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a b s t r a c t

In this study, application of a versatile approach for estimation moisture content of dried banana using neural

network and genetic algorithm has been presented. The banana samples were dehydrated using two non-thermal

processes namely osmotic and ultrasound pretreatments, at different solution concentrations and dehydration times

and were then subjected to air drying at 60 and 80 ◦C for 4, 5 and 6 h. The processing conditions were considered as

inputs of neural network to predict final moisture content of banana. Network structure and learning parameters

were optimized using genetic algorithm. It was found that the designed networks containing 7 and 10 neurons in first

and second hidden layers, respectively, give the best fitting to experimental data. This configuration could predict

moisture content of dried banana with correlation coefficient of 0.94. In addition, sensitivity analysis showed that
the two most sensitive input variables towards such prediction were drying time and temperature.

© 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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dried or dehydrated products. Mohebbi et al. (2009) compared
1. Introduction

Banana (Musa spp.) is a significant source of carbohydrates,
minerals and vitamin E (Wall, 2006). However, it is quite
perishable due to its relatively high moisture content and
degradable enzymes such as those accelerate non-enzymatic
browning reactions (Fernandes et al., 2006). Drying is con-
sidered as a common preservation method due to dramatic
reduction in enzymatic deterioration in results of moisture
removal. Most common techniques for fruits dehydration are
hot air drying. Nevertheless, this thermal process is a very
energy-consuming operation and results in too much degrada-
tion of product quality (Nimmol et al., 2007). Combination of
osmotic dehydration and ultrasound process can be applied
as a non-thermal pretreatment for saving energy, amelio-
rating drying rate and minimizing product quality damage.
Ultrasound power produces cavitations of bubbles, causes
making microscopic channels, which leads to lower resistance
to water diffusion and subsequently enhancing drying rate
(García-Péreza et al., 2007). Fernandes et al. (2009) investi-

gated the effect of ultrasound-assisted osmotic dehydration
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on pineapple mass transfer. Their results indicated that ultra-
sound application improves water diffusivity of pineapple.
Jambrak et al. (2007) reported ultrasound treatment reduced
drying time of mushrooms, Brussels sprouts and cauliflower
and raised rehydration properties of these dried products.

Drying is a complicated process involving simultaneous
heat and mass transfer (Yilbas et al., 2003). Physicochemical
properties of dried products are usually forecasted by empir-
ical models (Ceylan et al., 2007; De Temmerman et al., 2007;
Garcia et al., 2007). However, the drawback of these models
is that they are only capable of estimating data within the
applied processing conditions.

An alternative approach to process dynamic modeling is
the application of Artificial Neural Networks (ANNs). ANN is
composed of adaptive non-linear simple processing elements
called neurons or nodes equivalent to neurons in a biologi-
cal system capable of performing parallel computations for
data processing (Hertz et al., 1991). In recent years, ANN has
been used as a useful tool to predict physical characteristics of
pted 2 August 2010

moisture estimation of dried shrimp using multiple linear
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egression (MLR) and Artificial Neural Network. Their results
howed 0.80 and 0.86 coefficient of determination for MLR
nd ANN, respectively. Lertworasirikul and Tipsuwan (2008)
mployed multilayer feed-forward neural network to moisture
ontent and water activity prediction of semi-finished cassava
rackers during drying process. Their results showed that the
est network composed of nine hidden neurons could esti-
ate this parameter with high coefficient of determination

R2 = 0.9910).
The selection of an appropriate neural network topology

i.e. number of hidden neurons, learning rate and momen-
um) which strongly affects predictability of network is critical
nd usually carried out by trial and error method. Genetic
lgorithm (GA) as an optimization technique can be used for
vercoming this limitation of neural network. GA is inspired
y the natural selection principles and Darwin’s species
volution theory. GA offers several advantages over the con-
entional optimization method such as less susceptibility to
e stuck at local minima, requiring little knowledge of the
rocess being optimized and capability to find the optimum
onditions when the search space is very large (Versace et
l., 2004; Morimoto, 2006). Because of its robustness and easy
ustomization for different kinds of optimization problems,
A has widely been applied in food engineering. Liu et al.

2007) optimized the neural network topology for estimating
he moisture content of grain during the drying process using
enetic algorithm and reported optimized network containing
neurons in hidden layer could accurately predict moisture

ontent. Goñi et al. (2008) successfully used GA to obtain the
nitial training parameters of the neural network for prediction
f freezing and thawing time.

The main intentions of this research were to use ultra-
onication and osmotic dehydration as the non-thermal
retreatments before air drying and to develop a neural net-
ork model using genetic algorithm for moisture estimation
f dried banana.

. Materials and methods

.1. Sample preparation

resh ripened banana was purchased from the local market
nd cut into 10 mm thickness slices. Average initial moisture
ontent of banana was 75% (wet basis).

.2. Osmotic dehydration

anana slices were weighed and placed into a glass jar, which
omprised osmotic solutions of sucrose (commercial sugar)
nd glucose (Merck Company). Slices were dehydrated with
wo different sugar concentrations (30 and 50◦ Brix) at tem-
erature of 30 ◦C. The ratio of osmotic solution to sample was
:1 (w/w) to avoid an excessive dilution of osmotic solution.
smotic dehydration was performed under the same constant
agnetic agitation to maintain a uniform temperature and

oncentration throughout the experiment. The samples were
emoved from the osmotic solutions after 30, 45 and 60 min
nd blotted with adsorbent paper to remove the excess solu-
ion.

.3. Ultrasound pretreatment
ltrasound pretreatment was carried out with the same condi-
ions applied for osmotic dehydration while the samples were
ultrasonicated for 10, 20 or 30 min. The experiments were per-
formed in an ultrasonic bath (SCHAPER model Unique USC
25 kHz) without mechanical agitation at temperature of 30 ◦C.
The ultrasound frequency and the intensity were 25 kHz and
500 W/m2, respectively while the sonic power was 100 percent.
The increase in temperature of solution during the experi-
ments was lower than 3 ◦C after 30 min of ultrasonication.

2.4. Air drying

Hot air drying was performed in a laboratory drier (Soroush
Medical Company) operating with air-velocity of 1.5 m/s.
Before each drying experiment, the drier was run without
sample for about 0.5 h to set desired conditions. The banana
samples pretreated with either osmotic solution or ultrasound
wave were subjected to air drying at 60 and 80 ◦C. Air drying
was carried out for 4, 5 and 6 h. Finally, the moisture con-
tent of dried banana was determined (at 90 ◦C until constant
weight was obtained). The experiments were conducted with
4 replications.

2.5. Artificial Neural Network

A multilayer feed-forward neural network, which is widely,
used ANN consisting three layers namely input, output and
hidden layer. Neurons in input layer simply direct input data
to the neurons of hidden layer without any processing. The
processing in hidden and output layers consists of collecting
the data from previous layer, multiplying them by their corre-
sponding weights, summing the values, putting the results in
a non-linear or linear activation function (f) and finally adding
a constant value called bias, Mathematically:

yj =
n∑

i=1

f (wijxi) + bj (1)

where x and y are input and output of neuron, respectively,
n is number of inputs to the neuron, wij is the weight of the
connection between neuron i and neuron j and bj is the bias
associated with jth neuron.

In this work, the ANN was first trained using single hidden
layer. However, the results of this configuration for mois-
ture content prediction were not satisfied; therefore, a neural
network with four layers was applied. A hyperbolic tangent
activation function (Eq. (2)) which is most popular function
was used in first and second hidden layers, while a linear func-
tion was applied in the output layer. The number of hidden
neurons varied from 1 to 25:

tanh(x) = ex − c−x

ex + e−x
(2)

The input layer consists of six neurons (type of pretreatment,
solution concentration, time of pretreatment, type of sugar,
drying temperature and drying time), and the output layer
contains one neuron (moisture content).

Totally, 144 data were experimentally collected and were
randomly divided into three groups: training (40%), validat-
ing (30%) and testing data (30%). The first partition was used
to perform the training of the network. The second one was
applied to evaluate the quality of the network during the
training and the last partition was used for estimating the per-

formance of the trained network on new data, which never
was seen by the network during the training.
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Fig. 1 – Schematic of optimization procedu

Back-propagation algorithm with the momentum-learning
rule was used to implement supervised training of the net-
work. Back propagation is based on searching an error surface
(error as a function of ANN weights) using gradient descent for
point(s) with minimum error. In this algorithm, training starts
with randomly initialized connection weights. The response
to each neuron in the output layer is then calculated and is
compared with a corresponding desired output. Errors asso-
ciated with the output neurons are propagated from output
layer to the input layer through the hidden layers to modify
the weights. Different statistical parameters namely mean-
squared error (MSE), normalized mean-squared error (NMSE),
mean absolute error (MAE) and correlation coefficient (R) were
calculated based on testing data and were applied to compare
the performance of different ANN architectures in prediction
moisture content of dried banana. The mathematical equa-
tions of these statistical terms were presented by Fathi et al.
(2009). Sensitivity analysis has been performed to identify the
sensitive input variables against the moisture content. The
sensitivity analysis was carried out by batch testing on the
optimized network initiated by varying the first input between
the mean ± one standard deviation, while all other inputs were
fixed at their respective means. The network output was com-
puted for 50 steps above and below the mean. This process was
then iterated for each input. Finally, the standard deviation of
output with respect to the variation of each input was calcu-
lated and, the values were used to identify the most important
input, which affected the moisture content.

2.6. Genetic algorithm

The genetic algorithm is a global search algorithm, which is

designed to mimic the principles of biological evolution in
natural genetic system. The principles of GA are based on nat-
f neural network using genetic algorithm.

ural competitions of beings for appropriating limited natural
sources. Superiority of winner beings is due to their indi-
vidual characteristics that normally depend on their genes.
Reproduction of superior beings causes to spread their genes.
By successive selection of superior individuals and reproduc-
ing them, the population will be led to obtain more natural
sources. The GA simulates this process and calculates the
optimum of objective functions. The mathematical chromo-
somes could be operated upon by quasi-genetic operations of
selection, crossover and mutation (Fig. 1). A selection opera-
tor evaluates the population according to fitness function and
chooses the best individuals. After the selection, in crossover
step, two individuals are chosen randomly and are repro-
duced into two new individuals. The mutation operation
consists of randomly altering the value of each element of the
chromosome according to the mutation probability. Mutation
enhances the GA ability by intermittently injecting a random
point in order to better search the entire parameter space,
which allows the GA to possibly escape from local optima.
These three operations are repeated until desired conver-
gence on optimal or near-optimal of the solutions is achieved
(Morimoto, 2006).

Choosing the appropriate values of learning rate and
momentum has the strong effect on the prediction accuracy
of ANN. Learning rate is the parameter that affects the rate
of convergence of the network. Using too small value causes
a long training time and applying too large learning rate may
result in the training not being convergent. The momentum
rate is used to improve convergence of ANN by avoiding get-
ting stuck into local minima. In this study, neural network
structure and training parameters were represented by hap-
loid chromosomes consisting of “genes” of binary numbers.

Each chromosome had three genes. The first gene represents
the number of neurons in the hidden layers of the network,



food and bioproducts processing 8 9 ( 2 0 1 1 ) 362–366 365

Table 1 – Summery of optimized network architecture using genetic algorithm.

First hidden layer Second hidden layer Output layer

Number of
neurons

Learning
rate

Momentum Number of
neurons

Learning
rate

Momentum Learning
rate

Momentum

Network information 7 0.6357 0.3470 10 0.3952 0.5685 0.1932 0.0603
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0.385

0.263

0.176

0.094

−0.4

0.406

−0.4
hich could range from 1 to 25 neurons. The second and
hird genes depict the learning rate and momentum with
hich the network was trained. An initial population of 60

hromosomes was randomly generated. According to the lit-
rature (Heckerling et al., 2004; Izadifar and Zolghadri Jahromi,
007; Mohebbi et al., 2008) the best generation number is
et of 50. Therefore, the termination criterion of 60 was cho-
en. The roulette wheel selection based on ranking algorithm
as applied for the selection operator. Uniform crossover

nd mutation operators with mixing ratio of 0.5 were used
nd the probabilities of the crossover and mutation operators

ere adjusted at 0.9 and 0.01, respectively. In this work,
he ANN modeling and GA optimization were performed by
eurosolution for Excel software release 5.0, produced by Neu-

oDimension, Inc.

. Results and discussion

eural networks with 2–25 neurons and learning rate and
omentum values ranging from 0 to 1 were trained using

A to achieve the optimal network configuration and learn-
ng parameters. Number of hidden neurons and learning rate
nd momentum values for optimized neural networks were
abulated in Table 1. The designed network has MSE, NMSE
nd MAE of 11.8799, 0.11889 and 2.3001, respectively. The best
tness attained during each generation of the optimization,

s illustrated in Fig. 2. The best fitness, which is lowest the
SE value calculated across all the networks within the cor-

esponding generation, is decreased crosswise generations

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.099 −0.320 0.001

−0.056 −0.116 −0.373

0.283 −0.110 0.209

0.073 0.277 0.149

−0.393 0.255 −0.299

0.482 −0.108 0.007

−0.428 0.303 0.398
ntil it becomes relatively constant after 6 generations. The
atrices of weights (F matrix of 6 × 7 between input and first

ig. 2 – Best fitness (lowest MSE) versus generation of
ptimal neural network.
hidden layer, G matrix of 7 × 10 between first and second hid-
den layer and H matrix of 10 × 1 between second hidden layer
and output layer) and bias values (B1th matrix of 7 × 1 for first
hidden layer, B2th matrix of 10 × 1 for second hidden layer and
Bout matrix of 1 × 1 for output layer) of optimized network
are

F =

⎡
⎢⎢⎢⎢⎢⎣

0.358 −0.286 −0.238 −0.008 −0.104 0.010 0.086

0.258 0.110 0.223 0.145 0.230 0.364 0.424

−0.338 −0.255 0.163 0.355 0.182 −0.297 −0.013

0.383 −0.171 0.121 −0.291 −0.276 −0.513 −0.016

0.340 0.071 0.221 0.045 −0.754 −0.177 −0.418

0.310 −0.451 0.437 0.222 −0.190 −0.319 0.123

⎤
⎥⎥⎥⎥⎥⎦

−0.086 −0.264 0.419 −0.091 0.066 0.127

−0.049 −0.107 −0.252 0.191 0.195 0.322

0.203 −0.180 −0.099 −0.221 −0.327 −0.436

−0.135 −0.257 −0.453 −0.382 0.281 0.301

26 −0.526 −0.151 0.107 −0.074 −0.329 0.071

−0.391 0.394 0.141 −0.147 0.284 0.107

43 −0.050 0.245 −0.168 −0.142 0.294 −0.094

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.405

0.297

−0.447

−0.393

−0.422

−0.033

0.493

0.3537

0.431

−0.133

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B1th =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.471

−0.068

−0.211

0.466

−0.268

0.094

0.380

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; B2th =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.288

−0.135

0.430

0.196

−0.100

−0.275

0.140

−0.500

0.364

−0.009

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Bout = [0.079]

where the values in columns of matrix of F representing the
weights of the connections between hidden neurons and type
of pretreatment, type of sugar, time of pretreatment, solution
concentration, drying temperature and drying time neurons
in input layer, respectively.
Sensitivity of each variable in the proposed model is shown
in Fig. 3. Among the input variables, drying time and tem-
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Fig. 3 – Sensitivity analysis on the optimized neural
network (A, type of pretreatment; B, type of sugar; C,
pretreatment time; D, sugar concentration; E, drying
temperature; F, drying time).

Fig. 4 – Actual versus predicted moisture content using
optimal ANN (R = 0.94).

diffusion in slab products to convective boundary condition.
perature were most sensitive compared to other variables,
which showing mostly these two parameters were important
to the changes of moisture content of dried banana. These
results could be attributed to the fact that the most of mois-
ture removal was occurred during the hot air drying process.
In spite of not having significant effect on moisture con-
tent, applying ultrasonication and osmotic pretreatments is
strongly recommended due to improve drying efficiency and
product quality. The performance of optimized ANN model
with 7 and 10 neurons in first and second hidden layers for
estimation of moisture content of dried banana based on test
data that never was used for training was investigated and
the results were plotted in Fig. 4. This figure reveals that the
ANN estimated values of moisture content closely fitted with
the experimental data (R = 0.94) and showing high ability of
designed genetic-neural network model for moisture content
prediction of dried banana.

4. Conclusions

In this study, the possibility of application of genetic-neural
network model to forecast moisture content of dried banana
pretreated using osmotic dehydration and ultrasound waves
were investigated. The optimal model had 7 and 10 neurons
in first and second hidden layers, respectively. This configura-
tion had MSE, NMSE and MAE of 11.8799, 0.11889 and 2.3001,
respectively. Having correlation coefficient of 0.94, the pro-
posed neural network architecture, denoting superior ability
of this intelligent model for on-line prediction of moisture

content of dried banana.
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