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Abstract
In this paper, we present a new derivation of the inverse of the exponential x-ray
transform in the three dimensions, based on quaternion analysis. An explicit
formula is obtained using a set of three-dimensional x-ray projection data. The
result without attenuation is recovered as a special case.

PACS numbers: 02.30.Jr, 02.30.Uu, 02.30.Zz

1. Introduction

The exponential x-ray transform in R
3 is an integral transform on the space of integrable

functions in R
3, which serves as mathematical basis for a three-dimensional imaging process

and may be viewed as a single-photon emission computed tomography (SPECT) imaging and
also in intensity modulated radiation therapy [1]. In three-dimensional SPECT, it provides a
way to perform accurate attenuation correction without transmission measurements [2].

To ‘see’ the inside of an object, it is necessary to probe its hidden three-dimensional
structure by a physical agent. One way to achieve this goal is to use an external source of x-ray
to illuminate the studied object and measure the transmitted x-ray intensity along all possible
directions in space. Given a calibrated x-ray source, this measurement gives the integrated
attenuation map f0(x) of traversing ionizing radiation along straight line paths through this
object. The set of such line integrals represents a mapping: f0 �→ (Xaf0)(x, n) called the
exponential x-ray transform of f0. Here, x ∈ R

3 is the x-ray source position and n is a unit
vector of the direction of the straight line, at the end of which a measurement is performed.
Thus, (Xaf0)(x, n) depends on five apparent variables but only four variables (two for n
and two for the position of the line in a plane containing the coordinate system origin and
orthogonal to n) are independent. Reconstructing f0 from the data (Xaf0)(x, n) is the main
problem to be solved.

The solution, without restriction on the set of source points x, has been worked out
mathematically in [3–6]. The reconstruction formula involves the average of the x-ray data on
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the unit sphere of R
3, centered at a site in space. The case of point sources lying on a space

curve is given by [7–10]. Finally, among the large amount of indirect inversion procedures, the
most well known for efficiency and appeal are those of Smith, who developed a technique that
converts divergent beam data into parallel beam data and used its known inversion procedure
[11], and of Grangeat, who made a conversion of x-ray data into three-dimensional radon
data before using radon inversion [12]. The inversion of exponential radon transform in
two dimension is discussed by [13, 14]. Approximated inversion for the exponential x-ray
transform in R

N is obtained by [15].
In this work, we show that the use of quaternion analysis leads to a new inversion

formula for the exponential x-ray transform in R
3. Quaternions are higher dimensional

generalization of complex numbers. Although not widely used, they provide elegant compact
local formulation for electromagnetism [16], solid mechanics and some other fields in
engineering [17]. Recently, quaternions have been used in integral transforms, for example in
geophysical processes [19] or in signal processing [18]. Recently, in [20] the quaternions are
used to obtain an inversion formula for the x-ray transform. In this paper we generalized the
method presented in [20] to get an inversion formula for the exponential x-ray transform.

In the next section, we introduce some useful notions on the algebra of the real quaternions
H and collect the main results of quaternion analysis needed for our problem. Section 3
describes the derivation of the inversion formula giving the reconstructed function in terms of
the x-ray data. This paper ends with a conclusion and sketches the perspectives for inverting
a more general case of x-ray transforms in R

3.

2. Preliminary

Quaternions were invented by Hamilton in the first half of the 19th century, when he looked
for a three-dimensional generalization of complex numbers [21]. But, this theory did not
generate widespread interest until nearly a century after it was discovered. Subsequently,
Fueter introduced the notion of ‘regular’ quaternionic functions as functions satisfying an
analog of the Cauchy–Riemann equations. With this new concept, he is led to Cauchy’s
theorem, Cauchy’s integral formula and Laurent expansion for analytic functions [22]. A
comprehensive review of quaternions can be found in [23].

Let x = (x1, x2, x3) be an element of R
3, expressed in an orthonormal basis formed by

three unit vectors ı1, ı2 and ı3 by x = ∑3
m=1 xmım. The conventional vector space structure is

given by a scalar (inner) product rule for the basis unit vectors, i.e. (ın · ım) = δmn and by a
vector (cross) product, i.e. ı1 × ı2 = ı3 with its cyclic permutations and the non-commutativity
ım × ın = −ım × ın.

To this structure, one can add a new one

• by promoting the unit vectors to be imaginary units, i.e. ı1
2 = ı2

2 = ı3
2 = −1,

• by introducing a non-commutative multiplication rule between them: ıi ıj = − ıj ıi for
i �= j and ıi ıj = ık for all cyclic permutations of (i, j, k).

Then to each x = ∑3
m=1 xmım, as a three-dimensional vector, corresponds a new object x (also

called Vec x by some authors), which has the same formal expression but with ım following
the new multiplication rule. Consequently, the identification

x ∈ R
3 �→ x =

3∑
m=1

xmım (1)

is an isomorphism of R
3 onto the set of ‘vector parts’ {Vec} of more general objects called

quaternions by Hamilton.
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In fact, a quaternion x has four components, i.e. besides its imaginary vector part, there
is also a scalar part Sc x = x0ı0, where ı0 is the real (or non-imaginary) unit part (usually
identified with the real unit 1 = ı0 ∈ R) and x0 ∈ R, such that

x = x0ı0 +
3∑

m=1

xmım = Sc x + Vec x = x0ı0 + x, (x0, x1, x2, x3 ∈ R). (2)

The set of quaternions with real components should be called H(R),1 but for simplicity, will
be denoted by H.

Following [23], we give some of their properties:

conjugate operation: x = x0ı0 −
3∑

m=1

xmım, (3)

square norm: |x|2 = xx = xx = x2
0 + x2

1 + x2
2 + x2

3 , (4)

inverse: x−1 = x

|x|2 if and only if xx �= 0. (5)

Finally, the ordered product of the two quaternions y = y0ı0 + y and x = x0ı0 + x is a
quaternion w = yx = (Sc w + Vec w), where

w0 = Sc w = y0x0 − (y · x) and w = Vec w = yx0 + y0x + y × x. (6)

In particular, i.e. the ordered product of y by x is

y x = −y · x + y × x. (7)

2.1. Dirac operator D

For our purposes, we do not need the full machinery of quaternionic analyticity as developed
by Fueter and others [22, 23]. Here we are only concerned by analytic properties useful for
imaging processes in R

3 modeled by the x-ray transform. They are essentially extracted from
[24, 25]:

D =
3∑

m=1

ım
∂

∂xi

. (8)

The quaternionic operator D has been given different names according to authors: Dirac
operator for [25], three-dimensional Cauchy–Riemann operator for [17], Moisil–Teodorescu
differential operator for [26], etc2.

Inspection shows that it is related to the three-dimensional Laplace operator by � =
−D2. The solutions of Df (x) = 0, frequently called left monogenic H-valued
functions, satisfy many generalizations of classical theorems from complex analysis to
higher dimensional context [24]. Given the elementary solution of the Laplace operator
�E(x) = −D2E(x) = δ(x), as

E(x) = − 1

4π |x| (9)

1 Quaternions with complex-valued components are called biquaternions and denoted by H(C).
2 There is another right Dr, which can be defined with the ım on the right side of the partial derivatives of f. We shall
not need it here.
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the elementary solution of D can be worked out as [25]

K(x) =
3∑

m=1

Km(x)ım = − x
4π |x|3 , x �= 0, (10)

where

Km(x) = − xm

4π |x|3 , (m = 1, 2, 3). (11)

Note that K(x) is a H-valued fundamental solution of D and therefore monogenic in G\{0}.

2.2. New operator Da

Here we define the operator Da as

Da := D + a (12)

where a is a pure quaternion vector part constant. Its fundamental solution is given
by [16, 24]

Ka(x) = −e−a·x x
4π |x|3 , x �= 0. (13)

Consequently, there exists a three-dimensional Cauchy integral representation for
continuous left monogenic H-valued functions on G [24]:

(Faf )(x) :=
∫

�

Ka(x − y)α(y)f (y) d�y, x ∈ G\�, (14)

where α(y) = ∑3
m=1 αm(y)ım is the quaternionic outward pointing unit vector at y on

the boundary ∂G = �, and d�y is the Lebesgue measure on �. Moreover one has
Da(Faf )(x) = 0.

The operator Da has an inverse, called the Teodorescu transform [27]. It is defined for all
f (x) ∈ C(G, H) by

(Taf )(x) :=
∫

G

Ka(x − y)f (y) dy x ∈ G ⊂ R
3. (15)

Roughly speaking, Da is a kind of directional derivative and Ta is just the integration, the
inverse of this directional derivative.

Conversely, for any f (x) ∈ C1(G, H) ∩ C(G, H), it can be shown that it satisfies the
so-called Borel–Pompeiu formula [25]:

(Faf )(x) + (Ta Da)f (x) =
{
f (x), x ∈ G

0, x ∈ R
3\G.

(16)

Notation. Here we review our notation in this paper. Only ‘bold’ letters are used for vectors
or vector functions in R

3, such as x or f(x). The index ‘zero’ indicates the scalar part of a
quaternion or quaternion function, e.g. x0 or a0(x). Underlined bold letters are used for the
vector part of the quaternions or quaternion functions, e.g. x or f(x). Operators with index ‘a’
are operators with attenuation, e.g. Ta,Xa .

3. The exponential x-ray transform and its inverse

3.1. Single-photon emission imaging

In this imaging modality, one deals with a radiating object characterized by a non-uniform
activity distribution density having a compact support in a closed set G with smooth boundary

4
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∂G = �. Data are collected outside G by a planar-collimated detector, which registers the
received photon flux density at a detector site. However emitted photon flux from a site
would travel through out the object and get attenuated along the traveling path before being
detected. To account for this photon depletion due to scattering and absorption, one introduces
a phenomenological constant linear attenuation coefficient a0 to describe the traversed medium.
Let the object activity density be f0(x), a real value, of compact support and integrable function
in R

3. The detected photon flux density in the direction of unit vector n ∈ S
2, which is the

entering direction of the collimator hole of the detector, is given by the following integral, or
exponential x-ray transform of f0(x):

(Xaf0)(x, n) =
∫ ∞

0
dt e−a0t f0(x + tn), (17)

where x ∈ � such that n points to the inside of G. Integral (17) represents the sum of the
activity density flux detected from a set of points on a line starting from x in the direction of
an inward n. The exponential factor describes the loss by medium absorption along this line
as one moves nearer to the detection site.

We observe that (Xaf0)(x, n) satisfies a very simple partial differential equation, namely3

(n · ∇x + a0) (Xaf0)(x, n) = −f0(x). (18)

This can be checked if we let the (n ·∇x +a0) operator act under the integral sign. After adding
and subtracting terms, the non-trivial integrand just turns into the differential of e−a0t f0(x)

under the integral sign. As the radiating object is of finite extent, we have necessarily
f0(|x| → ∞) = 0 and equation (18) is straightforwardly obtained. This is in fact a simplified
stationary photon transport equation with constant attenuation and without a source or sink
term [30]. By construction, the solution of this partial differential equation is subjected to the
following boundary condition. For a given direction n, because of the support hypothesis and
because of the prescription on the direction of integration, (Xaf0)(x, n) = 0, whenever x is
on the boundary � = ∂G of G and n points outward of �.

As n does not depend on x, we can rewrite the above equation (18) in the following form:

n · (∇ + a) u0(x, n) = −f0(x), (19)

where a := a0n and u0 = (Xaf0).
In two dimensions, in order to gain more insight into the nature of this equation, it

is convenient to go to a complex version of the equation, by analytically continuing some
parameter into the complex plane. But in three dimensions, it seems that the quaternion
formalism is more appropriate. The question is how one can recast equation (19) in a
quaternionic framework.

To this end, we consider the following equation:

nDau0(x) = f (x), x ∈ G, (20)

where f (x) = f0(x) + f(x) is an H-valued ‘source’ function on its right-hand side and the
unknown function has the form u0x).

The quaternionic product rule (6) can be applied to the left-hand side of equation (20) and
yields

nDau0 = −n · (∇x + a)u0 + n × ∇xu0 = f0 + f, (21)

which leads to a set of two equations for the scalar field u0(x):{
(n · ∇x + a0)u0(x, n) = −f0(x)

(n × ∇x)u0(x, n) = f(x).
(22)

3 This is not the second-order ultra-hyperbolic partial differential equation of John [29].
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Here the the quaternion formalism gives two equations. Similar to the use of complex
analysis for the Laplace equation in two dimensions, here we get two equations (potential
and equipotential equations) [28]. The first equation in the above equations is precisely the
equation satisfied by the exponential x-ray transform (19). The second equation may be
viewed as a derivation of u0 in the perpendicular surface to n. Imposing f = 0 implies a
constant value for u0 on the surface perpendicular to n.

By solving equation (21), we can obtain as by product the solution of equation (22), for
given f0(x), first. Then, f(x) can be computed from the curl term and the gradient term of the
solution.

Now, by multiplying equation (20) by −n from left we have

Dau0(x, n) = −nf (x) (23)

where we used ‘nn = −1’.
From [16], we can give this solution u0(x, n) in terms of the elementary solution (or

Green’s function) of Da. Then by using an appropriate change of variable, u0(x, n) may be
represented as a combination of exponential x-ray transforms, which are in fact measured data.

Finally by applying the operator Da on this form of solution, one can recover f (x) in
terms of the measurements, which are the exponential x-ray transforms, and thereby achieve
the reconstruction of f0(x).

The Borel–Pompeiu formula (equation (16)) yields

TaDau0 = DaTau0 − Fau0 = u0 − Fau0. (24)

Now, by using equation (23) we have

u0 = −Tanf + Fau0. (25)

To get the explicit form of u0(x), we must compute the Teodorescu transform of f .
For G ⊂ R

3 is a dense set in R
3, the defining integral of the Teodorescu transform can be

evaluated knowing its kernel (13):

(Tanf )(x, n) =
∫

G

dy Ka(x − y)nf (y) = 1

4π

∫
G

dy e−(x−y)·a x − y

|x − y|3 nf (y)

= 1

4π

3∑
i,j=1

3∑
β=0

∫
G

dy e−(x−y)·a xi − yi

|x − y|3 nj fβ(y) ıi ıj ıβ . (26)

Now let us make the following change of variables, y = (x + m t) in R
3, where t ∈ R

+ and
m is a unit vector. Consequently, the volume element dy in spherical coordinates becomes
dy = t2 dt d�m, where d�m is the area element of the unit sphere �m in R

3.
Thus, we have

(Tanf )(x, n) = 1

4π

3∑
i,j=1

3∑
β=0

∫
�m

d�m

∫
R+

t2 dt e−a0t
mit

|mt |3 njfβ(x + mt) ıi ıj ıβ

= 1

4π

3∑
i,j=1

3∑
β=0

∫
�m

d�m minj

(∫
R+

dt e−a0t fβ(x + mt)

)
ıi ıj ıβ . (27)

In equation (27), the x-ray transform of the component fβ of f arises in a natural way.
Thus for fβ , we may introduce its exponential x-ray transform

Xafβ(x, m) :=
∫

R+
dt e−a0t fβ(x + mt), (β = 0, . . . , 3). (28)

6
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Then, by summing up over the quaternion imaginary units, we get the exponential x-ray
transform of the H-valued function f in R

3, as

Xaf (x, m) :=
3∑

β=0

Xafβ(x, m)ıβ =
∫

R+
dt e−a0t f (x + mt). (29)

Consequently, the Teorodescu transform of nf appears as

(Tanf )(x) = 1

4π

∫
�m

d�m mn (Xaf )(x, m). (30)

3.2. The reconstruction formula for f

Having expressed the solution of equation (20) in terms of x-ray data, on may let Da act on
equation (25), to obtain −nf , since −nf = Dau0 = Da(−Tanf + Fau0). Thus, we have

−nf (x) = Dau(x) = − 1

4π
Da

∫
�m

d�m mn (Xaf )(x, m). (31)

The quaternion reconstruction formula for f is as follows:

f (x) = −nDau(x) = − 1

4π
nDa

∫
�m

d�m mn (Xaf )(x, m)

= − 1

4π

∫
�m

d�m nDamn (Xaf )(x, m). (32)

3.2.1. Vector and scalar parts of the reconstructed f . To obtain the vector and scalar parts
of f from equation (32), we have to compute the action of nDamn(Xaf ) on the integrand of
equation (32) as follows:

nDa = −n · (∇x + a) + n × (∇x + a) = −(n · ∇x + a0) + n × ∇x

mn = −m · n + m × n,
(33)

where a = na0. Then, we have

nDamn = +(m · n)(n · ∇x + a0) − (n × ∇x) · (m × n)

− (m · n)(n × ∇x) − (m × n)(n · ∇x + a0), (34)

where (m × n) × (n × ∇x) = 0. Now, the scalar and vector parts of nDamn(Xaf ) are
obtained, respectively, as follows:

Sc[nDamn(Xaf )] = +[(m · n)(n · ∇x + a0) − (n × ∇x) · (m × n)](Xaf0)

+ [(m · n)(n × ∇x) + (m × n)(n · ∇x + a0)] · (Xaf), (35)

and

Vec[nDamn(Xaf )] = +[(m · n)(n · ∇x + a0) − (n × ∇x) · (m × n)](Xaf)

+ [(m · n)(n × ∇x) + (m × n)(n · ∇x + a0)](Xaf0)

+ [(m · n)(n × ∇x) + (m × n)(n · ∇x + a0)] × (Xaf). (36)

Now, we try to simplify the above equations by considering the following relations:

(n · ∇x + a0)(Xaf) = (n · ∇x + a0)[Xa(n × ∇x)u0]

= (n × ∇x)[Xa(n · ∇x + a0)u0] = −(n × ∇x)(Xaf0) (37)

7



J. Phys. A: Math. Theor. 43 (2010) 295203 S M Saberi Fathi

and

(n × ∇x) × (Xaf) = (n × ∇x) × [Xa(n × ∇x)u0]

= [Xa(n × ∇x) × (n × ∇x)u0] = 0, (38)

where we have used the relations in (22) and note that u0 = Xaf0. Thus, we use the first
equation in (37) for the last term on the right-hand side of equations (35) and (36).

Also, the first term in the third line of equation (36) is zero from the second equation of
(38). Finally, equations (35) and (36) are written as

Sc[nDamn(Xaf )] = +[(m · n)(n · ∇x + a0) − 2(n × ∇x) · (m × n)](Xaf0)

+ [(m · n)(n × ∇x)] · (Xaf), (39)

and

Vec[nDamn(Xaf )] = +[(m · n)(n · ∇x + a0) − (n × ∇x) · (m × n)](Xaf)

+ [(m · n)(n × ∇x) + (m × n)(n · ∇x + a0)](Xaf0)

+ (m × n) × (n × ∇x)(Xaf0). (40)

The first and third terms on the right-hand side of the above equation cancel each other because

(n · ∇x + a0)(Xaf) = (n · ∇x + a0)[Xa(n × ∇x)u0]

= (n × ∇x)[Xa(n · ∇x + a0)u0] = −(n × ∇x)Xaf0. (41)

Now, (40) can be rewritten as

Vec[nDamn(Xaf )] = −(n × ∇x) · (m × n)(Xaf) + (m × n)(n · ∇x + a0)(Xaf0)

+ (m × n) × (n × ∇x)(Xaf0). (42)

Thus, the scalar and vector parts of (32) are obtained as

f0(x) = − 1

4π

∫
�m

d�m Sc[nDamn(Xaf )](x, m), (43)

and

f(x) = − 1

4π

∫
�m

d�m Vec[nDamn(Xaf )](x, m), (44)

where Sc[nDamn(Xaf )] and Vec[nDamn(Xaf )] are given by equations (39) and (42),
respectively. These are the reconstruction formulas for the scalar and vector parts of f .

3.2.2. Special case of ‘f= 0’. From (22), the formula f = (n × ∇x)u0 = 0 means that the
areolar derivative of the u0 is equal to zero. In other words, the derivative of u0 on the plane
perpendicular to n is equal to zero, or u0 is constant on the plane perpendicular to n.

From the condition f = 0, equation (20) becomes

nDau0(x) = f0(x), x ∈ G, (45)

from which we can easily see that the above equation is a simplified transport equation (18)
in the quaternion formalism. Thus, by setting f equal to zero, formula (43) for f0 gives a
reconstruction formula of the transport equation. In this section, we first give a proof of this
fact and then we obtain the explicit form of f0 with f = 0. Finally, we compare our result in
the special case a0 = 0 with known results.

The condition f = 0 requires that equation (42) is equal to zero, which means that
n × m = 0 and consequently n · m = 1. In this case, from (39) the scalar part (44) has the
following simple form:

f0(x) = 1

4π

∫
�n

d�n(n · ∇x + a0)(Xaf0)(x, n). (46)

8
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As earlier in this paper we have introduced (Xaf0)(x, n), this is a monogenic (analytic)
function on �n; thus, [a0(Xaf0)(x, n)]�n

→ 0 as t → 0. Finally, the reconstruction formula
for f0 is obtained as

f0(x) = 1

4π

∫
�n

d�n(n · ∇x)(Xaf0)(x, n). (47)

3.3. Special case with a0 = 0

When attenuation is neglected, we have a0 = 0. Equation (47) becomes

f0(x) = 1

4π

∫
�n

d�n(n · ∇x)(Xf0)(x, n), (48)

where Xf0 = ∫ ∞
0 dt f0(x + nt) is the x-ray transform without attenuation. Here the result is

the one obtained by [20]. A comparison of the above formula with other results given by [20]
is presented in the appendix.

4. Conclusion and perspectives

In this paper, by using quaternion analysis we have established successfully an inverse formula
for the exponential x-ray transform in three dimensions. The result without attenuation is
recovered although it has appeared under a different form. The generalization of our results
to the non-uniform attenuation map in the case of transmission imaging is very interesting
because it is much closer to reality and has up to now evaded complete resolution except in
two dimensions, where an analytic solution has been given in [31, 32]. We shall go into this
topic in a future work.
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Appendix. Comparison with known results [20]

In [5] the inverse formula of the x-ray transform in three dimensions is given by

f0(x) = − 1

2π2
�xR

1
∫

�n

(Xf0)(x, n) d�n = − 1

2π2
�xR

1
∫

�n

u0(x, n) d�n, (A.1)

where

R1f0(x) = 1

2π2

∫
1

|x − y|2 f0(y) dy. (A.2)

Setting y = x + nt in the above equation, we find

R1f0(x) = 1

2π2

∫
�n

∫
R+

f0(x + nt) dt d�n = 1

2π2

∫
�n

(Xf0)(x, n) d�n. (A.3)

In equation (A.1) we may define 1
4π

∫
�n

u0(x, n) d�n = 〈u0〉n as the average of u0 over a unit
ball. Thus, using the above relation, equation (A.3) can be written as

f0(x) = −�xR
1〈u0〉n′ = − 2

π
�x(X〈u0〉n)(x) = − 2

π

∫
�n

�x(Xu0)(x, n) d�n. (A.4)

9
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Here, we obtain another form for �x(Xau0). From equation (22), which expresses f as
f = n × ∇xu0 = −∇x × nu0, we deduce that ∇x · f = 0. Thus

∇x · (∇x × nu0) = n�xu0 − ∇x(n · ∇x)u0 = n�xu0 + ∇xf0 = 0, (A.5)

which yields

�xu0 = −(n · ∇x)f0. (A.6)

Substitution of this expression in equation (A.4) gives an alternative form of the reconstructed
f0

f0(x) = 2

π

∫
�n

(n · ∇x)(Xf0)(x, n) d�n, (A.7)

which, up to a normalization factor, has the same form as our equation (48).
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