rotationally consistent diagonal T

4 Columns �2 ¼ 0:0192 T 27.7 16
Beam �2 ¼ 0:0192 T

Vibration analysis of plane frames 2861

Proc. IMechE Vol. 225 Part C: J. Process Mechanical Engineering



accurate values for fundamental frequencies of

the structure are needed. The customized diago-

nal mass matrix may then be a competitor for a

well-behaved CM matrix, and performs even

better than the RCM matrix for several cases. In

fact, the proposed method requires less computa-

tional time, in comparison to the other discussed

diagonal mass matrices, and offers better approx-

imations for natural frequencies. As illustrated by

the numerical examples, a good estimation of the

free parameters significantly improves the accu-

racy of the structural natural frequencies. It

should be added that the efficiency of the results

strongly depends on the customization proce-

dure; since the vibration analysis seems to be

very sensitive to the values of the free parameters

in most cases.

2. The mode shape is found to be the most effective

factor to select appropriate customized mass and

stiffness matrices. In other words, good judgment

for estimating the general mode shape of the struc-

tural members would be helpful for an efficient

customization. The suggested mode shapes may

lead to the powerful customized matrices, and

consequently, acceptable results of the vibration

analysis. The phrase is duplicated from below,

under note numbered 3. It is also notable that

when different modes are to be considered, the

CM matrix and RCM are suitable for use in the

dynamic analysis.

3. It should be mentioned that the customized mass

and stiffness matrices may not necessarily allow

for a precise recovery of the deformed shapes cor-

responding to the evaluated eigen-frequencies. For

good customizations, however, the results are duly

within acceptable ranges.
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APPENDIX

Notation

A section area

B strain interpolating matrix

D nodal displacement matrix

Dm constitutive matrix

E elastic modulus

e standard vector

f frequency

G shear modulus

G transformation matrix between canonical

and SG bases

Gq transformation matrix between polynomial

and SG bases

H inverse of G

I moment of inertia

K stiffness matrix

L length of beam

m mass of beam per unit length

M mass matrix

n number of SGs/DOF for FE

N base function

N base matrix

P element force vector

q strain gradient

q SG vector

u displacement field function

V element volume

x coordinate along beam element

� free parameter in beam stiffness template

a polynomial coefficient vector

� free parameter in beam stiffness template

� factor in stiffness matrix for Timoshenko-

beam element

	 factor in stiffness matrix for Timoshenko-

beam element

� shear factor

m free parameter in beam mass template

� density

! radian frequency

w0 SG for beam deflection

�0 SG for beam rotation

�x0 SG for beam constant curvature

�xx0 SG for beam linear curvature

i index for number of SG

(.)q subscript for SG

(.) T transpose of matrix

(.) -1 inverse of matrix

L ð i Þ differential operator for SG i

� differential operator matrix
.. second derivative with respect to time

’ first derivative with respect to coordinate x

’’ second derivative with respect to coordinate

x

’’’ third derivative with respect to coordinate x
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