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Abstract
In this paper, we use the time-super-operator formalism and the two-level
Friedrichs model to obtain a phenomenological model of mesons decay. Our
approach provides a fairly good estimation of the CP-symmetry violation
parameter in the case of K, B and D mesons.

1. Introduction

The description of the decay processes of unstable particles is a long-standing problem [1]
where it is generally admitted that the process follows an exponential law associated with the
lifetime of the particle. It is worth noting that since Gamow, a huge work has been realized
in mathematical physics in order to properly address the decay of unstable quantum particles;
for recent works, see e.g.[33, 2, 34] and references therein.

Most elementary particles are unstable, so a quantum-mechanical description is of great
importance. However, there is a fundamental problem related to the description of the
probability distribution of time occurrence of microscopic events like the particle decay,
when the system is described by a given wavefunction or a density matrix. The time-operator
formalism allows us to compute the expression of the probability distribution pρ (t) that a
system, prepared at time 0 in some unstable state ρ(0), is found undecayed throughout the
interval [0, t[. The lack of such quantity in quantum theory is an issue that has been discussed
for the arrival time observable of a free particle moving in one-dimensional space from a
source to a detector [3]. This probability should not be confused with the standard quantity
|〈ψ(0)|ψ(t)〉|2 which is interpreted as the probability at the instant t for finding the system
undecayed when it is initially in the unstable wavefunction state ψ(0). While pρ (t) should be
a monotonically decreasing function of t, |〈ψ(0)|ψ(t)〉|2 has not in general such a property
[12]. This is related to the lack of a time operator in quantum mechanics. The absence of a
time operator goes back to a celebrated argument of Pauli concerning the nonexistence of a
canonically conjugated operator T to the Hamiltonian H:

[H, T ] = iI (1)
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on account of the lower semi-boundedness of the spectrum of H. However, time super-operator
was constructed in the framework of the Liouville–von Neumann space, modeling the density
matrix states [15, 16, 20]. In this space, the time-evolution operator is the Liouville–von
Neuman operator, i.e. Lρ = [H, ρ], which is self-adjoint and may have a spectrum extended
over the real line. The time super-operator T is a self-adjoint super-operator on the Liouville–
von Neumann space conjugated to L, i.e. [T, L] = iI. This definition is equivalent to the Weyl
relation: eitLT e−itL = T + tI.

In experimental situations, the exponential decay law is observed and the time operator
provides it too. However, this approach provides a more complete description, since it allows
the computation of decay time probability distribution which could be relevant in small effects
like CP-violation effect.

L being unbounded by below and above when H is unbounded by above, Pauli’s objection
does not apply to the time-super-operator formalism. In order to examine the time-super-
operator formalism in this setting, we consider a Hamiltonian model of the neutral kaon decay.
Several theoretical and experimental works on this system have been carried out (see, e.g.,
the collection of papers edited in [5]) and the question is partially open today. All the existing
theoretical treatments using Hamiltonian models of two-level state coupled to a continuum
of degrees of freedom simulating the phenomenology of neutral kaons were based on the
computation of the quantity |〈ψ(0)|ψ(t)〉|2 and the Wigner–Weisskopf approximate solutions
to the Schrödinger equation. These solutions allow us to estimate the CP violation, but only
qualitatively [13]. Using a time-operator approach in this approximation, we show how the
usual decay intensity formula should be renormalized in order to estimate the experimental
CP-violation parameter provided by the Christenson et al experiment. Our time-super-operator
approach to the CP violation in such a model is based on the computation of pρ (t). It is a
test for the formalism of the time super-operator, and we shall show that this approach to
meson systems provides quite satisfying quantitative predictions. Let us firstly recall some
developments of the Wigner–Weisskopf approach to the kaons phenomenology and time-
operator approach, and then we shall develop the time-super-operator approach.

It is well known [6] that kaons appear in pair K0 and K
0

conjugated to each other. The
decay processes of K0 and K

0
correspond to two orthogonal decaying modes K1 and K2,

that are distinguished by their lifetime and CP-eigenvalues. The discovery of the small CP-
violation effect was also accompanied by the non-orthogonality of the short- and long-lived
decay modes, denoted KS and KL, slightly different from K1 and K2 and depending on a
CP-violation parameter ε. Lee, Oehme and Yang (LOY) [7] proposed an extension of the
Wigner–Weisskopf theory [8] in order to account for the exponential decay of kaons. Later on,
Khalfin [9] has pointed out that, for a quantum system with the energy spectrum bounded from
below, the decay should not be exponential for large times (see also [10–13]). Khalfin also
corrected the parameter ε at the lowest order of perturbation. His estimation has been presented
and re-examined in [13] and applied to other mesons. For kaons, it leads to a numerical value
that is 30 times larger than the experimental data.

An alternative time-operator approach is possible in the treatment of unstable systems
in the framework of the Wigner–Weisskopf approximation, since this theory supposes an
extension of the spectrum of H on the entire real axis. In this approximation, one can construct
a time operator in the Hilbert space of wavefunctions. A decay time operator T ′ is canonically
conjugated to H, that is, in the energy representation, H is given by

Hψ(ω) = ωψ(ω) (2)

and T ′ is given by

T ′ψ(ω) = −i
d

dω
ψ(ω) (3)

2
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so that T ′ satisfies to the commutation relation [H, T ′] = iI. The T ′-representation is therefore
obtained by a Fourier transform

ψ̂ (τ ) = 1√
2π

∫ ∞

−∞
e−iτω ψ(ω) dω, (4)

and the unstable states are prepared such that the decay occurs in the future, that is, ψ̂ (τ ) = 0
for τ < 0. [17]. Any state of the form ψun(ω) = A/(ω − z0), (z0 = m − i

2�), belongs to this
space, since by computing its Fourier transform we have

ψ̂un(τ ) =
{

iA
√

2π e−iτ z0 τ � 0,

0 τ < 0.
(5)

It is clear that for these states the decay probability density is defined by

|ψ̂un(τ )|2 = 2π |A|2 e−�τ . (6)

This is an exponential probability density of decay time which is very common in
particle physics. The states with exponential distribution of decay time in the time-operator
representation correspond to the so-called resonance states. But this is not the single type of
unstable states.

In this paper, we go beyond the Wigner–Weisskopf approximation and consider a more
physical situation in which the Hamiltonian has been bounded by the below spectrum.

Rigorously speaking, it is then forbidden to define a time operator that satisfies the
commutation relation [H, T ′] = iI. In order to escape this contradiction, we go to the space
of density matrices. The time super-operator T is a self-adjoint operator acting on density
matrices that verifies the Weyl relation: eitLT e−itL = T + tI. The interpretation of this super-
operator is that for an unstable initial state ρ, the time of decay occurrence is a random event
which fluctuates and we speak of the probability of its occurrence in a time interval I = ]t1, t2].
The average time of decay in the state ρ is given by

〈T 〉ρ = 〈ρ, Tρ〉. (7)

The observable T ′ = −T is associated with the decay event. In fact, for a system prepared in
the initial state ρ0 the dynamics shifts the average time of occurrence (or lifetime) in the state
ρ0, 〈T ′〉ρ0 , by the time parameter t so that the average time of decay in the state ρt is given by

〈T ′〉ρt = 〈T ′〉ρ0 − t. (8)

This equation follows from the Weyl relation and the definition of the average of T . Let Pτ

denote the family of spectral-projection operators of T :

T =
∫

R

τ dPτ , (9)

and let Qτ be the family of spectral projections of T ′; then, in the state ρ, the probability of
occurrence of the event in a time interval I is given [17], analogously with the usual quantum
formulations, by

P(I, ρ) = ‖Qt2ρ‖2 − ‖Qt1ρ‖2 = ‖(Qt2 − Qt1 )ρ‖2 := ‖Q(I)ρ‖2. (10)

The unstable ‘undecayed’ states observed at t0 = 0 are the states ρ such that P(I, ρ) = 0 for
any negative time interval I, that is,

‖Qτ ρ‖2 = 0, ∀τ � 0. (11)

In other words, these are the states verifying Q0ρ = 0. It is straightforwardly checked that the
spectral projections Qτ are related to the spectral projections Pτ by the following relation:

Qτ = 1 − P−τ . (12)

3
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Let Fτ be the subspace on which Pτ projects. Thus, the unstable undecayed states are those
states satisfying ρ = P0ρ and they coincide with the subspace F0

4. For these states, the
probability that a system prepared in the undecayed state ρ is found to decay some time during
the interval I =]0, t] is ‖Qtρ‖2 = 1 − ‖P−tρ‖2 a monotonically nondecreasing quantity
which converges to 1 as t → ∞, while ‖P−tρ‖2 decreases monotonically to zero. The
quantity ‖P−tρ‖2 corresponds to a genuine survival probability and should not be confused
with the usual ‘survival probability of an unstable state χ at time t’ defined by |〈χ, e−itHχ〉|2,
where χ is an eigenstate of the free Hamiltonian.

Considered so, the time-operator approach is non-standard. Actually, the key, non-
standard, assumption that underlies the time-super-operator formalism is the following.

In the Liouville space, given any initial state ρ, its survival probability in the unstable
space is given by

pρ (t) = ‖P−tρ‖2. (13)

This is the probability that, for a system initially in the state ρ, no decay is found during [0, t].
For any initial state ρ, this survival probability in the unstable space was given [15] by the
expression

pρ (t) = ‖P−tρ‖2

= ‖U−tP0Utρ‖2

= ‖P0 e−itLρ‖2, (14)

where we used the following relation: P−t = U−tP0Ut . Then, the survival probability is
monotonically decreasing to 0 as t → ∞. This survival probability and the probability of
finding the system to decay some time during the interval I = ]0, t], qρ (t) = ‖Qρ (t)‖2 are
related by

qρ (t) = 1 − pρ (t), (15)

and qρ (t) → 1 when t → +∞. The time derivative of this quantity is a genuine probability
density function (pdf) and will be used to define the decay intensity in section 5.

The paper is organized as follows. In section 2, we present the basic phenomenology
of kaons. In section 3, we introduce the Friedrichs-type Hamiltonian for kaons, where the
states K1 and K2 are eigenfunctions of the free Hamiltonian that interact with a continuum
representing the decay products. Here is the first difference with [13] where K0 and K

0

are eigenfunctions of the free Hamiltonian. As a solvable model, we compute the energy
spectral representation of the undecayed states in the Wigner–Weisskopf and weak coupling
approximation. In section 4, we apply the time-operator formalism in the Wigner–Weisskopf
approximation as introduced above. We compute the decay probability of the kaons into two
pions (resp. three pions), from which we derive a formula of the CP-violation in terms of
lifetimes and energy difference of the short and long kaon states. Our formula is different
from that of [13] and improves the estimation to 0.6 times the experimental value. The main
contribution of the paper in section 5 concerns the super-operator formalism which we use
for computing the eigenprojections of T and the survival probability of the decaying states.
This approach allows us to compute the CP-violation parameters for K, D and B mesons. For
all of them we obtain good agreement with the experimental value. We put several lengthy
calculations in the appendices.

4 Therefore, a subspace Ft0 is a set of decaying states prepared at time t0. We call it an unstable subspace of T.
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2. Phenomenology of kaons

For the main properties of kaons we refer to [6, 21]. A summarized presentation may be found
in [30]. We recall the main notations (used later) of +1 and −1 CP-eigenstates, respectively,

|K1〉 = 1√
2
(|K0〉 − |K0〉), |K2〉 = 1√

2
(|K0〉 + |K0〉). (16)

AfterCP-violation was discovered by Christenson et al [23], the exact eigenstates characterized
by the short-lived state (KS) and long-lived state (KL) are expressed as coherent superpositions
of the K1 and K2 eigenstates through

|KL〉 = 1√
1 + |ε|2

[ε|K1〉 + |K2〉], |KS〉 = 1√
1 + |ε|2

[|K1〉 + ε|K2〉]. (17)

Recall that the weak disintegration process distinguishes the K1 states which decay only into
‘2π ’, while the K2 states decay into ‘3π, πeν, . . .’ [22]. The lifetime of the K1 kaon is short
(τS ≈ 8.92 × 10−11 s), while the lifetime of the K2 kaon is longer (τL ≈ 5.17 × 10−8 s). We
need also to recall the following that will be used later: KL and KS are the eigenstates of the
Hamiltonian for the mass-decay matrix [21, 22] which has the following form in the basis |K0〉
and |K0〉:

H = M − i

2
� ≡

(
M11 − i

2�11 M12 − i
2�12

M21 − i
2�21 M22 − i

2�22

)
, (18)

where M and � are individually Hermitian since they correspond to observables (mass and
lifetime). The corresponding eigenvalues of the mass-decay matrix are equal to

mL − i

2
�L, mS − i

2
�S. (19)

It follows from (17) that the transition amplitude of the KL beam is given by

ψ(t) = A
(
εexp e−i(mS− i

2 �S )t + e−i(mL− i
2 �L )t

)
(20)

with A being a global proportionality factor that remains constant in time. Then the intensity
I(t) = |ψ(t)|2 is given by

I(t) = I0
(
e−�Lt + |εexp|2 e−�St + 2|εexp| e−(

�S+�L
2 )t) cos(�mt + arg(εexp))

)
. (21)

This leads to an experimental estimation of εexp [24]:

|εexp| = (2.232 ± 0.007) × 10−3, arg(εexp) = (43.5 + 0.7)◦. (22)

3. The two-level Friedrichs model

We recall here our main definitions [30] of the Friedrichs [4] interaction Hamiltonian between
the two discrete modes and the continuous degree of freedom given by the operator H on the
Hilbert space of the wavefunctions of the form |ψ〉 = { f1, f2, g(μ)}, f1, f2 ∈ C, g ∈ L2(R+) :

H = H0 + λ1V1 + λ2V2, (23)

where λ1 and λ2 are the complex coupling constants, and

H0|ψ〉 = {ω1 f1, ω2 f2, μg(μ)}, (ω1 and ω2 > 0). (24)

The operators Vi(i = 1, 2) are given by

V1{ f1, f2, g(μ)} = {〈v(μ), g(μ)〉, 0, f1.v(μ)}
V2{ f1, f2, g(μ)} = {0, 〈v(μ), g(μ)〉, f2.v(μ)}, (25)

5
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where

〈v(μ), g(μ)〉 =
∫

dμv∗(μ)g(μ), (26)

is the inner product. Thus H can be represented as a matrix :

HFriedrichs =

⎛⎜⎝ ω1 0 λ∗
1v

∗(μ)

0 ω2 λ∗
2v

∗(μ)

λ1v(μ) λ2v(μ) μ

⎞⎟⎠ , (27)

where ω1,2 represent the energies of the discrete levels and the factors λiv(μ)(i = 1, 2)

represent the couplings to the continuous degree of freedom. The energies μ of the different
modes of the continuum range from −∞ to +∞ when v(μ) = 1, but we are free to tune the
coupling v(μ) in order to introduce a selective cutoff to extreme energy modes. We now have
to solve the eigenfunctions problem and find the energy representation of K1 and K2. Thus, f1

and f2 are given by appendix A as

f1(ω) � λ∗
1v

∗(ω)

η+
1 (ω)

, (28)

and the same formula for f2 as

f2(ω) � λ∗
2v

∗(ω)

η+
2 (ω)

. (29)

Here, η±
i (ω), (i = 1, 2) are complex conjugates of each other defined by

η±
i (ω) = ω − ωi + |λi|2P

∫ ∞

0

|v(ω′)|2
ω′ − ω

dω′ ± iπ |λi|2|v(ω)|2, (30)

where P indicates the ‘principal value’ and we used the following identity in equation (30):

lim
ε→0+

1

x − x0 ± iε
= P

1

x − x0
∓ iπδ(x − x0). (31)

Let |χ〉 = |ε1 f1 + ε2 f2〉, where εi, (i = 1, 2) is a constant complex number. The physical
meaning of such a state is that it corresponds to a coherent superposition of two exponential
decay processes. In the following sections we shall compute the projection of |χ〉〈χ | on the
unstable space of the time super-operator and then the survival probability pρ (t) introduced
in the section 2. We compute its expression in terms of the lifetimes and rest masses of the
(mesonic) resonances.

Weak coupling conditions. Admitting that η+
i (ω) in (30) has one zero in the lower half-plane

which approaches ωi for decreasing coupling, we can write

η+
i (ω) = ω − zi, (32)

where zi = ω̃i − ibi, where ω̃i = ωi + O(|λ|2) and bi = π |λi|2 is a real positive constant [20].
In this paper, we suppose that ω̃1 < ω̃2.

4. Time-operator formalism for the CP-violation in the Wigner–Weisskopf
approximation

Let us present the fundamental ideas of the theory of spontaneous emission of an atom
interacting with the electromagnetic field, given by Wigner and Weisskopf. This treatment
aims at obtaining an exponential time dependence for decaying states by integrating over the
continuum energy. That is, we assume that the modes of the fields are closely spaced. Then,

6
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we have to assume that the variation of v(μ) over μ is negligible with |μ| � ‘uncertainty of
the original state energy’, i.e. v(μ) ≈ v independent of μ or in the simple case it is taken
to obey v(μ) = 1. Also, another assumption is that the lower limit of integration over ω is
replaced by −∞.

The Schrödinger equation of the two-level Friedrichs model in the Wigner–Weisskopf
regime becomes⎛⎜⎝ω1 0 λ∗

1

0 ω2 λ∗
2

λ1 λ2 μ

⎞⎟⎠
⎛⎝ f1(t)

f2(t)
g(μ, t)

⎞⎠ = i
∂

∂t

⎛⎝ f1(t)
f2(t)

g(μ, t)

⎞⎠ (33)

which means

ω1 f1(t) + λ∗
1

∫ ∞

−∞
dμg(μ, t) = i

∂ f1(t)

∂t
, (34)

ω2 f2(t) + λ∗
2

∫ ∞

−∞
dμg(μ, t) = i

∂ f2(t)

∂t
(35)

and

λ1 f1(t) + λ2 f2(t) + μg(μ, t) = i
∂g(μ, t)

∂t
. (36)

Let us now solve the Schrödinger equation and trace out the continuum in order to derive the
Master equation for the two-level system. From equation (36) we can obtain g(μ, t), taking
g(μ, 0) = 0, as

g(μ, t) = −i e−iμt
∫ t

0
dτ [λ1 f1(τ ) + λ2 f2(τ )] eiμτ , (37)

where t > 0. Then, we substitute g(μ, t) in equation (34) and we obtain

i
∂ f1(t)

∂t
= ω1 f1(t) − iλ∗

1

∫ ∞

−∞
dμ e−iμt

∫ t

0
dτ [λ1 f1(τ ) + λ2 f2(τ )] eiμτ ; (38)

we also obtain the same relation for f2(t) from equation (35):

i
∂ f2(t)

∂t
= ω2 f2(t) − iλ∗

2

∫ ∞

−∞
dμ e−iμt

∫ t

0
dτ [λ1 f1(τ ) + λ2 f2(τ )] eiμτ . (39)

Finally, we obtain a Master equation with a non-Hermitian effective Hamiltonian as [25]

Heff =
(

ω1 − iπ |λ1|2 −iπλ∗
1λ2

−iπλ1λ
∗
2 ω2 − iπ |λ2|2

)
. (40)

The eigenvalues of the above effective Hamiltonian under the weak coupling constant
approximation are

ω+ = ω1 − iπ |λ1|2 + O(λ4), ω− = ω2 − iπ |λ2|2 + O(λ4). (41)

In a first and very rough approximation, the eigenvectors of the effective Hamiltonian are the
same as the postulated kaons states:

| f+〉 =
(

1
0

)
= |K1〉 and | f−〉 =

(
0
1

)
= |K2〉. (42)

Phenomenology imposes that the complex Friedrichs energies ω± coincide with the observed
complex energies. The Friedrichs energies depend on the choice of the four parameters ω1,
ω2, λ1 and λ2 and the observed complex energies are directly derived from the experimental
determination of four other parameters, the masses mS and mL and the lifetimes τS and τL. We
must thus adjust the theoretical parameters in order that they fit the experimental data. This

7
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can be done by comparing the eigenvalue of the effective matrix with the eigenvalue of the
mass-decay matrix which is taken in expression (19). Finally, we have

ω1 = mS, 2π |λ1|2 = �S,

ω2 = mL, 2π |λ2|2 = �L. (43)

The above identities yield

λ1 =
√

�S

2π
eiθS , λ2 =

√
�L

2π
eiθL , (44)

where θS and θL are real constants. Appendix B gives the CPT -invariant effective Hamiltonian
as follows:

Heff =

⎛⎜⎝mS − i

2
�S −1

2

√
�S�L

1

2

√
�S�L mL − i

2
�L

⎞⎟⎠ . (45)

The effective Hamiltonian (45) acts on the |KL〉 vector state as an eigenstate corresponding to
the eigenvalue ω− = mL − i�L

2 , so that we must impose that

Heff|KL〉 = A Heff

(
α

1

)
= A ω−

(
α

1

)
(46)

from which, after straightforward calculations, we obtain

α =
√

�L

�S

1
2

�m
�S

− i ��

2�S

, (47)

where �m = mS − mL and �� = �S − �L. Similarly, the effective Hamiltonian (45) acts on
the |KS〉 vector state as an eigenstate corresponding to the eigenvalue ω+ = mS − i�S

2 , so that
we have

Heff|KS〉 = A Heff

(
1

α

)
= A ω+

(
1

α

)
. (48)

In order to get a reasonable value for the CP-violation parameter we shall use in a first step
the time-operator formalism as explained in the introduction. To estimate the decay rate in the
CP sectors to 2π (CP = 1) and 3π (CP = −1) when the source produces neutral kaon beams,
we compute the energy representation of the initial state as a superposition of these modes. By
considering relation (32) and taking into account that in the present approximation v(ω) = 1,
we can write equations (28) and (29) as

fi(ω) =
√

bi e−iθi

ω − ω̃i + ibi
, (i = 1, 2), (49)

where θi is the phase of the possibly complex coefficients λi and bi = π |λi|2. Using the Fourier
transforms, equation (4), for the above equation, (49), we obtain for (i = 1, 2)

f̂i(τ ) =
{

N
√

2π bi e−(iω̃i+bi )t−iθi , t � 0

0, t < 0,
(50)

where N is the normalization constant. For s = −t < 0, we have

f̂i(s) =
{√

2πbi e(iω̃i+bi )s−iθi , s � 0

0, s > 0.
(51)

Finally, the normalization relation, i.e.∫ +∞

−∞
ds | f̂i(s)|2 = 1, (i = 1, 2), (52)

8
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yields N = 1/
√

π and then we have

f̂i(s) =
{√

2bi e(iω̃i+bi )s−iθi , s � 0

0, s > 0.
(53)

Here, | f̂i(s)|2, i = 1, 2, has the form of the probability density of the short and long decay
modes; thus we shall denote the two resonances f1(ω) and f2(ω) as fS(ω) and fL(ω). The 2π

and 3π modes are respectively represented by C1( fS(ω)+α fL(ω)) and C2(α fS(ω)+ fL(ω)),

where C1(2) are normalization constants. That is, at time t = −s, the time-operator decay
probability density associated with the first mode predicts the 2π decay intensity I1(s) as

I1(s) = |C1( f̂S(s) + α f̂L(s))|2
= I1

0

(
e2b1s + |εth|2 e2b2s + |εth| e(b1+b2)s cos((ω̃1 − ω̃2)s + arg(εth))

)
, (54)

where choosing �θ = θL − θS = π
2 as explained in Appendix B, we put

εth := i

√
b2

b1
α. (55)

This equation is to be compared with equation (21). Then, from the above equation and
equation (55), we give the CP-violation parameter, εth, as follows:

εth = �L

�S

i
2

�m
�S

− i ��

2�S

= 0.6 εexp. (56)

4.1. Fit with Christenson et al [23] experimental data

Essentially, the Christenson et al experiment [23] consisted of measuring the ratio R between
the number of charged pion pairs (π+, π−) and triplets at a (proper) time quite longer than
τS. During the experiment, 45 pairs were observed and 22 700 decays occurred so that
R = 45

22 700 = (2.0 ± 0.4) × 10−3. According to the authors [23], the relation between this
ratio and |εexp| is |εexp|2 = RT

τ1
τ2

, where RT = 3
2 R, while τ1

τ2
is equal (in the notation of

1964) to the ratio between the short and long lifetimes. The correction factor 3
2 is explained

to be due to the fact that decay in the CP = +1 sector branches to charged pion pairs
with probability 2/3 (the remaining 1/3 corresponding to neutral pion pairs that were not
detected). Substituting the measured value of R = 2 × 10−3 into the expression, we obtain
|εexp|2 = 3

2 R τ1
τ2

= 3
2

(
2.0 × 10−3

) (
8.92×10−11

5.17×10−8

)
, so that finally we find |ε|2 = 5.2 × 10−6 which

corresponds to the CP-violation parameter εexp = 2.3 × 10−3 reported in [23], in agreement
with the commonly accepted value mentioned in equation (22).

In order to fit our data with Christenson et al [23] results, we firstly evaluate the production
rates by unit of time in the time-operator approach. This can be done, making use of the time-
operator decay probability density associated with the first mode 2π decay I1 (equation (54))
and a similar equation for the second mode 3π decay I2:

I1(2)(s) = ∣∣C1(2)

(
ε

1(2)
S f̂S(t) + ε

1(2)
L f̂L(t)

)∣∣2
= I1(2)

0 (b1|ε1(2)
S |2 e−2b1t + b2|ε1(2)

L |2 e−2b2t

+
√

b1b2|ε1(2)
S ε

1(2)
L | e−(b1+b2 )t cos

(
(ω̃1 − ω̃2)t + arg

(
ε

1(2)
S

)− arg
(
ε

1(2)
L

))
, (57)

where in accordance with (46) and (48)

ε1
S = 1, ε1

L = α,

ε2
S = α, ε2

L = 1. (58)
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Therefore, expressed in the time-operator approach, the production rates by unit of time of
pion pairs and triplets are respectively equal far enough from the source to I0b2|ε1

L|2�L e−�Lt

and I0b2|ε2
L|2�L e−�Lt . Their ratio is thus equal to Rth = |ε1

L|2
|ε2

L|2 = |α|2 = �L
2�S

= 0.9 × 10−3.
Then, using the relation between the branching ratio and CP-violation parameter described
previously in this section, we have |εth|2 = Rth τ1

τ2
= 1

3 |εexp|2 which gives |εth| � 0.6|εexp|.
Making use of the expression for α from above, the estimated phase of the CP-violation
parameter εth is correct (close to 45◦). Finally, we see that the above discussion gives the same
result as (56).

In the following section, we shall use the time-super-operator (T ) formalism as a non-
Wigner–Weisskopf approximation method to obtain an improvement of the CP-violation
parameter.

5. Survival probability in the time-super-operator formalism

In this section, we will compute the survival probability and obtain the theoretical CP-violation
parameters for the mesons K, B and D. Then, we compare our results to the experimental CP-
violation parameters. We shall see that our theoretical results provide a reasonably good
estimation of the experimentally measured quantities. Moreover, a fine structure appears in the
case of kaons, which brought us to conceive an experimental test of the time-super-operator
approach, that we shall discuss in the conclusion.

Here, we consider, as before, the pure state as a coherent superposition of two resonances
denoted simply by |χ〉 = |(ε1 f1 + ε2 f2)〉, where εi, (i = 1, 2), is a constant complex number
including the normalization constants, i.e. (|ε1|2 + |ε2|2) = 1. We identify this state with the
element ρ = |χ〉〈χ | of the Liouville space, that is, the kernel operator:

ρ =
2∑

i=1

2∑
j=1

ρi j(ω, ω′) =
2∑

i=1

2∑
j=1

εiε
∗
j fi(ω) f j(ω′) =

2∑
i=1

2∑
j=1

εiε
∗
j Fi j. (59)

We shall compute the survival probability ‖P−sρ‖2 of the state ρ and show how it reaches the
following limit:

lim
s→∞ ‖P−sρ‖2 → 0. (60)

As explained in appendix C, the Liouville operator, L, is given by equation (C.2) and the
spectral representation of L after the following change of variables [16, 17]:

ν = ω − ω′, (61)

and

E = min(ω, ω′) (62)

is given by

Fi j(ν, E ) := fi(ω) f j(ω′) =
⎧⎨⎩λiλ

∗
j

v(E )

η−
i (E )

v∗(E+ν)

η+
j (E+ν)

ν > 0

λ∗
i λ j

v∗(E )

η+
j (E )

v(E−ν)

η−
i (E−ν)

ν < 0,
(63)

where i, j = 1, 2. Considering v(ω) as a real constant test function, we obtain F ji(ν, E ) in the
following form:

F ji(ν, E ) =
⎧⎨⎩

λ jλ
∗
i

ν∗
j (ν+νi )

ν > 0

λ∗
j λi

νi(ν
∗
j −ν)

ν < 0,
(64)

10
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where i, j = 1, 2 and

νi := ai + ibi := (E − ω̃i) + iπ |λi|2,
(

λi =
√

bi

π
eiθi

)
. (65)

The spectral projection of Fi j(ν, E ), i.e. PsFi j(ν, E )(s < 0), is given in appendix C and we
shall use formula (C.12). Then, the survival probability is defined as follows:

pρ (s) = ‖Pρ (s)‖2 = ‖ |ε1|2PsF11(ν, E ) + ε1ε
∗
2PsF12(ν, E ) + ε2ε

∗
1PsF21(ν, E )

+|ε2|2PsF22(ν, E )‖2, (66)

where ‖ · ‖2 = ∫∞
0 dE

∫∞
−∞ dν | · |2. Appendix D gives the survival probability as

pρ (s) = I1

(
|ε1|2 e2b1s +

(
iε∗

1ε2
√

b1b2 ei(θ2−θ1 ) e(b1+b2 )s e−i(ω̃2−ω̃1)s

(ω̃2 − ω̃1) + i(b1 + b2)
+ C.C.

))
+(I1 + I2) |ε2|2 e2b2s, (67)

where

πI1 =
∫ ω̃1

0
dE

∣∣∣∣ε1λ1

ν1
+ ε2λ2

ν2

∣∣∣∣2 = |ε1|2 arctan
ω̃1

b1
+ |ε2|2

(
arctan

ω̃2 − ω̃1

b2
+ arctan

ω̃1

b2

)
−
[(

ε∗
1ε2

√
b1b2

(ω̃1 − ω̃2) + i(b1 + b2)

)(
i

(
π

2
+ arctan

b1

ω̃1
+ arctan

b2

ω̃2

+ arctan
b2

ω̃2 − ω̃1

)
+ 1

2
log

b2
1(ω̃

2
2 + b2

2)

(ω̃2
1 + b2

1)((ω̃2 − ω̃1)2 + b2
2)

)
+ C.C.

]
, (68)

and

πI2 =
∫ ω̃2

ω̃1

dE

∣∣∣∣ε1λ1

ν1

∣∣∣∣2 = |ε1|2 arctan
ω̃2 − ω̃1

b1
. (69)

5.1. K meson

For the weak-coupling constants, we have bi � ω̃i, (i = 1, 2), and also by supposing ω̃1 ∼ ω̃2,
(ω̃2 − ω̃1) ∼ b1 and b2

b1
� 1, we have

I1 = 1

2

(
|ε1|2 + 2|ε2|2 +

(
ε∗

1ε2λ
∗
1λ2

(ω̃1 − ω̃2) + i(b1 + b2)
+ C.C.

))
(70)

I2 = 1

4
|ε1|2 (71)

I1 + I2 = 1

2

(
3

2
|ε1|2 + 2|ε2|2 +

(
ε∗

1ε2λ
∗
1λ2

(ω̃1 − ω̃2) + i(b1 + b2)
+ C.C.

))
. (72)

We now use the normalization relation, i.e. (|ε1|2 + |ε2|2) = 1 and ε1 � 1. Then, we obtain
I1 and (I1 + I2) as follows:

I1 = 1
2 (1 + |ε2|2 + · · ·) � 1

2 (73)

I1 + I2 = 1
2

(
3
2 + 1

2 |ε2|2 + · · · ) � 1
2

(
P 3

2

)
. (74)

Replacing the above results in equation (67) and factoring by
(

1
2

)
, we obtain

pρ (s) � 1

2

[
|ε1|2 e2b1s + 3

2
|ε2|2 e2b2s +

(
iε∗

1ε2
√

b1b2 ei(θ2−θ1 ) e(b1+b2 )s e−i(ω̃2−ω̃1)s

(ω̃2 − ω̃1) + i(b1 + b2)
+ C.C.

)]
.

(75)
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The derivative of equation (75) yields the time-super-operator density of the probability or
intensity:

I1(s) := dpρ (s)

ds
= 1

2

[
2b1|ε1|2 e2b1s + 3b2|ε2|2 e2b2s

+
(

iε∗
1ε2

√
b1b2 [(b1 + b2) − i(ω̃2 − ω̃1)]

(ω̃2 − ω̃1) + i(b1 + b2)
ei(θ2−θ1) e(b1+b2 )s e−i(ω̃1−ω̃2)s + C.C.

)]
= |ε1|2b1

2

[
2 e2b1s + 3

|ε2|2
|ε1|2

b2

b1
e2b2s +

(
i
ε2

ε1

√
b2

b1
e(b1+b2 )s e−i(ω̃1−ω̃2)s + C.C.

)]
.

Taking into account (58) we have ε2
ε1

= α, which is defined by equations (47), equation (76)
becomes

I1(s) = I0

[
2 e2b1s + 3|α|2 b2

b1
e2b2s +

(
i α

√
b2

b1
e(b1+b2 )s e−i(ω̃1−ω̃2)s + C.C.

)]
,

where I0 = |ε1|2b2
1C1

2 and C1 is a constant used in (57). In equation (76) for the long time enough
(as occurs for kaon decays), the dominant term becomes

(|εth|2 e2b2s
)

where |εth|2 = 3|α|2 b2
b1

.
Thus, the above equation can be written as

I1(s) = I0

(
2 e2b1s + |εth|2 e2b2s + 2√

3
|εth| e(b1+b2 )s cos

(
(ω̃1 − ω̃2)s + arg(εth)

))
.

We know that I1(s) is the intensity and it does not need to be normalized to 1. Finally, εth

is given by

εth = iα

√
3�L

�S
=

√
3

�L

�S

i
2

�m
�S

− i ��

2�S

, (76)

where �m = (mL −mS) and �� = (�L −�S). Then, replacing the experimental data we have

εth = (2.29 × 10−3) × ei(43.5)◦ � εexp. (77)

Finally, using the above time-super-operator intensity, the new ratio of pair and triplet rates is,
far from the source, equal to |α′|2 = |ε1

L|2
|ε2

L|2 = 3�L
2�S

= 2.7 × 10−3. Repeating the discussion in

the end of section 4.1, we obtain εth � εexp which is another proof of relation (77).
Khalfin discussed a power-law decay for KS by the time when KL is almost depleted.

A power law in the long-time behavior of the probability decay has been computed in the
one-level Friedrichs model [20]. We did not repeat here those evaluations for the two-level
Friedrichs model. In appendix D, where we compute the probability decay, we only considered
the exponential contributions. For kaons, the power-law decay will be studied in a separate
paper.

Remark 1. Comparing the demonstration of this section’s result with the time-operator
formalism given in section 4, we see that we replaced α in equation (58) by α′ := √

3α

so that the time-super-operator method gives an exact CP-violation parameter. Consequently,
effective Hamiltonian (equation (45)) must be changed because the eigenvectors |KS〉 and
|KL〉 (equations (46) and (48)) are changed. This change in effective Hamiltonian means that
we have to add an additional Hamiltonian term. As shown in appendix A and especially in
equation (D.7), this additional Hamiltonian term depends on different masses of kaons. This
correction in the CP-violation parameter is equal to the effect of kaon decay to π0π0 (see the
computation of epsilon by Christenson et al [23] in section 4.1).
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5.2. D meson

The other example is the CP-violation in the decay of D meson. The experimental values for
CP-violation of D0 → K0

S π+ π− as reported by Belle in [29] are as follows:
��

2�
= (

0.37 ± 0.25+0.07+0.07
−0.13−0.08

)
, (78)

�m

�
= (

0.81 ± 0.30+0.10+0.09
−0.07−0.16

)
, (79)

where 1/� = τ, (� = 1), is the mean lifetime:
1

�
= τ = τ

D
0 + τD0

2
= (410.1 ± 1.5) × 10−3 ps. (80)

The CP-violation parameters are experimentally denoted by
(

q
p

)
and given by∣∣∣∣q

p

∣∣∣∣exp

=
∣∣∣∣1 − εexp

1 + εexp

∣∣∣∣ = (
0.86+0.30+0.06

−0.29−0.03

)
(81)

and

φexp = arg

(
q

p

)exp

= arg

(
1 − εexp

1 + εexp

)
= (−14+16+5+2

−18−3−4

)◦
. (82)

From (69), we see that here I2 = 1
π

arctan(0.81) |ε1|2 � 0.43
(

1
2

) |ε1|2; then, I1 +I2 = 1.43 .
Thus, we have

εth =
√

2.86
�L

�S

i
2

�m
�S

− i ��

2�S

. (83)

Replacing the experimental values in the above expression, we obtain

εth = (−0.059 + 0.130 i) . (84)

Consequently, ∣∣∣∣q

p

∣∣∣∣th = 1.123, φth = −14.758◦, (85)

which is once again in fairly good agreement with the experimental value.

5.3. B0
s meson

The experimental values of CP-violation in the decay of B0
s and B

0
s are [27]

��s

2�s
= 0.069+0.058

−0.062,
1

�s
= 1.470+0.026

−0.027 ps, (86)

or equivalently (�L,H = �s ± ��s/2),
1

�L
= 1.419+0.039

−0.038 ps,
1

�H
= 1.525+0.062

−0.063 ps, (87)

and the difference of masses is

�m = 17.7+6.4
−2.1 ps−1,

�m

�s
= 26.1 ± 0.5, (88)

and the experimental CP-violation parameter of the B0
s meson is [27, 28]

Aexp
SL � 4Re

(
ε

exp
B

) = (−0.4 ± 5.6) × 10−3 ⇒
∣∣∣∣q

p

∣∣∣∣exp

= 1.0002 ± 0.0051, (89)

where Aexp
SL
2 ≈ 1 − ∣∣ q

p

∣∣exp
.
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From (69) we see that here I2 = 1
π

arctan(26.1) |ε1|2 � 1.57
(

1
2

) |ε1|2; then, I1+I2 = 2.
Thus, we have

εth
B = 2

�L

�H

i
2

�m
�s

− i��s

2�s

. (90)

Replacing the experimental values in the above equation we obtain

εth
B = −0.1 × 10−3 + 0.038 i. (91)

Thus, our theoretical
∣∣∣ q

p

∣∣∣th prediction is∣∣∣∣q

p

∣∣∣∣th =
∣∣∣∣1 − εth

1 + εth

∣∣∣∣ = 1.0002 (92)

which is in fairly good agreement with the experimental value.

5.4. B0
d meson

The experimental values of CP-violation in the decay of B0
d and B

0
d are [27]

��s

2�s
= 0.009 ± 0.037 (93)

and the difference of masses is
�m

�s
= 0.776 ± 0.008, (94)

and the experimental CP-violation parameter of the B0
s meson is [27, 28]∣∣∣∣q

p

∣∣∣∣exp

= 1.0002 ± 0.0028. (95)

From (69) we see that here I2 = 1
π

arctan(0.776) |ε1|2 � 0.42
(

1
2

) |ε1|2; then, I1+I2 = 1.42.
Thus, we have

εth
B =

√
2.84

�L

�H

i
2

�m
�s

− i��s

2�s

. (96)

Replacing the experimental values in equation (90), we obtain

εth
B = −0.013 + 1.0186 i. (97)

Thus, our theoretical
∣∣∣ q

p

∣∣∣th prediction is∣∣∣∣q

p

∣∣∣∣th =
∣∣∣∣1 − εth

1 + εth

∣∣∣∣ = 1.012 (98)

which is in fairly good agreement with the experimental value.

6. Concluding remarks

The formalism of the mass-decay matrix for the kaon decay was first introduced by LOY
[7]. Then several other authors [11, 9, 25] improved this model. The LOY model requires
the Wigner–Weisskopf approximation, i.e. it requires to assume that the energy interval varies
from −∞ to +∞ and also that the coupling between discrete and continuous modes is not
restricted by a factor form or a cutoff.
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In [25], we used the two-level Friedrichs model and the Wigner–Weisskopf approach to
obtain a mass-decay matrix. This approach was improved by using a new concept of probability
decay density for mesons (see also [14]). Beyond the Wigner–Weisskopf approximation,
we used the Friedrichs model with a cutoff that amounts to bound from below the energy
spectrum of the Hamiltonian [30]. In this paper, we derived the decay probability density
in the formalism of the time-super-operator, that also goes beyond the Wigner–Weisskopf
approximation. The main difference between our model and the standard model is described
as follows. The CKM matrix is aimed at describing CP-violation via interactions of the quarks
with the Higgs field and Yukawa coupling. In this approach, quarks acquire mass through
spontaneous symmetry breaking. Diagonalizing the mass matrices yields mass eigenstates
by rotating quark fields with a unitary complex matrix, the CKM matrix. The CKM matrix
elements describe processes at the fundamental quark level. Our method does not refer to
the quark structure; it describes the decay process at the phenomenological level of mesons,
using only energies and lifetimes given by experimental results. The Wigner–Weisskopf model
used here (studied as a spectral mathematical problem by Friedrichs) is a phenomenological
model of interaction of two discrete states encompassing only the two decay modes of mesons
interacting with a continuum representing the decay products. Our complex coupling constants
with the continuum λ1 and λ2 involve only energies and lifetimes of decaying modes of mesons.
In our approach these modes are related to the two-pion and three-pion channels but our model
is too crude to incorporate more precise description of the decay products. Despite the obvious
oversimplifications made in our model, a comparison with the data shows that there is a room
for such an approach. The reason is that, in the standard model, it is not possible to estimate
exactly the experimental CP-violation parameters. The best that has been done so far was to
show that the CKM matrix is compatible with experimental data, but a priori the CKM phases
are free parameters. At a less fundamental level than the CKM model it is justified to make
use of such models.

It would be too difficult to tackle the question of the relevance of the time-super-operator
formalism in the framework of the standard model, although the probability decay can be
treated thanks to the two-level Friedrich model, which is the main novel result derived in our
paper.

One could ask if our model has something to do with the so-called superweak model for
CP-violation. Roughly speaking, the prediction of the superweak model is that CP-violation
could be explained in terms of the presence of an imaginary off-diagonal component in the
Hermitian part of the mass-decay matrix expressed in the neutral kaon basis. In our case, the
value of these imaginary components is exactly equal to 0 (cf equations (B.4– 6)), in agreement
with the standard explanation for the CP-violation (in terms of direct violation) [31] and in
agreement with experimental data [32] that connect the magnitude of the superweak violation to
the estimation of the parameter ε′/ε = (1.72± 0.018).10−3. Actually, the ε′ parameter is a free
parameter in our approach because in our description we do not provide an accurate description
of the decay products; for instance, we do not establish a distinction between charged pairs
of pions and neutral ones, simply because in the Friedrichs model these parameters do not
appear. We checked at the level of our mass-decay matrix that our model does not belong to
the class of the superweak models and that �(�12) is not zero, a condition given by [21] as
equivalent to direct CP-violation.

The proper treatment of the statistical distribution of decay times is a long-standing
problem that stimulated fascinating research in the past and is still a subject of fundamental
interest. The time-super-operator approach is one among several possible approaches,
thatwould be too long to describe here (see for instance [11, 33–36] and references
therein).
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Appendix A. Spectral eigenfunctions of the two-level Friedrichs model

The two-level Friedrics model Schrödinger equation with � = 1 is formally written as⎛⎜⎝ ω1 0 λ∗
1v

∗(μ)

0 ω2 λ∗
2v

∗(μ)

λ1v(μ) λ2v(μ) μ

⎞⎟⎠
⎛⎝ f1

f2

g(μ)

⎞⎠ = ω

⎛⎝ f1

f2

g(μ)

⎞⎠ . (A.1)

That is to say

ω1 f1(ω) + λ∗
1

∫
dμv∗(μ)g(μ) = ω f1(ω), (A.2)

ω2 f2(ω) + λ∗
2

∫
dμv∗(μ)g(μ) = ω f2(ω), (A.3)

and

λ1v(ω) f1(ω) + λ2v(ω) f2(ω) + μg(ω) = ωg(ω). (A.4)

The solution of (A.4), for ‘outgoing’ wave, is

g(μ) = δ(μ − ω) − lim
ε→0

λ1v(μ) f1 + λ2v(μ) f2

ω − μ − iε
; (A.5)

inserting the above equation in equation (A.2) yields

f1(ω) = λ∗
1v

∗(ω)

η+
1 (ω)

−
(

λ∗
1λ2 lim

ε→0

∫
dμ

|v(μ)|2
μ − ω − iε

)
f2(ω), (A.6)

where

η+
1 (ω) = ω − ω1 + |λ1|2 lim

ε→0

∫
dμ

|v(μ)|2
μ − (ω + iε)

. (A.7)

We can also obtain the similar relations for f2 by changing the indices 1 with 2 and vice versa
as

f2(ω) = λ∗
2v

∗(ω)

η+
2 (ω)

−
(

λ1λ
∗
2 lim

ε→0

∫
dμ

|v(μ)|2
μ − ω − iε

)
f1(ω). (A.8)

By substituting f2(ω) from the above equation in equation (A.6), we obtain

f1(ω) = 1

1 −
(
λ∗

1λ2
∫

dμ
|v(μ)|2
μ−ω−i0

)2

(
λ∗

1v
∗(ω)

η+
1 (ω)

− λ∗
1|λ2|2

η+
2 (ω)

∫
dμ

|v(μ)|2
μ − ω − i0

)

= 1

1 − O(|λ|4)
(

λ∗
1v

∗(ω)

η+
1 (ω)

− O(λ∗
1|λ2|2)

)
. (A.9)

Thus, to the order two approximation we have formulas (28) and (29). The above formulae
may be obtained in different ways using [19].

Appendix B. Computation of CPT-invariant effective Hamiltonian

Let us now discuss the CPT -invariance in our model. As mentioned in the textbooks like
[21, 22], the CPT -invariance imposes some conditions on the mass-decay matrix, i.e.

M11 = M22, �11 = �22, M12 = M∗
21 and �12 = �∗

21 (B.1)
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in the K0 and K
0

bases. But we note that our effective Hamiltonian is written in the K1 and
K2 bases. Thus, we have to rewrite in the K0 and K

0
bases. Thus, the transformation matrix T

from the K1 and K2 bases to the K0 and K
0

bases is obtained as

T = 1√
2

(
1 1

1 −1

)
= T −1. (B.2)

Then, the effective Hamiltonian in the K0 and K
0

bases, H00
eff , is obtained as

H00
eff = T HeffT

−1 = 1

2

(
1 1
1 −1

)(
ω1 − iπ |λ1|2 −iπλ∗

1λ2

−iπλ1λ
∗
2 ω2 − iπ |λ2|2

)(
1 1
1 −1

)
. (B.3)

Replacing the corresponding experimental values for (λ1, λ2, ω1, ω2), we have H00
eff =(

(mS + mL)− i
2 (�S + �L + 2

√
�S�L cos �θ ), (mS − mL)− i

2 (�S −�L + 2i
√

�S�L sin �θ )

(mS − mL)− i
2 (�S − �L − 2i

√
�S�L sin �θ ), (mS + mL)− i

2 (�S +�L − 2
√

�S�L cos �θ )

)
,

(B.4)

where �θ = θL − θS. CPT -invariance conditions in (B.1) impose that

�θ = kπ + π

2
, (k = . . . ,−1, 0, 1, . . .). (B.5)

Here, we choose k = 0, consequently, �θ = π
2 . Then, we have

M11 = M22 = (mS + mL), �11 = �22 = �S + �L,

M12 = M∗
21 = (mS − mL), �12 = �∗

21 = �S − �L + 2i
√

�S�L.
(B.6)

Thus, the effective Hamiltonian in the K1 and K2 base becomes as given in equation (45).

Appendix C. Expression of the eigenprojections for time-super-operator

The expression of the time operator is given in a spectral representation of H, that is, in
the representation in which H is diagonal. As shown in [16], H should have an unbounded
absolutely continuous spectrum. In the simplest case, we shall suppose that H is represented
as the multiplication operator on H = L2(R+):

Hψ(ω) = ωψ(ω). (C.1)

The Hilbert–Schmidt operators on L2(R+) correspond to the square-integrable functions
ρ(ω, ω′) ∈ L2(R+ × R

+) and the Liouville–von Neumann operator L is given by

Lρ(ω, ω′) = (ω − ω′)ρ(ω, ω′). (C.2)

Then we obtain a spectral representation of L via the change of variables in (61), and (62)
gives a spectral representation of L:

Lρ(ν, E ) = νρ(ν, E ), (C.3)

where ρ(ν, E ) ∈ L2(R × R
+). In this representation, Tρ(ν, E ) = i d

dν
ρ(ν, E ), so that the

spectral representation of T is obtained by the inverse Fourier transform:

ρ̂(τ, E ) = 1√
2π

∫ +∞

−∞
eiτνρ(ν, E ) dν = (F∗ρ)(τ, E ) (C.4)

and

T ρ̂(τ, E ) = τ ρ̂(τ, E ). (C.5)
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The spectral-projection operators Ps of T are given in the (τ, E )-representation by

Psρ̂(τ, E ) = χ]−∞,s](τ )ρ̂(τ, E ), (C.6)

where χ]−∞,s] is the characteristic function of ]−∞, s]. So, to obtain in the (ν, E ) representation
the expression of these spectral-projection operators, we use the Fourier transform

Psρ(ν, E ) = 1√
2π

∫ s

−∞
e−iντ ρ̂(τ, E ) dτ

= e−iνs
∫ 0

−∞
e−iντ ρ̂(τ + s, E ) dτ. (C.7)

Let g ∈ L2(R) and denote its Fourier transform by Fg(ν) = 1√
2π

∫∞
−∞ e−iντ g(τ ) dτ . Using the

Hilbert transformation:

Hg(x) = 1

π
P

∫ ∞

−∞

g(t)

t − x
dt. (C.8)

We have [18] the following formula:

1√
2π

∫ 0

−∞
e−iντ g(τ ) dτ = 1

2
(F (g) − iHF (g)). (C.9)

Finally, using the well-known property of the translated Fourier transform: σsg(τ ) = g(τ + s),

F (σsg)(ν) = eiνsF .g(ν). (C.10)

Equations (C.7) and (C.9) yield

Psρ(ν, E ) = 1
2 e−iνs[eiνsρ(ν, E ) − iH(eiνsρ(ν, E ))]. (C.11)

Thus

Psρ(ν, E ) = 1
2 [ρ(ν, E ) − i e−iνsH(eiνsρ(ν, E ))]. (C.12)

It is to be noted that Psρ(ν, E ) is in the Hardy class H
+ (i.e. it is the limit as y → 0+ of an

analytic function �(ν + iy) such that
∫∞
−∞ | �(ν + iy) |2 dy < ∞) [15].

Appendix D. Computation of survival probability

In this appendix, we compute PsFi j(ν, E )(s < 0) and survival probability pρ (s) = ‖Pρ (s)‖.
Using formula (C.12) could give PsFi j(ν, E )(s < 0). At first we compute

Gji(ν, E ) = H(eisνF ji)(ν, E ) = 1

π
P

∫ ∞

−∞

eisxF ji(x, E )

x − ν
dx. (D.1)

Now, we substitute (64) into (D.1), so we have

Gji(ν, E )= 1

π
P

[
λiλ

∗
j

∫ 0

−∞

eisx

νi(x − ν)(ν∗
j − x)

dx + λ∗
i λ j

∫ +∞

0

eisx

ν∗
j (x − ν)(νi + x)

dx

]
(D.2)

which for the ν > 0 has the following form:

Gji(ν, E )= 1

π

[
λiλ

∗
j

∫ 0

−∞

eisx

νi(x − ν)(ν∗
j − x)

dx + λ∗
i λ jP

∫ +∞

0

eisx

ν∗
j (x − ν)(νi + x)

dx

]
. (D.3)
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A complete computation of the Gii(ν, E ) is shown in [20]. Finally, PsFi j(ν, E ) is obtained as,
for i = j,

PsFii(ν, E ) = i|λi|2 e−isν

[ −1

2πνi(ν
∗
i − ν)

(∫ 0

−∞

e−sy

y + iν∗
i

dy −
∫ 0

−∞

e−sy

y + iν
dy

)
+ 1

2πν∗
i (ν + νi)

(∫ 0

−∞

e−sy

y − iνi
dy −

∫ 0

−∞

e−sy

y + iν
dy

)]

+

⎧⎪⎨⎪⎩|λi|2 e−isν

[
eisν∗

i

νi(ν
∗
i − ν)

− e−isνi

ν∗
i (νi + ν)

]
, E < ω̃1

0, E > ω̃1.

(D.4)

and by considering ω̃i < ω̃ j, Fi j, for i �= j, have the following form:

PsF ji(ν, E ) = i e−isν

[ −λiλ
∗
j

2πνi(ν
∗
j − ν)

(∫ 0

−∞

e−sy

y + iν∗
j

dy −
∫ 0

−∞

e−sy

y + iν
dy

)
+ λ∗

i λ j

2πν∗
j (ν + νi)

(∫ 0

−∞

e−sy

y − iνi
dy −

∫ 0

−∞

e−sy

y + iν
dy

)]

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e−isν

[
λiλ

∗
j e

isν∗
j

νi(ν
∗
j − ν)

− λ∗
i λ j e−isνi

ν∗
j (νi + ν)

]
, E < ω̃i

λiλ
∗
j e−isν eisν∗

i

νi(ν
∗
j − ν)

, ω̃i < E < ω̃ j

0, E > ω̃ j.

(D.5)

In equations (D.4) and (D.5), the non-integral terms yield the poles and lead to the resonance,
and the integral terms yield an algebraical behavior analogue to the background in the
Hamiltonian theories [26]. We can also compute the same result for the case ν < 0. We
will neglect the background (the integrals terms). Then, the above equation is rewritten as

PsF11(ν, E ) �

⎧⎪⎨⎪⎩|λ1|2 e−isν

[
eisν∗

1

ν1(ν
∗
1 − ν)

− e−isν1

ν∗
1 (ν1 + ν)

]
, E � ω̃1

0, E > ω̃1

(D.6)

and

PsF12(ν, E ) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−isν

[
λ1λ

∗
2eisν∗

2

ν1(ν
∗
2 − ν)

− λ∗
1λ2 e−isν1

ν∗
2 (ν1 + ν)

]
, E � ω̃1

λ1λ
∗
2 e−isν eisν∗

2

ν1(ν
∗
2 − ν)

, ω̃1 < E � ω̃2

0, E > ω̃2.

(D.7)

It is easy to see that PsF21(ν, E ) = [PsF12(−ν, E )]∗. The second line in the above equation
depends on the mass difference of the particle and anti-particle. If this difference of mass is
not negligible, it adds a correction term to the CP-violation parameter which depends on mass
difference and lifetimes.

Now, the survival probability is defined as follows:

pρ (s) = ‖Pρ (s)‖2 = ‖ |ε1|2PsF11(ν, E ) + ε1ε
∗
2PsF12(ν, E ) + ε2ε

∗
1PsF21(ν, E )

+|ε2|2PsF22(ν, E )‖2, (D.8)
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where ‖ · ‖2 = ∫∞
0 dE

∫∞
−∞ dν | · |2. We see that Pρ (s) can be written as

Pρ (s) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−isν

[(
ε∗

1λ1

ν1
+ ε∗

2λ2

ν2

)(
ε1λ

∗
1 eisν∗

1

ν∗
1 − ν

+ ε2λ
∗
2 eisν∗

2

ν∗
2 − ν

)
−
(

ε1λ1

ν∗
1

+ ε2λ2

ν∗
2

)(
ε∗

1λ∗
1 e−isν1

ν1 + ν
+ ε∗

2λ∗
2 e−isν2

ν2 + ν

)]
E � ω̃1,

e−isν

[
ε∗

1λ1

ν1

ε2λ
∗
2 eisν∗

2

(ν∗
2 − ν)

− ε1λ
∗
1

ν∗
1

ε∗
2λ2 e−isν2

(ν2 + ν)

]
, ω̃1 < E � ω̃2

0, E > ω̃2

(D.9)

Now, by remembering that bi = |λi|2, (i = 1, 2), the square norm of Pρ (s) is obtained as

|Pρ (s)|2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣ε1λ1

ν1
+ ε2λ2

ν2

∣∣∣∣2 [ |ε1|2|λ1|2 e2b1s

|ν∗
1 − ν|2 + |ε2|2|λ2|2 e2b2s

|ν∗
2 − ν|2

+|ε1|2|λ1|2 e2b1s

|ν1 + ν|2 + |ε2|2|λ2|2 e2b2s

|ν2 + ν|2
+ e(b1+b2 )s

(
ε1ε

∗
2λ∗

1λ2ei(a1−a2 )s

(ν∗
1 − ν)(ν2 − ν)

+ ε1ε
∗
2λ∗

1λ2 ei(a1−a2 )s

(ν∗
1 + ν)(ν2 + ν)

+ C.C.

)]
, E � ω̃1∣∣∣∣ε1λ1

ν1

∣∣∣∣2 [ |ε2|2|λ2|2 e2b2s

|ν∗
2 − ν|2 + |ε2|2|λ2|2 e2b2s

|ν2 + ν|2
]
, ω̃1 < E � ω̃2

0, E > ω̃2

(D.10)

where the terms that oscillate with a frequency equal to the difference of the two masses, i.e.
(ω̃2 − ω̃1) are kept, while the other decay terms oscillating with the frequency of one of the
masses only are neglected since we have the weak coupling and the high-mass regime.

The integral over ν leads to

∫ ∞

−∞
dν |Pρ (s)|2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π

∣∣∣∣ε1λ1

ν1
+ ε2λ2

ν2

∣∣∣∣2 [|ε1|2 e2b1s + |ε2|2 e2b2s

+
(

2iε∗
1ε2λ

∗
1λ2 e(b1+b2 )s e−i(ω̃1−ω̃2)s

(ω̃2 − ω̃1) + i(b1 + b2)
+ C.C.

)]
, E � ω̃1

2π

∣∣∣∣ε1λ1

ν1

∣∣∣∣2 |ε2|2 e2b2s, ω̃1 < E � ω̃2

0, E > ω̃2.

(D.11)

Only the terms of the square norm are dependent on E and we have∣∣∣∣ε1λ1

ν1
+ ε2λ2

ν2

∣∣∣∣2 =
∣∣∣∣ ε1λ1

E − ω̃1 + ib1

∣∣∣∣2 +
∣∣∣∣ ε2λ2

E − ω̃2 + ib2

∣∣∣∣2
+
(

ε∗
1λ∗

1

(E − ω̃1 + ib1)

ε2λ2

(E − ω̃2 − ib2)
+ C.C.

)
. (D.12)

The integral over E of the above expression is like the following integrals:∫
dE

∣∣∣∣ √
bi

(E − ω̃i) + ibi

∣∣∣∣2 = arctan

(
E − ω̃i

bi

)
(D.13)
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and∫
dE

λ∗
1λ2

(x − a1 + ib1)(E − a2 − ib2)
= −λ∗

1λ2

(ω̃2 − ω̃1) + i(b1 + b2)

(
i arctan

b1

E − ω̃1

+ i arctan
b2

E − ω̃2
+ log

√
(E − ω̃1)2 + b2

1 − log
√

(E − ω̃2)2 + b2
2

)
. (D.14)

Now, we integrate equation (D.12) over E from 0 to ∞ in order to obtain (67). Firstly,
for the interval E ∈ [0, ω̃1], we have I1 (equation (68)) and for E ∈]ω̃1, ω̃2] we have I2

(equation (69)).
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