Inversion formula for the non-uniformly attenuated x-ray transform for emission imaging in \mathbb{R}^{3} using quaternionic analysis

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 J. Phys. A: Math. Theor. 43335202
(http://iopscience.iop.org/1751-8121/43/33/335202)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.89.198.100
The article was downloaded on 17/07/2010 at 03:45

Please note that terms and conditions apply.

Inversion formula for the non-uniformly attenuated x -ray transform for emission imaging in \mathbb{R}^{3} using quaternionic analysis

S M Saberi Fathi
Université de Cergy-Pontoise, Laboratoire de Physique Théorique et Modélisation, 95302 Cergy-Pontoise, France
E-mail: majid.saberi@u-cergy.fr

Received 14 April 2010, in final form 22 June 2010
Published 16 July 2010
Online at stacks.iop.org/JPhysA/43/335202

Abstract

In this paper, we present a new derivation of the inverse of the non-uniformly attenuated x-ray transform in three dimensions, based on quaternion analysis. An explicit formula is obtained using a set of three-dimensional x-ray projection data. The result without attenuation is recovered as a special case.

PACS numbers: 02.30.Jr, 02.30.Uu, 02.30.Zz

1. Introduction

When a radiopharmaceutical emits radiation of photon energy E_{0}, an ideal SPECT camera records only emitted photons, which arrive perpendicularly to its surface. We are dealing uniquely with photons of energy E_{0}; thus, we have to solve a simplified photon transport equation, which may be expressed as

$$
\begin{equation*}
\mathbf{n} \cdot\left(\nabla u_{0}\right)\left(\mathbf{r}, \mathbf{n}, E_{0}\right)=-a_{0}\left(\mathbf{r}, E_{0}\right) u_{0}\left(\mathbf{r}, \mathbf{n}, E_{0}\right)-f_{0}\left(\mathbf{r}, \mathbf{n}, E_{0}\right) . \tag{1}
\end{equation*}
$$

Here $u_{0}\left(\mathbf{r}, \mathbf{n}, E_{0}\right)$ represents the photon flux density in the direction \mathbf{n} of energy E_{0}, i.e. number of photons per unit surface perpendicular to \mathbf{n} per second. Recall that $a_{0}\left(\mathbf{r}, E_{0}\right)$ is the linear attenuation coefficient or rate of depletion per unit length traversed and finally $-f_{0}\left(\mathbf{r}, \mathbf{n}, E_{0}\right)$ is the number of photons emitted in the direction \mathbf{n} per unit volume matter (of the extended radiation source). For simplicity, the energy label E_{0} will be omitted hereafter.

The aim is to solve this partial differential equation with an isotropic source term $f_{0}(\mathbf{r})$:

$$
\begin{equation*}
\mathbf{n} \cdot\left(\nabla u_{0}\right)(\mathbf{r}, \mathbf{n})=-a_{0}(\mathbf{r}) u_{0}(\mathbf{r}, \mathbf{n})-f_{0}(\mathbf{r}) \tag{2}
\end{equation*}
$$

where the unknown photon flux density is $u_{0}(\mathbf{r}, \mathbf{n})$. Reconstructing f_{0} from the data $u_{0}(\mathbf{x}, \mathbf{n})$ is the main problem posed here.

In three dimensions without attenuation, the solution is represented by the ' x-ray cone beam', without restriction on the set of source points \mathbf{x}. This has been worked out
mathematically in [1-4]. The reconstruction formula contains the average of the x-ray data on the unit sphere of \mathbb{R}^{3}. The case of point sources lying on a space curve is given by [5-8]. Finally, among the large amount of indirect inversion procedures, the most well known for efficiency and appeal are those by Smith, who developed a technique that converts divergent beam data into parallel beam data and used its known inversion procedure [9] and by Grangeat, who made a conversion of x-ray data into three-dimensional Radon data before using Radon inversion [10].

Reconstructing f_{0} from equation (2) in two dimensions has been worked out by Novikov [11]. In this paper, we show that the use of quaternion analysis leads to a new inversion formula for the non-uniformly attenuated x-ray transform in \mathbb{R}^{3}. Quaternions are higher dimensional generalization of complex numbers. Although not widely used, they provide elegant compact local formulation for electromagnetism, solid mechanics and some other fields in engineering [12]. Recently, quaternions have been used in integral transforms, for example, in geophysical processes [13] or in signal processing [14]. In imaging science, [15] gets an inversion formula for the x-ray transform without attenuation. In another work [16], the inversion of exponential x-ray transform is given. The generalization of these works for the non-uniform attenuation is the subject of this paper. As we see later, this generalization is not trivial, because the fundamental solution of the Dirac operator with the non-uniform function $(D+a(\mathbf{x}))$ in quaternion analysis has been studied only for an approximate vector potential of the form [17]

$$
\begin{equation*}
\left\{\frac{\underline{\mathbf{x}}-\underline{\mathbf{x}}^{(i)}}{\underline{\mathbf{x}}-\left.\underline{\mathbf{x}}^{(i)}\right|^{3}}, i=1,2, \ldots\right\} . \tag{3}
\end{equation*}
$$

This is not realistic in practical applications. However, the case of constant ' $a=$ constant' has been studied in $[18,19]$.

In the next section, we introduce some useful notions on the algebra of real quaternions \mathbb{H} and collect the main results of quaternion analysis needed for our problem. Section 3 describes the derivation of the inversion formula giving the reconstructed function in terms of the x -ray data, and we give an interpretation of this new result. This paper ends with a conclusion and some perspectives to invert the x-ray transform in the presence of other effects.

2. Quaternions

Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ be an element of \mathbb{R}^{3}, expressed in an orthonormal basis formed by three unit vectors t_{1}, l_{2} and l_{3} by $\mathbf{x}=\sum_{m=1}^{3} x_{m} l_{m}$. The conventional vector space structure is given by a scalar (inner) product rule for the basis unit vectors, i.e. $\left(l_{n} \cdot l_{m}\right)=\delta_{m n}$ and by a vector (cross) product, i.e. $l_{1} \times t_{2}=l_{3}$ with its cyclic permutations and the non-commutativity $l_{m} \times l_{n}=-l_{m} \times l_{n}$.

To this structure, one can add a new one

- by promoting the unit vectors to be imaginary units, i.e. $\iota_{1}{ }^{2}=t_{2}{ }^{2}=t_{3}{ }^{2}=-1$ and
- by introducing a non-commutative multiplication rule between them: $\iota_{i} l_{j}=-l_{j} l_{i}$ for $i \neq j$ and $\iota_{i} l_{j}=l_{k}$ for all cyclic permutations of (i, j, k).
Then to each $\mathbf{x}=\sum_{m=1}^{3} x_{m} l_{m}$, as a three-dimensional vector, corresponds a new object $\underline{\mathbf{x}}$ (also called Vec x by some authors), which has the same formal expression but with t_{m} following the new multiplication rule. Consequently, the identification

$$
\begin{equation*}
\mathbf{x} \in \mathbb{R}^{3} \quad \mapsto \quad \underline{\mathbf{x}}=\sum_{m=1}^{3} x_{m} \iota_{m} \tag{4}
\end{equation*}
$$

is an isomorphism of \mathbb{R}^{3} onto the set of 'vector parts' $\{\mathrm{Vec}\}$ of more general objects called quaternions by Hamilton [27].

In fact, a quaternion x has four components, i.e. besides its imaginary vector part, there is also a scalar part $\operatorname{Sc} x=x_{0} l_{0}$, where t_{0} is the real (or non-imaginary) unit part (usually identified with the real unit $1=t_{0} \in \mathbb{R}$) and $x_{0} \in \mathbb{R}$, such that

$$
\begin{equation*}
x=x_{0} l_{0}+\sum_{m=1}^{3} x_{m} \iota_{m}=\operatorname{Sc} x+\operatorname{Vec} x=x_{0} l_{0}+\underline{\mathbf{x}}, \quad\left(x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{R}\right) \tag{5}
\end{equation*}
$$

The set of quaternions with real components should be called $\mathbb{H}(\mathbb{R}),{ }^{1}$ but for simplicity, will be denoted by \mathbb{H}.

Following [20], we give some of their properties:

$$
\begin{align*}
& \text { conjugate operation: } \bar{x}=x_{0} l_{0}-\sum_{m=1}^{3} x_{m} l_{m} \tag{6}\\
& \text { square norm: }|x|^{2}=x \bar{x}=\bar{x} x=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \tag{7}\\
& \text { inverse: } x^{-1}=\frac{\bar{x}}{|x|^{2}} \text { if and only if } x \bar{x} \neq 0 \tag{8}
\end{align*}
$$

Finally, the ordered product of two quaternions $y=y_{0} t_{0}+\underline{\mathbf{y}}$ and $x=x_{0} t_{0}+\underline{\mathbf{x}}$ is a quaternion $w=y x=(\operatorname{Sc} w+\operatorname{Vec} w)$, where
$w_{0}=\operatorname{Sc} w=y_{0} x_{0}-(\mathbf{y} \cdot \mathbf{x}) \quad$ and $\quad \underline{\mathbf{w}}=\operatorname{Vec} w=\underline{\mathbf{y}} x_{0}+y_{0} \underline{\mathbf{x}}+\underline{\mathbf{y} \times \mathbf{x}}$.
In particular, i.e. the ordered product of $\underline{\mathbf{y}}$ by $\underline{\mathbf{x}}$ is

$$
\begin{equation*}
\underline{\mathbf{y}} \underline{\mathbf{x}}=-\mathbf{y} \cdot \mathbf{x}+\underline{\mathbf{y}} \times \mathbf{x} \tag{10}
\end{equation*}
$$

For our purposes, we do not require the full machinery of quaternionic analyticity as developed by Fueter and others [20, 21]. Here we are only concerned with analytic properties useful for imaging processes in \mathbb{R}^{3} modeled by the x-ray transform. They are essentially extracted from [18, 22]:

$$
\begin{equation*}
D=\sum_{j=1}^{3} l_{j} \frac{\partial}{\partial x_{j}} \tag{11}
\end{equation*}
$$

The quaternionic operator D has been given different names according to authors: Dirac operator for [18], three-dimensional Cauchy-Riemann operator for [12], Moisil-Teodorescu differential operator for [23], etc.

Inspection shows that it is related to the three-dimensional Laplace operator by $\Delta=-D^{2}$. The solutions of $D f(\mathbf{x})=0$, called frequently left-monogenic \mathbb{H}-valued functions, satisfy many generalizations of classical theorems from complex analysis to higher dimensional context [22]. Given the elementary solution of the Laplace operator, $\triangle E(\mathbf{x})=-D^{2} E(\mathbf{x})=$ $\delta(\mathbf{x})$, as

$$
\begin{equation*}
E(\mathbf{x})=\frac{1}{4 \pi|\mathbf{x}|} \tag{12}
\end{equation*}
$$

the elementary solution of D can be worked out as [18]

$$
\begin{equation*}
\underline{\mathbf{K}}(\mathbf{x})=\sum_{j=1}^{3} K_{j}(\mathbf{x}) \iota_{j}=-\frac{\underline{\mathbf{x}}}{4 \pi|\mathbf{x}|^{3}}, \quad \underline{\mathbf{x}} \neq 0 \tag{13}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
K_{j}(\mathbf{x})=-\frac{x_{j}}{4 \pi|\mathbf{x}|^{3}} \quad(j=1,2,3) \tag{14}
\end{equation*}
$$

\]

Note that $\underline{\mathbf{K}}(\mathbf{x})$ is a \mathbb{H}-valued fundamental solution of D and therefore monogenic in $G \backslash\{0\}$ where $G \subset \mathbb{R}^{3}$.

Now, we write the generalized Leibniz formula in quaternions [18]:

$$
\begin{equation*}
D(u w)=\bar{u} D w+(D u) w+2 \operatorname{Sc}(u D) w, \quad u, w \in \mathbb{H}\left(\mathbb{R}^{4}\right) \tag{15}
\end{equation*}
$$

where $\mathbb{H}\left(\mathbb{R}^{4}\right)$ is the set of u and v, which are \mathbb{H}-valued functions with the domain in \mathbb{R}^{4}.
Consequently, there exists a three-dimensional Cauchy integral representation for continuous left-monogenic \mathbb{H}-valued functions on \bar{G} [22],

$$
\begin{equation*}
(F f)(\mathbf{x}):=\int_{\Gamma} \underline{\mathbf{K}}(\mathbf{x}-\mathbf{y}) \underline{\alpha}(\mathbf{y}) f(\mathbf{y}) \mathrm{d} \Gamma_{\mathbf{y}}, \quad \mathbf{x} \in G \backslash \Gamma \tag{16}
\end{equation*}
$$

where $\underline{\alpha}(\mathbf{y})=\sum_{j=1}^{3} \alpha_{j}(\mathbf{y}) \iota_{j}$ is the quaternionic outward pointing unit vector at \mathbf{y} on the boundary $\partial G=\Gamma, \mathrm{d} \Gamma_{\mathbf{y}}$ is the Lebesgue measure on Γ. Moreover one has $D\left(F_{\Gamma} f\right)(\mathbf{x})=0$.

The operator D has a right inverse, called the Teodorescu transform [24]. It is defined for all $f(\mathbf{x}) \in \mathcal{C}(G, \mathbb{H})$ by

$$
\begin{equation*}
(T f)(\mathbf{x}):=\int_{G} \underline{\mathbf{K}}(\mathbf{x}-\mathbf{y}) f(\mathbf{y}) \mathrm{d} \mathbf{y} \quad \mathbf{x} \in G \subset \mathbb{R}^{3} \tag{17}
\end{equation*}
$$

Roughly speaking, D is a kind of directional derivative and T is just the integration, the right inverse of this directional derivative.

Conversely, for any $f(\mathbf{x}) \in \mathcal{C}^{1}(G, \mathbb{H}) \cap \mathcal{C}(\bar{G}, \mathbb{H})$, it can be shown that it satisfies the so-called Borel-Pompeiu formula [18]

$$
(F f)(\mathbf{x})+(T D) f(\mathbf{x})= \begin{cases}f(\mathbf{x}), & \mathbf{x} \in G \tag{18}\\ 0, & \mathbf{x} \in \mathbb{R}^{3} \backslash \bar{G}\end{cases}
$$

A generalization of the concept of Cauchy principal value for $(F f)(\mathbf{x})$ can be introduced when the variable \mathbf{x} is approaching the boundary $\partial G=\Gamma$. For a given f, at each regular point $\mathbf{x}^{\prime} \in \Gamma$ [18], the non-tangential limit of the Cauchy integral representation can be written as

$$
\begin{equation*}
\lim _{\mathbf{x} \rightarrow \mathbf{x}^{\prime}}(F f)(\mathbf{x})=\frac{1}{2}\left(\pm f\left(\mathbf{x}^{\prime}\right)+(S f)\left(\mathbf{x}^{\prime}\right)\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
(S f)(\mathbf{x})=2 \int_{\Gamma} \underline{\mathbf{K}}(\mathbf{x}-\mathbf{y}) \underline{\alpha}(\mathbf{y}) f(\mathbf{y}) \mathrm{d} \Gamma_{\mathbf{y}} \tag{20}
\end{equation*}
$$

is understood as a 'quaternionic Cauchy principal value' of the integral over the smooth boundary Γ because of the singularity of $\underline{\mathbf{K}}(\mathbf{x})$ in the integrand.

A Plemelj-Sokhotzkij-type formula for f, relative to $\Gamma,[22,24]$ can now be given as
(i)
$\lim _{\mathbf{x} \underset{\mathbf{x} \in G}{\mathbf{x}^{\prime} \in \Gamma}}(F f)(\mathbf{x})=(P f)\left(\mathbf{x}^{\prime}\right)$,
(ii) $\underset{\mathbf{x} \xrightarrow[\mathbf{x} \in \mathbb{R}^{3} \backslash \vec{G}]{\lim } \mathbf{x}^{\prime} \in \Gamma}{ }(F f)(\mathbf{x})=-(Q f)\left(\mathbf{x}^{\prime}\right)$,
where P is the projection operator $\left(P^{2}=P\right)$ onto \mathbb{H}-valued functions, which have a leftmonogenic extension into the domain G, and Q is the projection operator ($Q^{2}=Q$) onto \mathbb{H}-valued functions, which have a left-monogenic extension into the domain $\mathbb{R}^{3} \backslash \bar{G}$ and vanish at infinity.
P and Q can be given, in turn, an alternative form in terms of the quaternionic principal value operator S as

$$
\begin{equation*}
P:=\frac{1}{2}(I+S) \quad Q:=\frac{1}{2}(I-S), \tag{22}
\end{equation*}
$$

with the following operator relations

$$
\begin{equation*}
S P=P, \quad S Q=-Q, \quad S^{2}=S S=I \tag{23}
\end{equation*}
$$

Finally, we define a trace operator tr as a restriction map for an \mathbb{H}-valued function f on Γ, smooth boundary of $G \in \mathbb{R}^{3}$, by

$$
\begin{equation*}
\operatorname{tr} f=\left.f\right|_{\Gamma} \tag{24}
\end{equation*}
$$

Notation. Here we review our notation in this paper. Only 'bold' letters are used for vectors or vector functions in \mathbb{R}^{3}, such as \mathbf{x} or $\mathbf{f}(\mathbf{x})$. The index 'zero' indicates the scalar part of a quaternion or quaternion function, e.g. x_{0} or $a_{0}(\mathbf{x})$. Underlined bold letters are used for the vector part of the quaternions or quaternion functions, e.g. $\underline{\mathbf{x}}$ or $\underline{\mathbf{f}}(\mathbf{x})$. Operators with index ' a ' are the operators with attenuation, e.g. T_{a}, X_{a}.

3. The x-ray transform and its inverse

We are now in a position to tackle the inversion problem for the non-uniform attenuated x-ray transform of a physical density $f_{0}(\mathbf{x})$. By definition, this transform consists of integrating $f_{0}(\mathbf{x})$, assumed to be an integrable function with compact support in a convex set G, along a straight line from the source point \mathbf{x} to infinity in the direction of the unit vector \mathbf{n}, i.e.

$$
\begin{equation*}
\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n})=\int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-\mathfrak{D} a_{0}(\mathbf{x}) t} f_{0}(\mathbf{x}+t \mathbf{n}) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{D} a_{0}(\mathbf{x})=-\frac{1}{4 \pi} \int_{\Omega_{\mathbf{n}}}\left(X a_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}} \tag{26}
\end{equation*}
$$

where $\mathrm{d} \Omega_{\mathbf{n}}$ is the area element of the unit sphere $\Omega_{\mathbf{n}}$ in \mathbb{R}^{3} and ($X a_{0}$) is the x-ray transform

$$
\begin{equation*}
\left(X a_{0}\right)(\mathbf{x}, \mathbf{n})=\int_{0}^{\infty} \mathrm{d} t a_{0}(\mathbf{x}+\mathbf{n} t) \tag{27}
\end{equation*}
$$

In transmission modality, f_{0} represents the attenuation map of the object under study, whereas in emission modality f_{0} is its radiation activity density.

The next point is that if $f_{0}(\infty)=0$, it can be verified that $\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n})$ satisfies a very simple partial differential equation, namely

$$
\begin{equation*}
\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}+a_{0}(\mathbf{x})\right)\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n})=-f_{0}(\mathbf{x}) . \tag{28}
\end{equation*}
$$

This can be checked if we let the $\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}+a_{0}(\mathbf{x})\right)$ operator act under the integral sign. After a change of variables, the integrand just turns into the differential of $f_{0}(\mathbf{x})$ under the integral sign. Equation (28) is in fact a simplified stationary photon transport equation with loss by attenuation function $a_{0}(\mathbf{x})$ and without source or sink term [25]. Since $\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}+a_{0}(\mathbf{x})\right)$ is a directional derivative plus the attenuated term, clearly its inverse is an integration ${ }^{2}$. The solution of this partial differential equation is subjected to the following boundary condition. For a given direction \mathbf{n}, because of the support hypothesis and because of the prescription on the direction of integration, $\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n})=0$, whenever \mathbf{x} is on the boundary $\Gamma=\partial G$ of G and \mathbf{n} points outward of Γ.

To obtain the solution of the above equation by using real analysis, we write the solution of the homogenous form of equation (28), i.e.

$$
\begin{equation*}
\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}+a_{0}(\mathbf{x})\right) v_{0}(\mathbf{x}, \mathbf{n})=0 \tag{29}
\end{equation*}
$$

[^1]from which $v_{0}(\mathbf{x}, \mathbf{n})$ is obtained as
\[

$$
\begin{equation*}
v_{0}(\mathbf{x}, \mathbf{n})=\mathrm{e}^{-\int_{\mathbb{R}^{3}} \widetilde{\sigma_{0}}(\mathbf{x}-\mathbf{y}, \mathbf{n}) a_{0}(\mathbf{y}) \mathrm{dy}}, \quad \mathbf{y} \in \mathbb{R}^{3}, \tag{30}
\end{equation*}
$$

\]

where $\widetilde{G_{0}}(\mathbf{x}-\mathbf{y}, \mathbf{n})$ is the Green's function of the $\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right)$ operator.
At this point, we define $u_{0}(\mathbf{x}, \mathbf{n})$ in (28) as

$$
\begin{equation*}
u_{0}(\mathbf{x}, \mathbf{n})=C_{0}(\mathbf{x}) v_{0}(\mathbf{x}, \mathbf{n}) \tag{31}
\end{equation*}
$$

By substituting $u_{0}(\mathbf{x}, \mathbf{n})$ into equation (28), we have

$$
\begin{equation*}
C_{0}(\mathbf{x})=\int_{\mathbb{R}^{3}} \widetilde{G_{0}}(\mathbf{x}-\mathbf{y}, \mathbf{n}) v_{0}^{-1}(\mathbf{y}, \mathbf{n}) f_{0}(\mathbf{y}) \mathrm{d} \mathbf{y} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{0}(\mathbf{x}, \mathbf{n})=-\int_{\mathbb{R}^{3}} R_{0}(\mathbf{x}, \mathbf{y}, \mathbf{n}) f_{0}(\mathbf{y}) \mathrm{d} \mathbf{y} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{0}(\mathbf{x}, \mathbf{y}, \mathbf{n})=v_{0}(\mathbf{x}, \mathbf{n}) \widetilde{G_{0}}(\mathbf{x}-\mathbf{y}, \mathbf{n}) v_{0}^{-1}(\mathbf{y}, \mathbf{n}) \tag{34}
\end{equation*}
$$

We will use a similar method in the quaternion analysis to obtain an inversion solution for equation (28).

3.1. Quaternion solution

By considering \mathbf{n} independent of \mathbf{x}, we can rewrite equation (28) in the following form:

$$
\begin{equation*}
\mathbf{n} \cdot(\nabla+\mathbf{a}) u_{0}(\mathbf{x})=-f_{0}(\mathbf{x}) \tag{35}
\end{equation*}
$$

where we define $\mathbf{a}:=a_{0} \mathbf{n}$.
We would like to use the machinery of quaternion analysis to obtain the inversion of the three-dimensional x-ray transform. The idea is to consider equation (28) as part of an inhomogeneous equation (11), with an \mathbb{H}-valued 'source' function $f=f_{0}(\mathbf{x})+\underline{\mathbf{f}}(\mathbf{x})$ on its right-hand side for an unknown scalar function $u_{0}(\mathbf{x})$. As can be checked, the quaternionic product rule (9) yields

$$
\begin{equation*}
\underline{\mathbf{n}} D_{a} u_{0}(\mathbf{x})=f(\mathbf{x}), \tag{36}
\end{equation*}
$$

where D_{a} is defined as follows:

$$
\begin{equation*}
D_{a}=D+\underline{\mathbf{a}} . \tag{37}
\end{equation*}
$$

Explicitly equation (36) has the following form:
$\underline{\mathbf{n}} D_{a} u_{0}(\mathbf{x})=-\mathbf{n} \cdot\left(\nabla_{\mathbf{x}}+\mathbf{a}(\mathbf{x})\right) u_{0}(\mathbf{x})+\underline{\mathbf{n} \times\left(\nabla_{\mathbf{x}}+\mathbf{a}(\mathbf{x})\right)} u_{0}(\mathbf{x})=f_{0}(\mathbf{x})+\underline{\mathbf{f}}(\mathbf{x})$,
which leads to a set of two equations for u_{0} :

$$
\begin{align*}
& \left(\mathbf{n} \cdot \nabla_{\mathbf{x}}+a_{0}(\mathbf{x})\right) u_{0}(\mathbf{x})=-f_{0}(\mathbf{x}) \tag{39}\\
& \left(\mathbf{n} \times \nabla_{\mathbf{x}}\right) u_{0}(\mathbf{x})=\mathbf{f}(\mathbf{x}),
\end{align*}
$$

the first one being exactly the one of the x-ray transform. By solving equation (39), we can obtain the solution of equation (39) as a by product, for given $f_{0}(\mathbf{x})$, first. Then, $\mathbf{f}(\mathbf{x})$ can be computed from the curl term and the gradient term of the solution.

From (39) the case $\mathbf{f}=\left(\mathbf{n} \times \nabla_{\mathbf{x}}\right) u_{0}=0$ means that the areolar derivative of u_{0} is equal to zero. In the other words, the derivative of u_{0} on the plane perpendicular to \mathbf{n} is equal to zero, or u_{0} is constant on the plane perpendicular to \mathbf{n}.

Considering $\underline{\mathbf{f}}=0$, equation (36) becomes

$$
\begin{equation*}
\underline{\mathbf{n}} D_{a} u_{0}(\mathbf{x})=f_{0}(\mathbf{x}), \quad \mathbf{x} \in G, \tag{40}
\end{equation*}
$$

in which we can easily see that the above equation is the transport equation (28) in the quaternion formalism.

Now, by multiplying equation (40) by $-\underline{\mathbf{n}}$ from the left-hand side we have

$$
\begin{equation*}
D_{a} u_{0}(\mathbf{x}, \mathbf{n})=-\underline{\mathbf{n}} f_{0}(\mathbf{x}) \tag{41}
\end{equation*}
$$

where we used ' $\underline{n}=-1$ '.
We choose the Dirichlet boundary condition for equation (41), i.e. the boundary value of u_{0} on the smooth boundary surface of Γ is equal to w_{0} which is a monogenic function. Hence, we have

$$
\begin{align*}
& D_{a} u_{0}(\mathbf{x})=-\underline{\mathbf{n}} f_{0}(\mathbf{x}), \quad \mathbf{x} \in G \tag{42}\\
& \left.u_{0}(\mathbf{x})\right|_{\Gamma}=w_{0}(\mathbf{x}) \tag{43}
\end{align*}
$$

where w_{0} is a scalar function.
Before obtaining the solution of the above equation, we derive an explicit form of $T \underline{\mathbf{a}}$:

$$
\begin{align*}
(T \underline{\mathbf{a}})(\mathbf{x}) & =\int_{G} \underline{\mathbf{K}}(\mathbf{x}-\mathbf{y}) \underline{\mathbf{a}}(\mathbf{y}) \mathrm{d} \mathbf{y} \\
& =\frac{1}{4 \pi} \int_{G} \frac{\underline{\mathbf{x}}-\underline{\mathbf{y}}}{|\mathbf{x}-\mathbf{y}|^{3}} \underline{\mathbf{a}}(\mathbf{y}) \mathrm{d} \mathbf{y}=\frac{1}{4 \pi} \sum_{i, j=1}^{3} \int_{G} \frac{x_{i}-y_{i}}{|\mathbf{x}-\mathbf{y}|^{3}} a_{j}(\mathbf{y}) \mathrm{d} \mathbf{y} \boldsymbol{y}_{i} \iota_{j} \tag{44}
\end{align*}
$$

The photon transport in the \mathbf{n} direction of the x-ray source located at \mathbf{x} required that $\mathbf{y}=\mathbf{x}+\mathbf{n} t$, where $t \in \mathbb{R}^{+}$. Consequently, the volume element $\mathrm{d} \mathbf{y}$ in spherical coordinates becomes $\mathrm{d} \mathbf{y}=t^{2} \mathrm{~d} t \mathrm{~d} \Omega_{\mathbf{n}}$, where $\mathrm{d} \Omega_{\mathbf{n}}$ is the area element of the unit sphere Ω_{n} in \mathbb{R}^{3}. Then, we have

$$
\begin{align*}
(T \underline{\mathbf{a}})(\mathbf{x}) & =\frac{1}{4 \pi} \int_{\Omega_{\mathbf{n}}} \int_{\mathbb{R}^{+}} \frac{\underline{\mathbf{n}} t}{|\mathbf{n} t|^{3}} \underline{\mathbf{n}} a_{0}(\mathbf{x}+\mathbf{n} t) t^{2} \mathrm{~d} \Omega_{\mathbf{n}} \mathrm{d} t \\
& =-\frac{1}{4 \pi} \int_{\Omega_{\mathbf{m}}}\left(\int_{\mathbb{R}^{+}} a_{0}(\mathbf{x}+\mathbf{n} t) \mathrm{d} t\right) \mathrm{d} \Omega_{\mathbf{n}} \tag{45}
\end{align*}
$$

where we have $\underline{\mathbf{a}}=\underline{\mathbf{n}} a_{0}$ and $\underline{\mathbf{n}}=-1$. Now, we use the definition of the x-ray transform of component f_{β} :

$$
\begin{equation*}
X a_{0}(\mathbf{x}, \mathbf{n}):=\int_{\mathbb{R}^{+}} a_{0}(\mathbf{x}+\mathbf{n} t) \mathrm{d} t \tag{46}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\mathfrak{D} a_{0}(\mathbf{x}):=(T \underline{\mathbf{a}})(\mathbf{x})=-\frac{1}{4 \pi} \int_{\Omega_{\mathbf{n}}}\left(X a_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}} . \tag{47}
\end{equation*}
$$

Here we showed that the $(T \underline{\mathbf{a}})=\left(T \underline{\mathbf{n}} a_{0}\right)$ is a scalar function. Thus, the following theorem gives the solution u_{0} of the above equation when ($T \mathbf{a}$) is a scalar function. This is sufficient to solve our problem.

Theorem. Assuming that $(T \underline{\mathbf{a}})=\operatorname{Sc}(T \underline{\mathbf{a}})=(T \underline{\mathbf{a}})_{0}$, and for f_{0} and u_{0}, v_{0} differentiable or weakly differentiable functions in a normed space with domain in $G \subset \mathbb{R}^{3}$, the solution of equation (42) is given by

$$
\begin{align*}
& v_{0}=\mathrm{e}^{-T \underline{\mathbf{a}}} \tag{48}\\
& u_{0}=-\left(T_{a} \underline{\mathbf{n}} f_{0}\right)+F_{a} w_{0} \tag{49}
\end{align*}
$$

where $T_{a} \underline{\mathbf{n}} f_{0}=v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}$ and $F_{a} w_{0}=v_{0} F v_{0}^{-1} w_{0}$. With the condition

$$
\begin{equation*}
Q_{a} w_{0}=-\operatorname{tr}\left(v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}\right) \tag{50}
\end{equation*}
$$

where $Q_{a} w_{0}=v_{0} Q v_{0}^{-1}$ the above condition follows from Plemelj-Sokhotzkij's formula. This means that there exists an extension onto the domain $\mathbb{R}^{3} \backslash \bar{G}$.

Proof. v_{0} is the solution of the following homogenous equation:

$$
\begin{equation*}
D_{a} v_{0}=(D+\underline{\mathbf{a}}) v_{0}=D v_{0}+\underline{\mathbf{a}} v_{0}=0 \tag{51}
\end{equation*}
$$

where the solution of the above equation is equal to

$$
\begin{equation*}
v_{0}=\mathrm{e}^{-T \underline{\mathbf{a}}} . \tag{52}
\end{equation*}
$$

In appendix A, we solve equation (51) using real analysis. We can verify the above solution by substituting expression (52) into equation (51):
$D \mathrm{e}^{-T \underline{\mathbf{a}}}+\underline{\mathbf{a}} v_{0}=-(D T \underline{\mathbf{a}}) \mathrm{e}^{-T \underline{\mathbf{a}}}+\underline{\mathbf{a}} v_{0}=-(D T \underline{\mathbf{a}}) v_{0}+\underline{\mathbf{a}} v_{0}=-\underline{\mathbf{a}} v_{0}+\underline{\mathbf{a}} v_{0}=0$,
where we used the fact that $D T v_{0}=v_{0}$ in G, which means that T is the right inverse of D [22]. Now, we introduce the general solution of (42) as $u_{0}^{(g)}:=v_{0} C_{0}$, where C_{0} is a function with domain in $G \subset \mathbb{R}^{3}$ and $\operatorname{tr} C_{0}=0$. We replace it in equation (42). Thus, we have

$$
\begin{equation*}
D\left(v_{0} C_{0}\right)+\underline{\mathbf{a}} v_{0} C_{0}=-\underline{\mathbf{n}} f_{0} . \tag{54}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
D\left(v_{0} C_{0}\right)=v_{0} D C_{0}+\left(D v_{0}\right) C_{0}=v_{0} D C_{0}-\underline{\mathbf{a}} v_{0} C_{0}=-\underline{\mathbf{n}} f_{0} . \tag{55}
\end{equation*}
$$

Consequently, (54) gives

$$
\begin{equation*}
v_{0} D C_{0}=-\underline{\mathbf{n}} f_{0} \tag{56}
\end{equation*}
$$

By acting v_{0}^{-1} on the above equation we obtain

$$
\begin{equation*}
D C_{0}=-v_{0}^{-1} \underline{\mathbf{n}} f_{0} . \tag{57}
\end{equation*}
$$

Now, taking into account that ' $\operatorname{tr} C_{0}=0$ ' (which means that ' $F C_{0}=0$ '), C_{0} has the following form:

$$
\begin{equation*}
C_{0}=-T v_{0}^{-1} \underline{\mathbf{n}} f_{0} . \tag{58}
\end{equation*}
$$

In a similar way where it was shown before that $(T \underline{\mathbf{a}})=\left(T \underline{\mathbf{n}} a_{0}\right)$ is a scalar function, one can show that ($T v_{0} \underline{\mathbf{n}} f_{0}$) is a scalar function. Finally, $u_{0}^{(g)}$ is equal to

$$
\begin{equation*}
u_{0}^{(g)}=v_{0} C_{0}=-v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}=-T_{a} \underline{\mathbf{n}} f_{0} \tag{59}
\end{equation*}
$$

The proper solution $u_{0}^{(p)}$ of equation (42) which takes the value u_{0} on the boundary, i.e. equation (43) is

$$
\begin{equation*}
\operatorname{tr} u_{0}=\operatorname{tr} u_{0}^{(g)}+\operatorname{tr} u_{0}^{(p)}=-\operatorname{tr}\left(v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}\right)+\operatorname{tr} u_{0}^{(p)} . \tag{60}
\end{equation*}
$$

Using condition (50), we obtain

$$
\begin{equation*}
\operatorname{tr} u_{0}=Q_{a} w_{0}+\operatorname{tr} u_{0}^{(p)}=w_{0} \tag{61}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\operatorname{tr} u_{0}^{(p)}=\left(I-Q_{a}\right) w_{0}=v_{0}(I-Q) v_{0}^{-1} w_{0}=v_{0} P v_{0}^{-1} w_{0}=P_{a} w_{0} \tag{62}
\end{equation*}
$$

where $P_{a}=v_{0} P v_{0}^{-1}$. Thus, from the definition of $P w_{0}=\operatorname{tr}\left(F w_{0}\right)[18], u_{0}^{(p)}$ is equal to

$$
\begin{equation*}
u_{0}^{(p)}=v_{0} F v_{0}^{-1} w_{0}=F_{a} w_{0} \tag{63}
\end{equation*}
$$

Finally, by considering $u_{0}^{(g)}$ and $u_{0}^{(p)}, u_{0}=u_{0}^{(g)}+u_{0}^{(p)}$ is obtained by equation (49). We verify our solution by acting D_{a} on equation (42). Then, we have
$D_{a} u_{0}=-D_{a} v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}+D_{a}\left(F_{a} w_{0}\right)=-v_{0} D_{a} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}+\left(D_{a} v_{0}\right) T v_{0}^{-1} \underline{\mathbf{n}} f_{0}$,
where we used the generalized Leibniz formula (15) and
$D\left(F_{a} w\right)=D v_{0} F v_{0}^{-1} w_{0}=\left(D v_{0}\right) F v_{0}^{-1} w_{0}+v_{0} D F v_{0}^{-1} w_{0}=-\underline{\mathbf{a}} F v_{0}^{-1} w_{0}+0$,
where we use $D F v_{0}^{-1} w_{0}=0$, which means that $\left(F v_{0}^{-1} w_{0}\right)$ is a monogenic function [22]. Thus, as a result, we can conclude that $D_{a} F_{a} w_{0}=0$.

Thus, equation (64) is obtained as
$D_{a} u_{0}=-v_{0} v_{0}^{-1} \underline{\mathbf{n}} f_{0}-v_{0} \underline{\mathbf{a}} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}+\left(v_{0} \underline{\mathbf{a}}\right) T v_{0}^{-1} \underline{\mathbf{n}} f_{0}=-\underline{\mathbf{n}} f_{0}$,
where in the first term on the right-hand side we used $D T u_{0}=u_{0}$.
Now, we check the solution at the boundary condition (43). Thus, by substituting u_{0} from (48) into (43), we obtain

$$
\begin{align*}
w_{0} & =-\operatorname{tr}\left(v_{0} T v^{-1} \underline{\mathbf{n}} f_{0}+F_{a} w_{0}\right) \\
& =-\operatorname{tr}\left(v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}\right)+\operatorname{tr}\left(F_{a} w_{0}\right)=-\operatorname{tr}\left(v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}\right)+P_{a} w_{0} \tag{67}
\end{align*}
$$

where in the last equation we use: $\operatorname{tr}\left(F_{a} w_{0}\right)=\left(F_{a} w_{0}\right)_{\Gamma}=P_{a} w_{0}$. Then, (67) yields

$$
\begin{equation*}
-\operatorname{tr}\left(v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}\right)=\left(I-P_{a}\right) w_{0}=Q_{a} w_{0} \tag{68}
\end{equation*}
$$

3.2. The x-ray representation

Now, we reconstruct f_{0} by using equation (49). As shown in (66), ' $D_{a} u_{0}=D_{a}\left(-v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}+\right.$ $\left.F_{a} w_{0}\right)=-\underline{\mathbf{n}} f_{0}$ '; thus,

$$
\begin{equation*}
\underline{\mathbf{n}} f_{0}=D_{a}\left(v_{0} T v_{0}^{-1} \underline{\mathbf{n}} f_{0}\right) \tag{69}
\end{equation*}
$$

which gives $\underline{\mathbf{n}} f_{0}$. Now, replacing $\underline{\mathbf{n}} f_{0}$ by f_{0}, we can obtain f_{0} :

$$
\begin{equation*}
f_{0}=D_{a}\left(v_{0} T v_{0}^{-1} f_{0}\right) \tag{70}
\end{equation*}
$$

or by using $D_{a} v_{0}=0$ (equation (51)), we have

$$
\begin{equation*}
f_{0}=v_{0} D_{a}\left(T v_{0}^{-1} f_{0}\right) \tag{71}
\end{equation*}
$$

To get the explicit form of $f_{0}(\mathbf{x})$ in terms of the imaging data set, we first compute the Teodorescu transform of $v_{0}^{-1} f_{0}$. Thus, by using equation (47), v_{0} is written as

$$
\begin{equation*}
v_{0}(\mathbf{x})=\mathrm{e}^{-T \underline{\mathbf{a}}(\mathbf{x})}=\mathrm{e}^{\frac{1}{4 \pi} \int_{\Omega_{\mathbf{n}}}\left(X a_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathrm{n}}}=\mathrm{e}^{\mathfrak{D} a_{0}(\mathbf{x})} \tag{72}
\end{equation*}
$$

Then, we obtain $\left(T v_{0}^{-1} f_{0}\right)(\mathbf{x})$ by using the same method with which we obtained $(T \underline{\mathbf{a}})$ in equation (47):

$$
\begin{align*}
\left(T v_{0}^{-1} f_{0}\right)(\mathbf{x}) & =\int_{G} \underline{\mathbf{K}}(\mathbf{x}-\mathbf{y})\left(v_{0}^{-1} f_{0}\right)(\mathbf{y}) \mathrm{d} \mathbf{y} \\
& =\frac{1}{4 \pi} \int_{\Omega_{\mathbf{n}}} \underline{\mathbf{n}}\left[X\left(v_{0}^{-1} f_{0}\right)\right](\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}} \tag{73}
\end{align*}
$$

Now, we define the attenuated x-ray transform as follows:

$$
\begin{equation*}
\left(X_{a} f\right)(\mathbf{x}, \mathbf{n}):=\int_{\mathbb{R}^{+}} \mathrm{e}^{-\mathfrak{D} a_{0}(\mathbf{x}+\mathbf{n} t)} f_{0}(\mathbf{x}+\mathbf{n} t) \mathrm{d} t \tag{74}
\end{equation*}
$$

Thus, equation (73) is rewritten as

$$
\begin{equation*}
\left(T v_{0}^{-1} f_{0}\right)(\mathbf{x})=\frac{1}{4 \pi} \int_{\Omega_{\mathbf{n}}} \underline{\mathbf{n}}\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}} . \tag{75}
\end{equation*}
$$

Hence, f_{0} is obtained by
$f_{0}(\mathbf{x})=v_{0} D_{a}\left(T v_{0}^{-1} f_{0}\right)(\mathbf{x})=\frac{1}{4 \pi} \mathrm{e}^{\left(\mathcal{D} a_{0}\right)(\mathbf{x})} D_{a} \int_{\Omega_{\mathbf{n}}} \underline{\mathbf{n}}\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}}$.

As earlier in this paper we have introduced $\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n})$, this is a monogenic (analytic) function on $\Omega_{\mathbf{n}}$; thus, $\left[a_{0}(\mathbf{x})\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n})\right]_{\Omega_{\mathbf{n}}} \rightarrow 0$ as $t \rightarrow 0$. Finally, the reconstruction formula for f_{0} is obtained as

$$
\begin{equation*}
f_{0}(\mathbf{x})=-\frac{1}{4 \pi} \mathrm{e}^{\mathfrak{D} a_{0}(\mathbf{x})} \int_{\Omega_{\mathbf{n}}}\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right)\left(X_{a} f_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}} . \tag{77}
\end{equation*}
$$

Case $\boldsymbol{a}_{\mathbf{0}}=\mathbf{0}$. In the special case where $a_{0}=0, \mathfrak{D} a_{0}=0$. Equation (77) is given as

$$
\begin{equation*}
f_{0}(\mathbf{x})=\frac{1}{4 \pi} \int_{\Omega_{\mathbf{n}}} \mathrm{d} \Omega_{\mathbf{n}}\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right)\left(X f_{0}\right)(\mathbf{x}, \mathbf{n}) \tag{78}
\end{equation*}
$$

where $\left(X f_{0}\right)(\mathbf{x}+\mathbf{n} t)=\int_{0}^{\infty} \mathrm{d} t f_{0}(\mathbf{x}+\mathbf{n} t)$ is the x-ray transform without attenuation. Here the result is the one obtained by [15]. A comparison of the above formula with other results given by [15] is presented in appendix B.

4. Conclusion

In this paper, by using quaternion analysis we have obtained a successful inverse formula for the non-uniform x-ray transform in three dimensions. As we have shown in equation (77) for the case without attenuation $a_{0}=0$ has a different form, but it is essentially equivalent to the result obtained many years ago in previous works.

Appendix A.

In this appendix we compute a solution for equation (51) using real analysis. Equation (51) can be written as

$$
\begin{equation*}
\nabla_{\mathbf{x}} v_{0}+\mathbf{n} a_{0} v_{0}=0 \tag{A.1}
\end{equation*}
$$

Multiplying by \mathbf{n} the left-hand side yields

$$
\begin{equation*}
\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right) v_{0}+a_{0} v_{0}=0 \tag{A.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right) \ln v_{0}=-a_{0} \tag{A.3}
\end{equation*}
$$

where by introducing $\phi_{0}:=\ln v_{0}$ and $\rho_{0}:=-a_{0}$, we have

$$
\begin{equation*}
\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right) \phi_{0}=\rho_{0} . \tag{A.4}
\end{equation*}
$$

The above equation is a stationary transport equation with the source term ρ_{0} and without attenuation. The solution of this equation is known to be given by a divergent x -ray transform of the data $[15,28]$, i.e.

$$
\begin{equation*}
\phi_{0}(\mathbf{x}, \mathbf{n})=\left(X \rho_{0}\right)(\mathbf{x}, \mathbf{n}):=\int_{\mathbb{R}^{+}} \rho_{0}(\mathbf{x}+\mathbf{n} t) \mathrm{d} t \tag{A.5}
\end{equation*}
$$

Now, by replacing ρ_{0} and ϕ_{0} by $\ln v_{0}$ and $-a_{0}$, respectively, we obtain

$$
\begin{equation*}
v_{0}(\mathbf{x}, \mathbf{n})=\mathrm{e}^{-\int_{\mathbb{R}^{+}} a_{0}(\mathbf{x}+\mathbf{n} t) \mathrm{d} t} \tag{A.6}
\end{equation*}
$$

which is the same result as obtained from quaternion analysis. This solution is obtained without restriction on a_{0}. Thus, equation (51) or (A.1) does not impose any restriction on a_{0}.

Appendix B. Comparison of formula (78) with known results [15]

In [3], the inverse formula of the x-ray transform in three dimensions is given by
$f_{0}(\mathbf{x})=-\frac{1}{2 \pi^{2}} \Delta_{\mathbf{x}} \mathfrak{R}^{1} \int_{\Omega_{\mathbf{n}}}\left(X f_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}}=-\frac{1}{2 \pi^{2}} \Delta_{\mathbf{x}} \mathfrak{R}^{1} \int_{\Omega_{\mathbf{n}}} u_{0}(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}}$,
where

$$
\begin{equation*}
\mathfrak{R}^{1} f_{0}(\mathbf{x})=\frac{1}{2 \pi^{2}} \int \frac{1}{|\mathbf{x}-\mathbf{y}|^{2}} f_{0}(\mathbf{y}) \mathrm{d} \mathbf{y} \tag{B.2}
\end{equation*}
$$

Setting $\mathbf{y}=\mathbf{x}+\mathbf{n} t$ in the above equation, we find
$\mathfrak{R}^{1} f_{0}(\mathbf{x})=\frac{1}{2 \pi^{2}} \int_{\Omega_{\mathbf{n}}} \int_{\mathbb{R}^{+}} f_{0}(\mathbf{x}+\mathbf{n} t) \mathrm{d} t \mathrm{~d} \Omega_{\mathbf{n}}=\frac{1}{2 \pi^{2}} \int_{\Omega_{\mathbf{n}}}\left(X f_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}}$.
In equation (B.1) we may define $\frac{1}{4 \pi} \int_{\Omega_{\mathbf{n}}} u_{0}(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}}=\left\langle u_{0}\right\rangle_{\mathbf{n}}$ as the average of u_{0} over a unit ball. Thus, by using the above relation, equation (B.3) can be written as
$f_{0}(\mathbf{x})=-\triangle_{\mathbf{x}} \mathfrak{R}^{1}\left\langle u_{0}\right\rangle_{\mathbf{n}^{\prime}}=-\frac{2}{\pi} \Delta_{\mathbf{x}}\left(X\left\langle u_{0}\right\rangle_{\mathbf{n}}\right)(\mathbf{x})=-\frac{2}{\pi} \int_{\Omega_{\mathbf{n}}} \Delta_{\mathbf{x}}\left(X u_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}}$.
Here we obtain another form for $\Delta_{\mathbf{x}}\left(X_{a} u_{0}\right)$. From equation (39), which expresses \mathbf{f} as $\mathbf{f}=\mathbf{n} \times \nabla_{\mathbf{x}} u_{0}=-\nabla_{\mathbf{x}} \times \mathbf{n} u_{0}$, we deduce that $\nabla_{\mathbf{x}} \cdot \mathbf{f}=0$. Thus,

$$
\begin{equation*}
\nabla_{\mathbf{x}} \cdot\left(\nabla_{\mathbf{x}} \times \mathbf{n} u_{0}\right)=\mathbf{n} \triangle_{\mathbf{x}} u_{0}-\nabla_{\mathbf{x}}\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right) u_{0}=\mathbf{n} \triangle_{\mathbf{x}} u_{0}+\nabla_{\mathbf{x}} f_{0}=0 \tag{B.5}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\Delta_{\mathbf{x}} u_{0}=-\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right) f_{0} . \tag{B.6}
\end{equation*}
$$

Substitution of this expression into equation (B.4) gives an alternative form of the reconstructed f_{0} :

$$
\begin{equation*}
f_{0}(\mathbf{x})=\frac{2}{\pi} \int_{\Omega_{\mathbf{n}}}\left(\mathbf{n} \cdot \nabla_{\mathbf{x}}\right)\left(X f_{0}\right)(\mathbf{x}, \mathbf{n}) \mathrm{d} \Omega_{\mathbf{n}} \tag{B.7}
\end{equation*}
$$

which, up to a normalization factor, has the same form as equation (78).

References

[1] Solmon D C 1976 The x-ray transform J. Math. Anal. Appl. 56 61-83
[2] Smith K T, Solmon D C and Wagner S L 1977 Practical and mathematical aspects of the problem of reconstructing objects from radiographs Bull. Am. Math. Soc. 83 1227-70
[3] Hamaker C, Smith K T, Solmon D C and Wagner S L 1980 The divergent bean X-ray transform Rocky Mt. J. Math. 10 253-83
[4] Helgason S 1999 The Radon Transform (Berlin: Birkhäuser)
[5] Kirillov A A 1961 On a problem of I M Gel’fand Dokl. Akad. Nauk SSSR 137 276-7 Kirillov A A 1961 Sov. Math. Dokl. 2 268-9 (Engl. Transl.)
[6] Tuy H K 1983 An inversion formula for cone-beam reconstruction SIAM J. Appl. Math. 43 546-52
[7] Finch D V 1985 Cone-beam reconstruction with sources on a curve SIAM J. Appl. Math. 45 665-73
[8] Palamodov V P 1991 Inversion formulas for the three-dimensional ray transform Mathematical Problems of Tomography (Lecture Notes in Mathematics vol 1497) ed G T Herman, A K Louis and F Natterer (Berlin: Springer) pp 53-62
[9] Smith B D 1990 Cone-beam tomography: recent advances and a tutorial review Opt. Eng., Bellingham 29 524-34
[10] Grangeat P 1987 Analysis d'un système d'imagerie 3D par réconstruction à partir de X en géométrie conique PhD Thesis Ecole Nationale Supérieure des Télécommunications, Paris
[11] Novikov R G 2002 An inversion formula for the attenuated x-ray transformation Ark. Mat. 40 145-67
[12] Constales D, Gürlebeck K, Krausshar R S and Sprößib W 2006 Application of quaternionic analysis in engineering 17th Int. Conf. on Applications of Computer Science and Mathematics in Architechture and Civil Engineering (Weimar, Germany, 12-14 July 2006) ed K Gürlebeck and C Könke
[13] Davies A J, Foot R, Joshi G C and McKellar B H J 1989 Quaternionic methods in integral transforms of geophysical interest Geophys. J. Int. 99 579-82
[14] Miron S, Guilon M, Le Bihan N and Mars J 2003 Multidimensional signal processing using quaternions Int. Conf. Physics in Signal and Image Processing (Grenoble, France)
[15] Saberi Fathi S M, Truong T T and Nguyen M K 2009 Quaternionic approach to x-ray transform inversion in \mathbb{R}^{3} J. Phys. A: Math. Theor. 42415205
[16] Saberi Fathi S M 2010 The \mathbb{R}^{3} exponential x-ray transform inversion in quaternion analysis J. Phys. A: Math. Gen. 43295203
[17] Sprößig W 1993 On the Treatment of non-linear boundary value problems of a Dirac equation by hypercomplex method Complex Variables 23 123-30
[18] Gürlebeck K and Sprößig W 1997 Quaternioninc and Clifford Calculus for Physicists and Engineers (Chichester: Wiley)
[19] Kravchenko V 2003 Applied Quaternionic Analysis (Lemgo: Heldermann)
[20] Sudbery A 1979 Quaternionic analysis Math. Proc. Camb. Phil. Soc. 85 199-225
[21] Fueter R 1935 Comment. Math. Helv. 7 307-30
[22] Gürlebeck K and Sprößig W 1990 Quaternioninc Analysis Elliptic Boundary Value Problems (Basel: Birkhäuser)
[23] Vu Thi Ngoc Ha 2005 Higher order Teodorescu operators and Cauchy-Pompeiu type formulas Zeitschrift Analysis Anwendungen (J. Anal. Appl.) 24 815-39 (also PhD Thesis FU-Berlin 2006)
[24] Bernstein S 1999 The quaternionic Riemann problem Contemp. Math. 23269
[25] Barrett H H and Swindell W 1981 Radiological Imaging I and II (New York: Academic)
[26] John F 1955 Plane Waves and Spherical Means Applied to Partial Differential Equations (New York: Wiley Interscience)
[27] Hamilton W R 1866 Elements of Quaternions (London: Longmans, Green)
[28] Saberi Fathi S M and Truong T T 2008 On the inverse of the directional derivative operator in \mathbb{R}^{N} J. Phys. A: Math. Theor. 42045203

[^0]: ${ }^{1}$ Quaternions with complex-valued components are called biquaternions and denoted by $\mathbb{H}(\mathbb{C})$.

[^1]: 2 This is not the second-order ultra-hyperbolic partial differential equation of John [26].

