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Abstract
In this paper, we present a new derivation of the inverse of the non-uniformly
attenuated x-ray transform in three dimensions, based on quaternion analysis.
An explicit formula is obtained using a set of three-dimensional x-ray projection
data. The result without attenuation is recovered as a special case.

PACS numbers: 02.30.Jr, 02.30.Uu, 02.30.Zz

1. Introduction

When a radiopharmaceutical emits radiation of photon energy E0, an ideal SPECT camera
records only emitted photons, which arrive perpendicularly to its surface. We are dealing
uniquely with photons of energy E0; thus, we have to solve a simplified photon transport
equation, which may be expressed as

n · (∇u0)(r, n, E0) = −a0(r, E0)u0(r, n, E0) − f0(r, n, E0). (1)

Here u0(r, n, E0) represents the photon flux density in the direction n of energy E0, i.e. number
of photons per unit surface perpendicular to n per second. Recall that a0(r, E0) is the linear
attenuation coefficient or rate of depletion per unit length traversed and finally −f0(r, n, E0)

is the number of photons emitted in the direction n per unit volume matter (of the extended
radiation source). For simplicity, the energy label E0 will be omitted hereafter.

The aim is to solve this partial differential equation with an isotropic source term f0(r):

n · (∇u0)(r, n) = −a0(r)u0(r, n) − f0(r), (2)

where the unknown photon flux density is u0(r, n). Reconstructing f0 from the data u0(x, n)

is the main problem posed here.
In three dimensions without attenuation, the solution is represented by the ‘x-ray

cone beam’, without restriction on the set of source points x. This has been worked out

1751-8113/10/335202+12$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/33/335202
mailto:majid.saberi@u-cergy.fr
http://stacks.iop.org/JPhysA/43/335202


J. Phys. A: Math. Theor. 43 (2010) 335202 S M Saberi Fathi

mathematically in [1–4]. The reconstruction formula contains the average of the x-ray data
on the unit sphere of R

3. The case of point sources lying on a space curve is given by [5–8].
Finally, among the large amount of indirect inversion procedures, the most well known for
efficiency and appeal are those by Smith, who developed a technique that converts divergent
beam data into parallel beam data and used its known inversion procedure [9] and by Grangeat,
who made a conversion of x-ray data into three-dimensional Radon data before using Radon
inversion [10].

Reconstructing f0 from equation (2) in two dimensions has been worked out by Novikov
[11]. In this paper, we show that the use of quaternion analysis leads to a new inversion
formula for the non-uniformly attenuated x-ray transform in R

3. Quaternions are higher
dimensional generalization of complex numbers. Although not widely used, they provide
elegant compact local formulation for electromagnetism, solid mechanics and some other
fields in engineering [12]. Recently, quaternions have been used in integral transforms, for
example, in geophysical processes [13] or in signal processing [14]. In imaging science, [15]
gets an inversion formula for the x-ray transform without attenuation. In another work [16],
the inversion of exponential x-ray transform is given. The generalization of these works for
the non-uniform attenuation is the subject of this paper. As we see later, this generalization
is not trivial, because the fundamental solution of the Dirac operator with the non-uniform
function (D + a(x)) in quaternion analysis has been studied only for an approximate vector
potential of the form [17]{

x − x(i)

x − x(i)|3 , i = 1, 2, . . .

}
. (3)

This is not realistic in practical applications. However, the case of constant ‘a = constant’ has
been studied in [18, 19].

In the next section, we introduce some useful notions on the algebra of real quaternions H

and collect the main results of quaternion analysis needed for our problem. Section 3 describes
the derivation of the inversion formula giving the reconstructed function in terms of the x-ray
data, and we give an interpretation of this new result. This paper ends with a conclusion and
some perspectives to invert the x-ray transform in the presence of other effects.

2. Quaternions

Let x = (x1, x2, x3) be an element of R
3, expressed in an orthonormal basis formed by three

unit vectors ı1, ı2 and ı3 by x = ∑3
m=1 xmım. The conventional vector space structure is

given by a scalar (inner) product rule for the basis unit vectors, i.e. (ın · ım) = δmn and by a
vector (cross) product, i.e. ı1 × ı2 = ı3 with its cyclic permutations and the non-commutativity
ım × ın = −ım × ın.

To this structure, one can add a new one

• by promoting the unit vectors to be imaginary units, i.e. ı1
2 = ı2

2 = ı3
2 = −1 and

• by introducing a non-commutative multiplication rule between them: ıi ıj = − ıj ıi for
i �= j and ıi ıj = ık for all cyclic permutations of (i, j, k).

Then to each x = ∑3
m=1 xmım, as a three-dimensional vector, corresponds a new object

x (also called Vec x by some authors), which has the same formal expression but with ım
following the new multiplication rule. Consequently, the identification

x ∈ R
3 �→ x =

3∑
m=1

xmım (4)

2
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is an isomorphism of R
3 onto the set of ‘vector parts’ {Vec} of more general objects called

quaternions by Hamilton [27].
In fact, a quaternion x has four components, i.e. besides its imaginary vector part, there

is also a scalar part Sc x = x0ı0, where ı0 is the real (or non-imaginary) unit part (usually
identified with the real unit 1 = ı0 ∈ R) and x0 ∈ R, such that

x = x0ı0 +
3∑

m=1

xmım = Sc x + Vec x = x0ı0 + x, (x0, x1, x2, x3 ∈ R). (5)

The set of quaternions with real components should be called H(R),1 but for simplicity, will
be denoted by H .

Following [20], we give some of their properties:

conjugate operation: x = x0ı0 −
3∑

m=1

xmım, (6)

square norm: |x|2 = xx = xx = x2
0 + x2

1 + x2
2 + x2

3 , (7)

inverse: x−1 = x

|x|2 if and only if xx �= 0. (8)

Finally, the ordered product of two quaternions y = y0ı0 + y and x = x0ı0 + x is a
quaternion w = yx = (Sc w + Vec w), where

w0 = Sc w = y0x0 − (y · x) and w = Vec w = yx0 + y0x + y × x. (9)

In particular, i.e. the ordered product of y by x is

y x = −y · x + y × x. (10)

For our purposes, we do not require the full machinery of quaternionic analyticity as
developed by Fueter and others [20, 21]. Here we are only concerned with analytic properties
useful for imaging processes in R

3 modeled by the x-ray transform. They are essentially
extracted from [18, 22]:

D =
3∑

j=1

ıj
∂

∂xj

. (11)

The quaternionic operator D has been given different names according to authors: Dirac
operator for [18], three-dimensional Cauchy–Riemann operator for [12], Moisil–Teodorescu
differential operator for [23], etc.

Inspection shows that it is related to the three-dimensional Laplace operator by � = −D2.
The solutions of Df (x) = 0, called frequently left-monogenic H-valued functions, satisfy
many generalizations of classical theorems from complex analysis to higher dimensional
context [22]. Given the elementary solution of the Laplace operator, �E(x) = −D2E(x) =
δ(x), as

E(x) = 1

4π |x| , (12)

the elementary solution of D can be worked out as [18]

K(x) =
3∑

j=1

Kj(x)ıj = − x
4π |x|3 , x �= 0, (13)

1 Quaternions with complex-valued components are called biquaternions and denoted by H(C).
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where

Kj(x) = − xj

4π |x|3 (j = 1, 2, 3). (14)

Note that K(x) is a H-valued fundamental solution of D and therefore monogenic in G\{0}
where G ⊂ R

3.
Now, we write the generalized Leibniz formula in quaternions [18]:

D(uw) = uDw + (Du)w + 2Sc(uD)w, u,w ∈ H(R4), (15)

where H(R4) is the set of u and v, which are H-valued functions with the domain in R
4.

Consequently, there exists a three-dimensional Cauchy integral representation for
continuous left-monogenic H-valued functions on G [22],

(Ff )(x) :=
∫

�

K(x − y)α(y)f (y) d�y, x ∈ G\�, (16)

where α(y) = ∑3
j=1 αj (y)ıj is the quaternionic outward pointing unit vector at y on the

boundary ∂G = �, d�y is the Lebesgue measure on �. Moreover one has D (F�f )(x) = 0.
The operator D has a right inverse, called the Teodorescu transform [24]. It is defined for

all f (x) ∈ C(G, H) by

(Tf )(x) :=
∫

G

K(x − y) f (y) dy x ∈ G ⊂ R
3. (17)

Roughly speaking, D is a kind of directional derivative and T is just the integration, the right
inverse of this directional derivative.

Conversely, for any f (x) ∈ C1(G, H) ∩ C(G, H), it can be shown that it satisfies the
so-called Borel–Pompeiu formula [18]

(Ff )(x) + (T D)f (x) =
{
f (x), x ∈ G

0, x ∈ R
3\G.

(18)

A generalization of the concept of Cauchy principal value for (Ff )(x) can be introduced
when the variable x is approaching the boundary ∂G = �. For a given f , at each regular point
x′ ∈ � [18], the non-tangential limit of the Cauchy integral representation can be written as

lim
x→x′

(Ff )(x) = 1
2 (±f (x′) + (Sf )(x′)), (19)

where

(Sf )(x) = 2
∫

�

K(x − y) α(y) f (y) d�y (20)

is understood as a ‘quaternionic Cauchy principal value’ of the integral over the smooth
boundary � because of the singularity of K(x) in the integrand.

A Plemelj–Sokhotzkij-type formula for f , relative to �, [22, 24] can now be given as

(i) lim
x−−−→x ∈ G

x′∈�
(Ff )(x) = (Pf )(x′), (ii) lim

x−−−−−−→
x ∈ R

3\G
x′∈�

(Ff )(x) = −(Qf )(x′),

(21)

where P is the projection operator (P 2 = P) onto H-valued functions, which have a left-
monogenic extension into the domain G, and Q is the projection operator (Q2 = Q) onto
H-valued functions, which have a left-monogenic extension into the domain R

3\G and vanish
at infinity.

P and Q can be given, in turn, an alternative form in terms of the quaternionic principal
value operator S as

P := 1
2 (I + S) Q := 1

2 (I − S), (22)
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with the following operator relations

SP = P, SQ = −Q, S2 = SS = I. (23)

Finally, we define a trace operator tr as a restriction map for an H-valued function f on
�, smooth boundary of G ∈ R

3, by

tr f = f |�. (24)

Notation. Here we review our notation in this paper. Only ‘bold’ letters are used for vectors
or vector functions in R

3, such as x or f(x). The index ‘zero’ indicates the scalar part of a
quaternion or quaternion function, e.g. x0 or a0(x). Underlined bold letters are used for the
vector part of the quaternions or quaternion functions, e.g. x or f(x). Operators with index ‘a’
are the operators with attenuation, e.g. Ta,Xa .

3. The x-ray transform and its inverse

We are now in a position to tackle the inversion problem for the non-uniform attenuated x-ray
transform of a physical density f0(x). By definition, this transform consists of integrating
f0(x), assumed to be an integrable function with compact support in a convex set G, along a
straight line from the source point x to infinity in the direction of the unit vector n, i.e.

(Xaf0)(x, n) =
∫ ∞

0
dt e−Da0(x)t f0(x + tn), (25)

where

Da0(x) = − 1

4π

∫
�n

(Xa0)(x, n) d�n, (26)

where d�n is the area element of the unit sphere �n in R
3 and (Xa0) is the x-ray transform

(Xa0)(x, n) =
∫ ∞

0
dt a0(x + nt). (27)

In transmission modality, f0 represents the attenuation map of the object under study, whereas
in emission modality f0 is its radiation activity density.

The next point is that if f0(∞) = 0, it can be verified that (Xaf0)(x, n) satisfies a very
simple partial differential equation, namely

(n · ∇x + a0(x)) (Xaf0)(x, n) = −f0(x). (28)

This can be checked if we let the (n · ∇x + a0(x)) operator act under the integral sign. After
a change of variables, the integrand just turns into the differential of f0(x) under the integral
sign. Equation (28) is in fact a simplified stationary photon transport equation with loss by
attenuation function a0(x) and without source or sink term [25]. Since (n · ∇x + a0(x)) is
a directional derivative plus the attenuated term, clearly its inverse is an integration2. The
solution of this partial differential equation is subjected to the following boundary condition.
For a given direction n, because of the support hypothesis and because of the prescription on
the direction of integration, (Xaf0)(x, n) = 0, whenever x is on the boundary � = ∂G of G
and n points outward of �.

To obtain the solution of the above equation by using real analysis, we write the solution
of the homogenous form of equation (28), i.e.

(n · ∇x + a0(x))v0(x, n) = 0 (29)

2 This is not the second-order ultra-hyperbolic partial differential equation of John [26].
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from which v0(x, n) is obtained as

v0(x, n) = e− ∫
R3 G̃0(x−y,n)a0(y)dy, y ∈ R

3, (30)

where G̃0(x − y, n) is the Green’s function of the (n · ∇x) operator.
At this point, we define u0(x, n) in (28) as

u0(x, n) = C0(x)v0(x, n). (31)

By substituting u0(x, n) into equation (28), we have

C0(x) =
∫

R3
G̃0(x − y, n)v−1

0 (y, n)f0(y) dy, (32)

and

u0(x, n) = −
∫

R3
R0(x, y, n)f0(y) dy, (33)

where

R0(x, y, n) = v0(x, n)G̃0(x − y, n)v−1
0 (y, n). (34)

We will use a similar method in the quaternion analysis to obtain an inversion solution for
equation (28).

3.1. Quaternion solution

By considering n independent of x, we can rewrite equation (28) in the following form:

n · (∇ + a)u0(x) = −f0(x), (35)

where we define a := a0n.
We would like to use the machinery of quaternion analysis to obtain the inversion of

the three-dimensional x-ray transform. The idea is to consider equation (28) as part of an
inhomogeneous equation (11), with an H-valued ‘source’ function f = f0(x) + f(x) on its
right-hand side for an unknown scalar function u0(x). As can be checked, the quaternionic
product rule (9) yields

nDau0(x) = f (x), (36)

where Da is defined as follows:

Da = D + a. (37)

Explicitly equation (36) has the following form:

nDau0(x) = −n · (∇x + a(x))u0(x) + n × (∇x + a(x))u0(x) = f0(x) + f(x), (38)

which leads to a set of two equations for u0:

(n · ∇x + a0(x))u0(x) = −f0(x)

(n × ∇x)u0(x) = f(x),
(39)

the first one being exactly the one of the x-ray transform. By solving equation (39), we can
obtain the solution of equation (39) as a by product, for given f0(x), first. Then, f(x) can be
computed from the curl term and the gradient term of the solution.

From (39) the case f = (n × ∇x)u0 = 0 means that the areolar derivative of u0 is equal to
zero. In the other words, the derivative of u0 on the plane perpendicular to n is equal to zero,
or u0 is constant on the plane perpendicular to n.

Considering f = 0, equation (36) becomes

nDau0(x) = f0(x), x ∈ G, (40)

6
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in which we can easily see that the above equation is the transport equation (28) in the
quaternion formalism.

Now, by multiplying equation (40) by −n from the left-hand side we have

Dau0(x, n) = −nf0(x), (41)

where we used ‘nn = −1’.
We choose the Dirichlet boundary condition for equation (41), i.e. the boundary value of

u0 on the smooth boundary surface of � is equal to w0 which is a monogenic function. Hence,
we have

Dau0(x) = −nf0(x), x ∈ G (42)

u0(x)|� = w0(x), (43)

where w0 is a scalar function.
Before obtaining the solution of the above equation, we derive an explicit form of T a:

(T a)(x) =
∫

G

K(x − y)a(y) dy

= 1

4π

∫
G

x − y

|x − y|3 a(y) dy = 1

4π

3∑
i,j=1

∫
G

xi − yi

|x − y|3 aj (y) dyıi ıj . (44)

The photon transport in the n direction of the x-ray source located at x required that y = x+nt ,
where t ∈ R

+. Consequently, the volume element dy in spherical coordinates becomes
dy = t2dt d�n, where d�n is the area element of the unit sphere �n in R

3. Then, we have

(T a)(x) = 1

4π

∫
�n

∫
R+

nt

|nt |3 na0(x + nt)t2 d�n dt

= − 1

4π

∫
�m

(∫
R+

a0(x + nt) dt

)
d�n, (45)

where we have a = na0 and nn = −1. Now, we use the definition of the x-ray transform of
component fβ :

Xa0(x, n) :=
∫

R+
a0(x + nt) dt. (46)

Then, we have

Da0(x) := (T a)(x) = − 1

4π

∫
�n

(Xa0)(x, n) d�n. (47)

Here we showed that the (T a) = (T na0) is a scalar function. Thus, the following theorem
gives the solution u0 of the above equation when (T a) is a scalar function. This is sufficient
to solve our problem.

Theorem. Assuming that (T a) = Sc(T a) = (T a)0, and for f0 and u0, v0 differentiable or
weakly differentiable functions in a normed space with domain in G ⊂ R

3, the solution of
equation (42) is given by

v0 = e−T a (48)

u0 = −(Tanf0) + Faw0, (49)

where Tanf0 = v0T v−1
0 nf0 and Faw0 = v0Fv−1

0 w0. With the condition

Qaw0 = −tr
(
v0T v−1

0 nf0
)
, (50)

7
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where Qaw0 = v0Qv−1
0 the above condition follows from Plemelj–Sokhotzkij’s formula. This

means that there exists an extension onto the domain R
3\G.

Proof. v0 is the solution of the following homogenous equation:

Dav0 = (D + a)v0 = Dv0 + av0 = 0, (51)

where the solution of the above equation is equal to

v0 = e−T a. (52)

In appendix A, we solve equation (51) using real analysis. We can verify the above
solution by substituting expression (52) into equation (51):

D e−T a + av0 = −(DT a) e−T a + av0 = −(DT a)v0 + av0 = −av0 + av0 = 0, (53)

where we used the fact that DT v0 = v0 in G, which means that T is the right inverse of D
[22]. Now, we introduce the general solution of (42) as u

(g)

0 := v0C0, where C0 is a function
with domain in G ⊂ R

3 and tr C0 = 0. We replace it in equation (42). Thus, we have

D(v0C0) + av0C0 = −nf0. (54)

Finally,

D(v0C0) = v0DC0 + (Dv0)C0 = v0DC0 − av0C0 = −nf0. (55)

Consequently, (54) gives

v0DC0 = −nf0. (56)

By acting v−1
0 on the above equation we obtain

DC0 = −v−1
0 nf0. (57)

Now, taking into account that ‘tr C0 = 0’ (which means that ‘FC0 = 0’), C0 has the following
form:

C0 = −T v−1
0 nf0. (58)

In a similar way where it was shown before that (T a) = (T na0) is a scalar function, one can
show that (T v0nf0) is a scalar function. Finally, u

(g)

0 is equal to

u
(g)

0 = v0C0 = −v0T v−1
0 nf0 = −Ta nf0. (59)

The proper solution u
(p)

0 of equation (42) which takes the value u0 on the boundary,
i.e. equation (43) is

tr u0 = tr u
(g)

0 + tr u
(p)

0 = −tr
(
v0T v−1

0 nf0
)

+ tr u
(p)

0 . (60)

Using condition (50), we obtain

tr u0 = Qaw0 + tr u
(p)

0 = w0. (61)

Consequently,

tr u
(p)

0 = (I − Qa)w0 = v0(I − Q)v−1
0 w0 = v0Pv−1

0 w0 = Paw0, (62)

where Pa = v0Pv−1
0 . Thus, from the definition of Pw0 = tr (Fw0) [18], u

(p)

0 is equal to

u
(p)

0 = v0Fv−1
0 w0 = Faw0. (63)

Finally, by considering u
(g)

0 and u
(p)

0 , u0 = u
(g)

0 + u
(p)

0 is obtained by equation (49). We verify
our solution by acting Da on equation (42). Then, we have

Dau0 = −Dav0T v−1
0 nf0 + Da(Faw0) = −v0DaT v−1

0 nf0 + (Dav0)T v−1
0 nf0, (64)

where we used the generalized Leibniz formula (15) and

8
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D(Faw) = Dv0Fv−1
0 w0 = (Dv0)Fv−1

0 w0 + v0DFv−1
0 w0 = −aFv−1

0 w0 + 0, (65)

where we use DFv−1
0 w0 = 0, which means that (Fv−1

0 w0) is a monogenic function [22].
Thus, as a result, we can conclude that DaFaw0 = 0.

Thus, equation (64) is obtained as

Dau0 = −v0v
−1
0 nf0 − v0 aT v−1

0 nf0 + (v0 a)T v−1
0 nf0 = −nf0, (66)

where in the first term on the right-hand side we used DT u0 = u0.
Now, we check the solution at the boundary condition (43). Thus, by substituting u0 from

(48) into (43), we obtain

w0 = −tr(v0T v−1nf0 + Faw0)

= −tr
(
v0T v−1

0 nf0
)

+ tr(Faw0) = −tr
(
v0T v−1

0 nf0
)

+ Paw0, (67)

where in the last equation we use: tr(Faw0) = (Faw0)� = Paw0. Then, (67) yields

−tr(v0T v−1
0 nf0) = (I − Pa)w0 = Qaw0. (68)

�

3.2. The x-ray representation

Now, we reconstruct f0 by using equation (49). As shown in (66), ‘Dau0 = Da

(−v0T v−1
0 nf0 +

Faw0
) = −nf0’; thus,

nf0 = Da

(
v0T v−1

0 nf0
)

(69)

which gives nf0. Now, replacing nf0 by f0, we can obtain f0:

f0 = Da

(
v0T v−1

0 f0
)
, (70)

or by using Dav0 = 0 (equation (51)), we have

f0 = v0Da

(
T v−1

0 f0
)
. (71)

To get the explicit form of f0(x) in terms of the imaging data set, we first compute the
Teodorescu transform of v−1

0 f0. Thus, by using equation (47), v0 is written as

v0(x) = e−T a(x) = e
1

4π

∫
�n

(Xa0)(x,n)d�n = eDa0(x). (72)

Then, we obtain (T v−1
0 f0)(x) by using the same method with which we obtained (T a) in

equation (47): (
T v−1

0 f0
)
(x) =

∫
G

K(x − y)
(
v−1

0 f0
)
(y) dy

= 1

4π

∫
�n

n
[
X

(
v−1

0 f0
)]

(x, n) d�n. (73)

Now, we define the attenuated x-ray transform as follows:

(Xaf )(x, n) :=
∫

R+
e−Da0(x+nt)f0(x + nt) dt. (74)

Thus, equation (73) is rewritten as(
T v−1

0 f0
)
(x) = 1

4π

∫
�n

n (Xaf0)(x, n)d�n. (75)

Hence, f0 is obtained by

f0(x) = v0Da

(
T v−1

0 f0
)
(x) = 1

4π
e(Da0)(x) Da

∫
�n

n (Xaf0)(x, n) d�n. (76)

9
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As earlier in this paper we have introduced (Xaf0)(x, n), this is a monogenic (analytic)
function on �n; thus, [a0(x)(Xaf0)(x, n)]�n

→ 0 as t → 0. Finally, the reconstruction
formula for f0 is obtained as

f0(x) = − 1

4π
eDa0(x)

∫
�n

(n · ∇x) (Xaf0)(x, n) d�n. (77)

Case a0 = 0. In the special case where a0 = 0, Da0 = 0. Equation (77) is given as

f0(x) = 1

4π

∫
�n

d�n (n · ∇x)(Xf0)(x, n), (78)

where (Xf0)(x + nt) = ∫ ∞
0 dtf0(x + nt) is the x-ray transform without attenuation. Here the

result is the one obtained by [15]. A comparison of the above formula with other results given
by [15] is presented in appendix B.

4. Conclusion

In this paper, by using quaternion analysis we have obtained a successful inverse formula for
the non-uniform x-ray transform in three dimensions. As we have shown in equation (77) for
the case without attenuation a0 = 0 has a different form, but it is essentially equivalent to the
result obtained many years ago in previous works.

Appendix A.

In this appendix we compute a solution for equation (51) using real analysis. Equation (51)
can be written as

∇xv0 + na0v0 = 0. (A.1)

Multiplying by n the left-hand side yields

(n · ∇x)v0 + a0v0 = 0, (A.2)

or

(n · ∇x) ln v0 = −a0, (A.3)

where by introducing φ0 := ln v0 and ρ0 := −a0, we have

(n · ∇x)φ0 = ρ0. (A.4)

The above equation is a stationary transport equation with the source term ρ0 and without
attenuation. The solution of this equation is known to be given by a divergent x-ray transform
of the data [15, 28], i.e.

φ0(x, n) = (Xρ0)(x, n) :=
∫

R+
ρ0(x + nt) dt. (A.5)

Now, by replacing ρ0 and φ0 by ln v0 and −a0, respectively, we obtain

v0(x, n) = e− ∫
R+ a0(x+nt)dt , (A.6)

which is the same result as obtained from quaternion analysis. This solution is obtained
without restriction on a0. Thus, equation (51) or (A.1) does not impose any restriction on a0.

10
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Appendix B. Comparison of formula (78) with known results [15]

In [3], the inverse formula of the x-ray transform in three dimensions is given by

f0(x) = − 1

2π2
�xR

1
∫

�n

(Xf0)(x, n) d�n = − 1

2π2
�xR

1
∫

�n

u0(x, n) d�n, (B.1)

where

R1f0(x) = 1

2π2

∫
1

|x − y|2 f0(y) dy. (B.2)

Setting y = x + nt in the above equation, we find

R1f0(x) = 1

2π2

∫
�n

∫
R+

f0(x + nt) dt d�n = 1

2π2

∫
�n

(Xf0)(x, n) d�n. (B.3)

In equation (B.1) we may define 1
4π

∫
�n

u0(x, n) d�n =〈u0〉n as the average of u0 over a unit
ball. Thus, by using the above relation, equation (B.3) can be written as

f0(x) = −�xR
1〈u0〉n′ = − 2

π
�x(X〈u0〉n)(x) = − 2

π

∫
�n

�x(Xu0)(x, n) d�n. (B.4)

Here we obtain another form for �x(Xau0). From equation (39), which expresses f as
f = n × ∇xu0 = −∇x × nu0, we deduce that ∇x · f = 0. Thus,

∇x · (∇x × nu0) = n�xu0 − ∇x(n · ∇x)u0 = n�xu0 + ∇xf0 = 0, (B.5)

which yields

�xu0 = −(n · ∇x)f0. (B.6)

Substitution of this expression into equation (B.4) gives an alternative form of the reconstructed
f0:

f0(x) = 2

π

∫
�n

(n · ∇x)(Xf0)(x, n) d�n, (B.7)

which, up to a normalization factor, has the same form as equation (78).
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