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Abstract

A new derivation of the inverse of the x-ray transform is presented based on
quaternion analysis. As pointed out by practitioners, a direct inversion formula
offers more efficient reconstruction algorithms than tomographic inversion. It
is shown that the new inverse formula is equivalent to the existing one. The
advantage of this approach is that it paves the way for a potential inversion of
the x-ray transform with a non-uniform attenuation map in three dimensions,
which models single photon emission imaging in nuclear medicine.

PACS numbers: 02.30.Jr, 02.30.Uu, 02.30.Zz

1. Introduction

The x-ray (or divergent cone-beam) transform in R
3 is an integral transform on the space

of integrable functions in R
3, which serves as a mathematical basis for a three-dimensional

imaging process and may be viewed as a generalization of conventional radiographic imaging.
It plays an analogous role in electron microscopy [1, 2], crystallography [3], biochemistry [4],
molecular biology [5], aerodynamics [6], radio astronomy [7], radiography [8] and in industrial
non-destructive testing [9]. As a pure mathematical tool, it has helped to bring advances to
partial differential equations theory [10] and most importantly to integral geometry as well as
to group representation theory [11].

To ‘see’ the inside of an object, it is necessary to probe its hidden three-dimensional
structure by a physical agent. One way to achieve this goal is to use an external source of x-ray
to illuminate the studied object and measure the transmitted x-ray intensity along all possible
directions in space. Given a calibrated x-ray source, this measurement gives the integrated
attenuation map f (x) of traversing ionizing radiation along straight line paths through this
object. The set of such line integrals represents a mapping: f �→ (Xf )(x, n) called the x-ray
transform of f . Here, x ∈ R

3 is the x-ray source position and n is a unit vector of the direction
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of the straight line, at the end of which a measurement is performed. Thus, (Xf )(x, n) depends
on five apparent variables but only four variables (two for n and two for the position of the
line in a plane containing the coordinate system origin and orthogonal to n) are independent.
Reconstructing f from the data (Xf )(x, n) is the main problem to be solved.

The solution, without restriction on the set of source points x, has been worked out
mathematically in [12–15]. The reconstruction formula involves the average of the x-ray
data on the unit sphere of R

3, centered at a site in space. The case of point sources lying
on a space curve is given by [16–19]. Finally, among the large amount of indirect inversion
procedures, the most well known for efficiency and appeal are those of B D Smith, who
developed a technique that converts divergent beam data into parallel beam data and used its
known inversion procedure [20], and of P Grangeat, who made a conversion of x-ray data into
three-dimensional Radon data before using Radon inversion [21].

In this work, we show that the use of quaternion analysis leads to a new inversion formula
for the x-ray transform in R

3. Quaternions are higher dimensional generalization of complex
numbers. Although not widely used, they provide elegant compact local formulation for
electromagnetism [22], solid mechanics and some other fields in engineering [26]. Recently,
quaternions have been used in integral transforms, for example, in geophysical processes [27]
or in signal processing [28]. A general approach to Radon and x-ray transforms in higher
dimensional Clifford analysis has been given in [29], but the question of their inversion has
not been treated.

Our motivation stems from the impressive success of the use of complex analysis for
finding the inverse of the attenuated x-ray (or Radon) transform in R

2, as shown in several
works [30–32]. It is natural to raise the question whether such remarkable results can also
be achieved in R

3 by going to some higher dimensional ‘complex’ space . It turns out that
quaternions are the appropriate objects to be considered. However, although the starting point
is a simple partial differential equation satisfied by the x-ray transform, as in R

2, no extension
of this equation in the complex domain of its parameters, as done in [30], is performed, and
only the existing quaternionic structure is directly used.

In the following section, we introduce some useful notions on the algebra of real
quaternions H and collect the main results of quaternion analysis required for our problem.
Section 3 describes the derivation of the inversion formula giving the reconstructed function in
terms of the x-ray data. Finally, we give an alternate derivation of this new result in section 4.
This paper ends with a conclusion and sketches the perspectives for inverting a more general
case of x-ray transforms in R

3.

2. Quaternions

Quaternions were invented by H W Hamilton in the first half of the 19th century, when he
looked for a three-dimensional generalization of complex numbers [23]. But, this theory did
not generate widespread interest until nearly a century after it was discovered. Subsequently,
R Fueter introduced the notion of ‘regular’ quaternionic functions as functions satisfying an
analog of the Cauchy–Riemann equations. With this new concept, he is led to Cauchy’s
theorem, Cauchy’integral formula and Laurent expansion for analytic functions [24]. A
comprehensive review of quaternions can be found in [25].

2.1. Algebra

As known in elementary mathematics, the two-dimensional Euclidean vector space R
2, may be

equipped with a new algebraic structure with the introduction of an imaginary number i, with
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i2 = −1, affected the Oy-axis of a Cartesian reference system. To each point x = (x, y) ∈ R
2

corresponds a complex number z = (x + iy) ∈ C, i.e., R
2 is isomorphically identified to C.

As we shall see in this section, a similar idea was introduced by Hamilton in R
3.

Let x = (x1, x2, x3) be an element of R
3, expressed in an orthonormal basis formed by

three unit vectors ı1, ı2 and ı3 by x = ∑3
m=1 xmım. The conventional vector space structure is

defined by a scalar (inner) product rule for the basis unit vectors, i.e. (ın · ım) = δmn and by a
vector (cross) product, i.e. ı1 × ı2 = ı3 with its cyclic permutations and the non-commutativity
ım × ın = −ım × ın.

To this structure, one can add a new one

• by promoting the unit vectors to be imaginary units, i.e. ı1
2 = ı2

2 = ı3
2 = −1,

• by introducing a non-commutative multiplication rule between them: ıi ıj = −ıj ıi for
i �= j and ıi ıj = ık for all cyclic permutations of (i, j, k).

Then to each x = ∑3
m=1 xmım, as a three-dimensional vector, corresponds a new object

x (also called Vec x by some authors), which has the same formal expression but with ım
following the new multiplication rule. Consequently, the identification

x ∈ R
3 �→ x =

3∑
m=1

xmım (1)

is an isomorphism of R
3 onto the set of ‘vector parts’ {Vec}. In fact, Vec x is the imaginary

part of more general objects, called quaternions by H W Hamilton.
An arbitrary quaternion x has four components, i.e. besides its imaginary (or Vec x vector

part), there is also a scalar part Sc x = x0ı0, where ı0 is the real (or non-imaginary) unit part
(usually identified with the real unit 1 = ı0 ∈ R) and x0 ∈ R, such that

x = x0ı0 +
3∑

m=1

xmım = Sc x + Vec x = x0ı0 + x, (x0, x1, x2, x3 ∈ R). (2)

The set of quaternions with real components should be called H(R)3, but for simplicity, will
be denoted by H.

Following [25], we give some of their properties:

conjugate operation: x = x0ı0 −
3∑

m=1

xmım, (3)

square norm: |x|2 = xx = xx = x2
0 + x2

1 + x2
2 + x2

3 , (4)

inverse: x−1 = x

|x|2 if and only if xx �= 0. (5)

The other useful property of a quaternion is that, in contrast to complex numbers, each of
its coordinates x0, x1, x2 and x3 can themselves be written as quaternionic polynomials, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = 1

4
(ı0xı0 − ı1xı1 − ı2xı2 − ı3xı3),

x1 = −ı1

4
(ı0xı0 − ı1xı1 + ı2xı2 + ı3xı3)

x2 = −ı2

4
(ı0xı0 + ı1xı1 − ı2xı2 + ı3xı3)

x3 = −ı3

4
(ı0xı0 + ı1xı1 + ı2xı2 − ı3xı3),

(6)

3 Quaternions with complex-valued components are called biquaternions and denoted by H(C).
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so every real polynomial in x0, x1, x2 and x3 can be expressed as a quaternionic polynomial in
x. Thus, the theory of quaternionic power series is the same as the theory of the real analytic
function on R

4 [25].
Finally, the ordered product of two quaternions y = y0ı0 + y and x = x0ı0 + x is a

quaternion w = yx = (Sc w + Vec w), where

Sc w = y0x0 − (y · x) and Vec w = yx0 + y0x + y × x. (7)

In particular, i.e., the ordered product of two ‘pure imaginary’ quaternions y by x is a full
quaternion

yx = −y · x + y × x. (8)

2.2. Analysis

Let G ⊂ R
3 be an open set with a smooth boundary ∂G = �. Let f be an H-valued function

in R
4. Its differential is the linear mapping df : H → H, such that, by identifying the tangent

space at each point of H with H itself [25], it has the expression

df = ∂f

∂x0
dx0 +

∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3. (9)

In particular, the differential of the identity function is

dx = ı0 dx0 + ı1 dx1 + ı2 dx2 + ı3 dx3, (10)

the exterior product with itself is

dx ∧ dx = ı1 dx2 ∧ dx3 + ı2 dx3 ∧ dx1 + ı3 dx1 ∧ dx2, (11)

where ∧ is the exterior product. The exterior product of different fundamental differential
1-form is called 2-form [34]. The 3-form Dx is defined, as in [25], by

Dx = dx1 ∧ dx2 ∧ dx3 − ı1 dx0 ∧ dx2 ∧ dx3 − ı2 dx0 ∧ dx3 ∧ dx1 − ı3 dx0 ∧ dx1 ∧ dx2.

(12)

Finally, the essentially unique 4-form is

dV(4) = dx0 ∧ dx1 ∧ dx2 ∧ dx3. (13)

In the special case of a Vec x (a quaternion x with (x0 = 0)), the unique constant 3-form
Dx is, using (12),

dV(3) = Dx = dx1 ∧ dx2 ∧ dx3. (14)

An H-valued function defined on G ⊂ R
3 has the expression

f (x) = ı0f0(x) + f(x) =
3∑

m=0

fm(x)ım where fm ∈ R, (x ∈ G). (15)

Continuity, differentiability, integrability and growth at infinity of f are properties contained
in its components fm, (m = 0, 1, 2, 3); see e.g. [33, 34].

2.3. Analytic properties

For our purposes, we do not need the full machinery of quaternionic analyticity as developed
by Fueter and others [24, 25]. Here we are only concerned with analytic properties useful for
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imaging processes in R
3 modeled by the x-ray transform. They are essentially extracted from

[33, 34].
A classical C1-vector field w(x) in R

3, which fulfills

div w(x) = 0 ⇔ ∇ · w(x) = 0,

rot w(x) = 0 ⇔ ∇ × w(x) = 0,
(16)

can be conveniently represented by a three-dimensional Cauchy-type equation,

Dw(x) =
(

3∑
m=1

ım
∂

∂xi

)
w(x) = −(∇ · w(x)) + ∇ × w(x) = 0, (17)

where, according to our isomorphic embedding, w(x) is the vector part of a quaternionic field
on R

3 corresponding to w(x). Equations (16), which imply that the vector field w(x) derives
from a harmonic scalar potential function, result from a simple application of formula (8).
In two dimensions, this fact can be understood nicely in the context of the complex-valued
analytic function in C, which are characterized by the Cauchy–Riemann equations. Here
the quaternionic operator D generalizes the two-dimensional ∂ = ∂/∂z operator of complex
analysis, has been given different names according to authors: the Dirac operator for [29, 34],
the three-dimensional Cauchy–Riemann operator for [26], the Moisil–Teodorescu differential
operator for [37], etc4.

In the more general setting of quaternion analysis, D is the vector part of the quaternionic
Cauchy–Riemann operator D, defined in [33] as

D =
3∑

β=0

ıβ
∂

∂xβ

= ı0
∂

∂x0
+ D. (18)

But here, we shall restrict ourselves to D. Inspection shows that it is related to the three-
dimensional Laplace operator by 
 = −D2. The solutions of Df (x) = 0, called frequently
left monogenic H-valued functions, satisfy many generalizations of classical theorems from
complex analysis to higher dimensional context [33]. Since the elementary solution of the
Laplace operator is known, the elementary solution of D can be worked out as, see e.g. [34],

Ki(x) = − xi

4π |x|3 , (i = 1, 2, 3) (19)

K(x) =
3∑

m=1

Km(x)ım = − x

4π |x|3 , x �= 0. (20)

Note that K(x) is a H-valued fundamental solution of D and therefore monogenic in G\{0},
or DK(x) = δ(x).

Consequently, there exists a three-dimensional Cauchy integral representation for
continuous left monogenic H-valued functions on G [33],

(F�f )(x) :=
∫

�

K(x − y)α(y)f (y) d�y, x ∈ G\�, (21)

where α(y) = ∑3
m=1 αm(y)ım is the quaternionic outward pointing unit vector at y on

the boundary ∂G = �, d�y is the Lebesgue measure on �. Moreover one can see that
D(F�f )(x) = 0.

4 There is another right Dr , which can be defined with ım on the right side of the partial derivatives of w. We shall
not need it here.
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The H-valued fundamental solution of D is also used to define the so-called Teodorescu
transform [36]. For all f (x) ∈ C(G, H) we have

(TGf )(x) :=
∫

G

K(x − y)f (y) dy x ∈ G ⊂ R
3. (22)

We can also see that it is the right inverse of D, since D(TGf )(x) = f (x).

Conversely, for all f(x) ∈ C2(G, H) ∩ C(G, H) and x ∈ G, the equation

D u(x) = f (x) (23)

has the general solution u(x) = (TGf )(x) + (F�v)(x), where v(x) is an arbitrary function
chosen to satisfy a given boundary condition of the form

u(x)|� = v(x). (24)

Thus, for any f ∈ C1(G, H) ∩ C(G, H), it can be shown that it satisfies the so-called
Borel–Pompeiu formula [34]:

(F�f )(x) + (TGD)f (x) =
{
f (x), x ∈ G

0, x ∈ R
3\G.

(25)

A generalization of the concept of the Cauchy principal value for (F�f (x) can be
introduced, when the variable x is approaching the boundary ∂G = �. For a given f , at
each regular point x′ ∈ � [34], the non-tangential limit of the Cauchy integral representation
can be written as

lim
x→x′

(F�f )(x) = 1
2 (±f (x′) + (S�f )(x′)), (26)

where

(S�f )(x) = 2
∫

�

f (x − y)α(y)f (y) d�y (27)

is understood as a ‘quaternionic Cauchy principal value’ of the integral over the smooth
boundary �, because of the singularity of K(x) in the integrand.

A Plemelj–Sokhotzkij’-type formula for f , relative to �, [33, 36] can now be given as

(i) lim
x−−−→

x ∈ G
x′∈�

(F�f )(x) = (P�f )(x′),

(ii) lim
x−−−−−−→

x ∈ R
3\Gx′∈�

(F�f )(x) = −(Q�f )(x′),
(28)

where P� is the projection operator
(
P 2

� = P�

)
onto H-valued functions, which have a left-

monogenic extension into the domain G, and Q� is the projection operator
(
Q2

� = Q�

)
onto

H-valued functions, which have a left-monogenic extension into the domain R
3\G and vanish

at infinity.
P� and Q� can be given, in turns, an alternative form in terms of the quaternionic principal

value operator S� , as

P� := 1
2 (I + S�) Q� := 1

2 (I − S�), (29)

with the following operator relations:

S�P� = P�, S�Q� = −Q�, S2
� = S�S� = I. (30)

Finally, we define a trace operator tr as a restriction map for an H-valued function u on
�, smooth boundary of G ∈ R

3, by

tr u = u|�. (31)

6
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3. The x-ray transform and its inverse

3.1. The setting of the problem

We are now in a position to tackle the inversion problem for the x-ray transform of a physical
density f0(x). By definition, this transform consists of integrating f0(x), assumed to be an
integrable function with compact support in a convex set G, along a straight line from the
source point x to infinity in the direction of the unit vector n, i.e.

(Xf0)(x, n) =
∫ ∞

0
dt f0(x + tn). (32)

Concretely, this transform describes two working modalities in medical imaging. In
transmission modality, f0 represents the attenuation map of the object under study, whereas
in emission modality f0 is its radiation activity density.

• The next point is that if f0(∞) = 0 as assumed (f0 is compactly supported), it can be
verified that (Xf0)(x, n) satisfies a very simple partial differential equation, namely

n · ∇(Xf0)(x, n) = −f0(x). (33)

This can be checked if we let the n ·∇ operator act under the integral sign. After a change
of variables, the integrand just turns into the differential of f0(x) under the integral sign.
Equation (33) is in fact a simplified stationary photon transport equation without loss by
attenuation and without source or sink term [38]. Since n ·∇ is a directional derivative, its
inverse is a directional integration5. Physically (Xf0)(x, n) is subjected to the following
boundary condition. For a given direction n, because of the support hypothesis and
because of the prescription on the direction of integration, (Xf0)(x, n) = 0, whenever x

is on the boundary � = ∂G of G and n points outward of �.
• As n is fixed unit vector in R

3, equation (33) can also be written as a divergence equation
for a vector field u(x) having a constant direction n, namely u(x) = n(Xf0)(x, n)

n · ∇(Xf0)(x, n) = ∇ · u(x) = −f0(x). (34)

3.2. Formulation in quaternionic analysis

The problem of inversion of the three-dimensional x-ray transform will now be set in the
framework of quaternion analysis. The idea is to consider equation (34) as part of an
inhomogeneous equation (17), with an H-valued ‘source’ function f = f0(x) + f(x) on
its right-hand side for an unknown function u(x) = ∑3

m=1 um(x)ım, i.e.

Du(x) = f (x), x ∈ G. (35)

As can be checked, the quaternionic product rule (9) yields

Du(x) = −(∇x · u(x)) + ∇x × u(x) = f0(x) + f(x), (36)

which implies the following two equations for the vector field u(x):

∇x · u(x) = −f0(x), ∇x × u(x) = f(x), (37)

the first one, being exactly equation (33).

• So following the general approach of [30], equation (35) shall be worked out with
appropriate boundary conditions and its solution u will be reexpressed in terms of x-
ray transform data. Then equation (35) is used to invert the three-dimensional x-ray
transform, by expressing f0(x) in terms of the measurements.

5 This is not the second-order ultra-hyperbolic partial differential equation of John [10].
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Theorem [34]. For all f (x) ∈ C2(G, H) ∩ C(G, H) and x ∈ G, the inhomogeneous
equation (35)

Du(x) = f (x), (38)

with the boundary condition u(x)|� = v(x), has a unique solution, where v(x) is given on �.

Proof. In [34], for f in C2(G, H) ∩ C(G, H) the solution of equation (23) is given by

u = TGf + F�v (39)

with the condition

Q�v = tr TGf, (40)

which follows from the Plemelj–Sokhotzkij’s formula, as an extension onto R
3\G.

By letting D act on equation (39) we have

D u = DTGf + DF�v. (41)

Now, as TG is the right inverse of D, for f ∈ C1(G)
⋂

C(G) from [33, 36] we have the
following statements:

(DTGf )(x) =
{
f (x), x ∈ G

0, x ∈ R
3\G (TG is ‘right inverse′ of D) (42)

(DF�v)(x) = 0, x ∈ R
3\� (F� is a monogenic function). (43)

We deduce that Du(x) = f (x). We now show that it satisfies the boundary condition (40).
Thus, by substituting u from (39) in (40), we have

v = tr u = tr(TGf + F�v) = tr(TGf ) + trF�v = tr(TGf ) + P�v, (44)

where we have used: tr(F�v) = (F�v)� = P�v. Hence, equation (44) becomes

tr(TGf ) = (I − P�)v = Q�v. (45)
�

3.3. Computation of the Teodorescu transform of f

For f ∈ C1,β

H
(G), 0 < β � 1 and if G ⊂ R

3 is a dense set in R
3, we show that (TGf )(x) can

be expressed in terms of x-ray measurements by explicit computation

(TGf )(x) = 1

4π

∫
G

x − y

|x − y|3 f (y) dy = 1

4π

3∑
i=1

3∑
β=0

∫
G

xi − yi

|x − y|3 fβ(y) dyıi ıβ . (46)

Let y = x + nt in R
3, where t ∈ R

+ and n is a unit vector. Consequently, under the above change
of variables, we may express the volume element dy in spherical coordinates dy = t2 dt d�n,

where d�n is the area element of the unit sphere �n in R
3.

Thus, we have

(TGf )(x) = 1

4π

3∑
i=1

3∑
β=0

∫
�n

∫
R+

nit

|nt |3 fβ(x + nt)t2 d�n dt ıi ıβ

= 1

4π

3∑
i=1

3∑
β=0

∫
�n

ni

(∫
R+

fβ(x + nt) dt

)
d�nıi ıβ . (47)

We can now see that the x-ray transform arises in a natural way in the Teodorescu transform.
For each quaternionic component fβ of f , we have an integration on a half-line along the

8
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direction of n,

(Xfβ)(x, n) :=
∫

R+
fβ(x + nt) dt, (β = 0, . . . , 3), (48)

after summing up over the quaternionic imaginary unit, we obtain the x-ray transform of an
H-valued function f defined in R

3, as

(Xf )(x, n) =
3∑

β=0

Xfβ(x, n)ıβ =
∫

R+
f (x + nt) dt. (49)

Consequently, the Teodorescu transform of f is a weighted vector spherical mean value
of (Xf )(x, n) in the form

(TGf )(x) = 1

4π

∫
�n

n(Xf )(x, n) d�n. (50)

3.4. f -reconstruction’s formula

Now by letting D act on (TGf )(x) (or equation (38)), we get f through f = Du = D(TGf +
DF�v).

This result may be called the quaternionic reconstruction formula:

f (x) = Du(x) = 1

4π
D

∫
�n

n(Xf )(x, n) d�n. (51)

It remains to sort out the reconstruction formulae for the scalar part f0(x) and the vector part
f(x). This computation is done in the following section.

4. Explicit calculation of the vector and scalar parts of the reconstructed f

4.1. Generalities

To obtain the vector and scalar parts of f , we use equation (36) to rewrite equation (51)
explicitly as follows:

f (x) = − 1

4π

3∑
i=1

∂i

∫
�n

ni(Xf )(x, n) d�n +
1

4π

3∑
i,j,k=1

εijk∂i

∫
�n

nj (Xf )(x, n) d�nık. (52)

The last term on the right-hand side, called I, is the sum of two terms involving successively
f0 and f (or its components fl),

I = 1

4π

3∑
i,j,k=1

εijk∂i

∫
�n

nj (Xf0)(x, n) d�nık +
1

4π

3∑
i,j,k=1

3∑
l=1

εijk∂i

∫
�n

nj (Xfl)(x, n) d�nıkıl .

(53)

The second term of the above equation, called J, can be expressed successively as

J = 1

4π

3∑
i,j,k=1

3∑
l=1

εijk∂i

∫
�n

nj (Xfl)(x, n) d�nıkıl

= 1

4π

3∑
i,j,k=1

3∑
l,m=1

εijkεklm∂i

∫
�n

nj (Xfl)(x, n) d�nım. (54)

By using the identity
3∑

k=1

εijkεlmk = (δilδjm − δimδjl), (55)

9
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we reduce J to

J = 1

4π

3∑
i,j=1

∂i

∫
�n

nj ((Xfi)(x, n)ıj − (Xfj )(x, n)ıi) d�n, (56)

such that finally, I has the expression

I = 1

4π

3∑
i,j,k=1

εijk∂i

∫
�n

nj (Xf0)(x, n) d�nık

+
1

4π

3∑
i,j=1

∂i

∫
�n

nj ((Xfi)(x, n)ıj − (Xfj )(x, n)ıi) d�n, (57)

or after rearrangement of all terms according to their k-component, I reads

I = 1

4π

3∑
i,j,k=1

εijk∂i

∫
�n

nj (Xf0)(x, n) d�nık

+
1

4π

3∑
i,k=1

(
∂i

∫
�n

nk(Xfi)(x, n) d�n − ∂k

∫
�n

ni(Xfi)(x, n) d�n

)
ık. (58)

4.2. Reconstruction of vector part of f

From the previous expression of I, we can derive the components fk with k = 1, 2, 3 of f as

fk(x) = − 1

4π

3∑
i=1

∂i

∫
�n

ni(Xfk)(x, n) d�n +
1

4π

3∑
i,j=1

εijk∂i

∫
�n

nj (Xf0)(x, n) d�n

+
1

4π

3∑
i=1

(
∂i

∫
�n

nk(Xfi)(x, n) d�n − ∂k

∫
�n

ni(Xfi)(x, n) d�n

)
. (59)

Hence the reconstructed f has the following compact vector form:

f(x) = − 1

4π

∫
�n

[−∇x · (nXf) + ∇x × (nXf0) + n(∇x · Xf) − ∇x(n · Xf)] (x, n) d�n. (60)

Now for each given n, a constant vector field, we have ∇x × n = ∇x · n = 0. In equation (60)
and from the definitions of f and f0, one can show that the last two terms in equation (60) are
zero and that the two first terms are equal. This is so because

−∇x · (nXf) = −(n · ∇x)(Xf) = −(n · ∇x)(∇x × n)(Xu0)

= −(∇x × n)(n · ∇x)(Xu0) = ∇x × (nXf0), (61)

where in the above derivation we have made use of the commutativity between the x-ray
transform and the differential operators with respect to x. Hence, we obtain the reconstruction
of the vector part of f in terms of the x-ray data (Xf0)(x, n) as

f(x) = 1

2π

∫
�n

(n · ∇x)(Xf)(x, n) d�n = 1

2π

∫
�n

(n × ∇x)(Xf0)(x, n) d�n. (62)

10
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4.3. Reconstruction of the scalar part of f

f0 is given by

f0(x) = − 1

4π

3∑
i=1

∂i

∫
�n

ni(Xf0)(x, n) d�n − 1

4π

3∑
i,j,k=1

εijk∂i

∫
�n

nj (Xfk)(x, n) d�n

= − 1

4π

∫
�n

[∇x · (nXf0)(x, n) + (∇x × n) · (Xf)(x, n)] d�n. (63)

Putting the expressions of f0 = −(n · ∇x)u0 and of f = −(n × ∇x)u0 in equation (63),
we get f0 as

f0(x) = 1

4π

∫
�n

[(n · ∇x)(X(n · ∇x)u0)(x, n) + (∇x × n) · (X(∇x × n)u0)(x, n)] d�n

= 1

4π

∫
�n

[(n · ∇x)
2 + |∇x × n|2](Xu0)(x, n) d�n. (64)

Finally, after simplifications, we arrive at the final form of the reconstructed f0:

f0(x) = 1

4π

∫
�n


x(Xu0)(x, n) d�n, (65)

where 
x is the Laplace operator in x.

4.4. Alternative form of the result

From equation (37), which expresses f as the curl of u: f = ∇x × u, we deduce that ∇x · f = 0.
Thus

∇x · (∇x × u) = n
xu0 − ∇x(n · ∇x)u0 = n
xu0 + ∇xf0 = 0, (66)

which yields


xu0 = −(n · ∇x)f0. (67)

Substitution of this expression in equation (65) gives an alternative form of the reconstructed
f0:

f0(x) = − 1

4π

∫
�n

(n · ∇x)(Xf0)(x, n) d�n. (68)

4.5. Comparison with known results

In [14], an inverse formula for the x-ray transform in the three dimensions has been given in
terms of the so-called f0(x) Riesz transform R1 of a function

R1f0(x) = 1

2π2

∫
1

|x − y|2 f0(y) dy. (69)

The reconstructed function f0 is given by

f0(x) = − 1

2π2

xR

1
∫

�n

(Xf0)(x, n) d�n = − 1

2π2

xR

1
∫

�n

u0(x, n) d�n. (70)
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Now setting y = x + nt in the above equation yields

R1f0(x) = 1

2π2

∫
�n

∫
R+

f0(x + nt) dt d�n = 1

2π2

∫
�n

(Xf0)(x, n) d�n. (71)

In equation (70) we put 1
2π2

∫
�n

u0(x, n) d�n = 〈u0〉n, which is the average of u0 over the unit
ball in R

3. Thus, by using the above relation, equation (71) can be written as

f0(x) = −
xR
1〈u0〉n′ = − 1

2π2

∫
�n

(X〈u0〉n′)(x, n) d�n = −
x〈X〈u0〉n′ 〉n

= −
x〈Xu0〉n (72)

which, up to a normalization factor, has the same form as our equation (65).

4.6. Alternate derivation of the inversion formula

We saw that f is defined by following relation f = ∇x × nu0, and its inversion formula is
obtained by equation (62). If we compute the integral of f on the smooth surface S, we obtain∫

S

f · dS =
∫

S

∇x × nu0 · dS = 1

2π

∫
S

∫
�n

(∇x × n)(Xf0) · dS d�n. (73)

Thus, by using the Stokes’s theorem we have∮
C

u0n · dl = 1

2π

∮
C

∫
�n

(Xf0)n · dl d�n (74)

or, by introducing dln := n · dl,∮
C

[
(Xf0) − 1

2π

∫
�n

(Xf0)d�n

]
dln = 0. (75)

We conclude that the integrand is equal to zero. Thus,

(Xf0) = 1

2π

∫
�n

(Xf0) d�n. (76)

By acting (n · ∇x) on the above equation, we obtain

f0 = −1

2π
(n · ∇x)

∫
�n

(Xf0) d�n, (77)

which is the same result as that in equation (68).

5. Conclusion and perspectives

In this paper, we have shown that the use of quaternion analysis has been successful in obtaining
the inverse formula for the x-ray transform in three dimensions. Although appearing under a
different form, this result is essentially equivalent to the result obtained many years ago. The
reason we have started this study is that quaternion formalism lends itself to a generalization
whereby the operator D is replaced by D + a(x), a(x) is a smooth compactly supported H-
valued function. Such a function represents, for example, the non-uniform attenuation map
in the case of transmission imaging. This is of high interest because it is much more close
to reality and has up to now evaded complete resolution except in two dimensions, where an
analytic solution has been given in [30, 31]. We shall go into this topic in future work.
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