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Abstract

In this work, the simplest partial differential equation in R” is studied and
some of its properties derived. It describes the infinitesimal translation of a
function & in a fixed direction specified by a unit vector n and driven by a
source function p. We work out several forms of the corresponding Green’s
function and show that the solutions may be viewed as integral transforms of
p, known as ‘divergent beam x-ray transform’ in imaging science. Physically,
this connection is simply due to straight line propagation of radiation emitted
by the spatial source distribution p. In particular, we examine the special
two-dimensional case to point out the connection with the classical Radon
transform. We then show how the Radon transform inversion can be obtained
in the context of a complex extension of this equation. Perspectives in higher
dimensional space, based on the present approach, are given in the conclusion.

PACS numbers: 02.30.Jr, 02.30.Uu, 02.30.Zz

1. Introduction

In physics, a local conservation law for a vector field D in R may be expressed as a divergence
equation of the form

divD=V-D=p, (1)

where p is a given density, acting as a source for D. A few examples of such equations are

— in electrostatics, where D is the electric charge induction field and p a charge distribution

density,

— in electromagnetic radiation theory, where D is the Poynting vector and p represents

=2 _J.E
p==5 "1
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here the first term is the time variation of the electromagnetic energy density and the
second term is the mechanical work done by the electric field E on the electric current
distribution J,

— in fluid mechanics, where D is the mass current density, defined as the product of the mass
density by the velocity field of the fluid v, and p is minus the mass density time rate of
change.

Consider now a special case, in which D is required to have a fixed direction, specified
by a unit vector n

D =no, )
where @ is a scalar flux density. Then the divergence equation (1) takes the form
V- D=n V& =p, 3)

which may be interpreted as the derivative of the flux density & in the direction of n.

®, as a solution of equation (3 ) can be thought simply as the ‘primitive’ of p in the
n-direction, in other words ® should be obtained by ‘integrating’ p along the direction of n.
This problem appears trivial in one dimension. However in higher dimensional space, some
interesting aspects appear and are worth studying. As we shall see later, equation (3) is in
fact related to a class of integral transforms in integral geometry in the sense of Gel’fand,
which plays an important role in present day imaging science as well as in the field of inverse
problems of mathematical physics.

In fact, equation (3) may be viewed as a very special case of the stationary photon transport
equation, see e.g. [1]

n:-(V®) e =—a, EY®(r,n, E)+p,n E)+ Q(r,n, E). 4)

The first term on the right-hand side of equation (4) represents the loss of photons at
site r and at energy E due to absorption or to scattering into another direction, quantified by
a(r, E), which is nonnegative and represents the rate at which photons are absorbed as they
move through the point r in the direction n. The second term p(r, n, E) is an emission source
term at site r and energy E. The third term Q(r, n, E) accounts for the production of photons
due to scattering from all incident photons coming from other directions. It is described by an
integral transform with a kernel K(ng, Eo|n, E) which is nonnegative and proportional to the
probability for an incoming photon from the direction ny and energy Ej to be scattered in the
direction n with energy FE (it is the rate at which photons moving in the direction ny at r get
deflected into the direction n; its physical dimension is an inverse length). This probability
is in fact the differential cross-section of the Compton scattering process times the density of
scatterers

Q@r,n E) = / dng K(no, Eg[n, E) P ,ng, £ &)
2

the summation is carried out over the directions of the incident photons ng. For pure Compton
scattering, the outgoing energy £ may be the result of many collisions and can be computed
via the Compton energy relation. The incident unit vector ng is also related to the outgoing
propagation unit vector n by the Compton kinematics.

For now equation (4) has not been fully solved in RY. In RZ, the works of Novikov [2] and
Arbuzov, Bukhgeim and Kazantsev [3, 4] have succeeded to solve the cases with attenuation
but without scattering. A nice review has been given by Finch in [5]. Our present work is
aimed first at the simplest case, which neglects absorption and scattering as a stepping stone
towards the solution in higher dimensions with and without attenuation.
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This paper is organized as follows. As boundary conditions are crucial in partial
differential equations, we shall construct the Green’s function of this operator using Fourier
analysis. Then, we compute its explicit form in Cartesian coordinates, which reflects the
observations made heuristically before. A second form of the Green’s function in spherical
coordinates is also presented and coincides with those of Gel’fand in his general construction
of Green’s functions for the elliptic partial differential equation with constant coefficients [6].
Next we give the explicit solution of equation (3) as line integrals of p, which are known under
the name of divergent beam x-ray transform in R". This name originates from the imaging
process in x-ray scanners invented about three decades ago and has ignited an intense activity
in related mathematics. Finally, we study the case N = 2, where an interesting connection
to the d-operator of complex analysis is found as well as with the two-dimensional Radon
transform. Conclusion and perspectives on higher dimensions are given in the last section.

2. The solution

2.1. Green’s function approach

As it stands, n - V is just the directional derivative in the direction of the given unit vector n.
The solution to (3) is intuitively the indefinite integral or primitive of p along the n-direction,
to which one may add a function which is constant along the n-direction.

This partial differential equation can be solved by the Green’s function method. So if
G (r —r’) is the Green’s function solution of

n-VGr—-r)=48(r—-r), (6)

the solution @ has the expression

d(r) = / dr' Gr —r)p(). @)
]RN

Equation (7) may be regarded as a linear integral transform of p. The question of recovering
p in terms of ®(r) is a typical inverse problem of interest. Inspection of the one-dimensional
case suggests that G (r) = unit jump at (r = r’).

Note that under a scaling transformation r — or for & € R*, equation (6) shows that the
Green’s function transforms as

Gr)=c""'G(or).

2.2. The Green’s function G(r)

As equation (0) is a partial differential equation with constant coefficients, it is most appropriate
to work in Fourier space. Following [7], we define the Fourier transform G (k) of G(r) by

G(K) = / dre 2k rG (). (8)
RN
Thus conversely, we have
G(r) = / dk e % TG (k). )
]RN

Equation (6) shows that
27i(n-K)G(K) = 1. (10)
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Clearly in the sense of distributions, we get

~ 1
G(k)=ﬁ[(n.k)+c8(n-k):|. (11)
where c is an arbitrary constant.
Hence G(r) is
1 - 1
Grr)=— | dke?™" | —— +cs(n-Kk) |, 12
(r) meRN e [(n.k) c8(n )} (12)

which we write as a sum of two terms G (r) + (c/2ir)Gy(r). Gy is a solution of the
homogenous equation, i.e. n - VG = 0, and is of the form Go(mt - 1).

2.3. Cartesian form of the Green’s function

In RY let us introduce an orthogonal basis (up to a rotation around n) constructed on n, such

that nj*, j=1,..., (N — 1) are unit vector orthogonal to n and among themselves. Thus,
N-1 N-1
r=xnn+2x]¥n]{ dr = dx, ndxf, (13)
j=1 j=1
N-1 N-1
k=kn+) kinj, dk = dk, [ [ dk;. (14)
j=1 j=1

Substituting these expressions into (12) yields, for G(r), a product of independent integrals

N-1
1 2imk,x, 1 2imkLxt
G =— /RN dk, e [k— +c8(k,,):| ,1:[1 dk; ek (15)
Using Lavoine’s table [7], we have
1 ik eZin knx, 1 ( ) ( | 6)
— = — sgn(x,
i f Tk, 2 B

where sgn(x,) is the signum function of x, = (n-r). Consequently,

N-1

G(r) = [% sgn(n-r)+c] H(S(r-nj*). (17

j=1

This form of the solution is in agreement with the fact that G(r) depends on (r . nj.-),
but with a unit jump at the origin. We also note that the choice of the orthogonal basis
{nj*; j=1,...,N — 1} is made up to an orthogonal transformation in RV a subspace
orthogonal to n. Hence the Green’s function is a distribution and, as it is presented, does not
exhibit manifest spherical symmetry in the orthogonal space to n.

2.4. Spherical symmetric form of the Green’s function

To display manifest spherical symmetry, a spherically symmetric form for the
multidimensional delta function in equation (17) should be used. We derive such a form
for N = 2, 3, before giving the general expression for arbitrary N.

4
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2.4.1. N =2. The two-dimensional delta function has been the subject of recurrent studies,
e.g. [8]. Its Fourier representation is

8(x1,x2) = 8(x1)d(x2) = / / dp dg e?m e, (18)
—00 J =00
We put in now polar coordinates in R? and in its dual, i.e.
X, =rcosf, X1 =rsinf (19)
k, = kcos ¢, ki = ksin¢. (20)

Hence formally we obtain

o0 T . o0
8(x1, x2) = f k dk f dep e2imhreos(@=0) — / k dk 27t Jo2mkr), (21)
0 -7 0

where Jy(x) is the Bessel function of order zero. The last integral is obviously divergent and
should be considered as representing a distribution. But the application of Hankel’s identity

(9]

1 o0
-§(r—1r) = / kdk 2 JoQukr)2m Jomkr'), (22)
r 0
for r’ = 0, and using the fact that Jy(0) = 1, yields
1
8(x1, x2) = 2—3(V)~ (23)
Tr
Now recalling a simple scaling property of the delta function, with r > 0
1
8(r?) = =—8(r), (24)
2r
we can write
8(x1, x2) = 8(mr?). (25)

Thus, rotational invariance around the polar coordinates at origin O suggests that the area of a
circle centered at O can be the variable of the delta function in two dimensions. This notation
has a meaning since we are in two dimensions (in one dimension § (x?) has a different meaning

(10D).

24.2. N = 3. As can be expected we will be using a generalized Hankel’s identity for
spherical Bessel functions j;(x), which is derived from the previous one with appropriate
modifications. Following the same approach, we have

o0 (o] o0 .
8(x1, X2, x3) = 8(x1)8(x2)8(x3) = / / / dky dky dks @27 Kixitkexatksxs) (26)
—00 J —00 J —00
We choose now a spherical coordinate system for which k = (ki, k;,k3) = ku and
r = (x1, X2, X3) = rX3, so that (u-z) = cosy and dk = k? dk 27 sin y dy:
(o] T
8(x1, X2, x3) = / k* dk / 27t siny dy e?Tkreosy 27)
0 0
Angular integration yields & (x1, x5, x3) = 8(r) as
5(r) =4n/ k2 i ST =471/ K2 dijo(2mkr)
0 2mkr 0
g [ 1
=— [ Kk jo(k'r) = 8(r). 28
872 ), Jolkr) = -—38(r) (28)
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This can be evaluated by the Hankel’s identity for spherical Bessel functions, where r’ is set
to equal 0, i.e.

3(r) = ﬁS(r). 29)
But observing that
8(r’) = L<$(r) (30)
3r2 ’

we obtain the expected result
dr

d(r)y=3:4 57 =48(V), (€28
where V is the volume of a sphere in three dimensions and manifest rotational invariance in
R? is explicit.
2.4.3. General N. For general N, we expect to have the representation

8(r) =48(Vn(r), (32)
where Vy (r) is the volume of the sphere of radius r centered at the origin of coordinates equal
to the product of the area of the unit sphere in RY times rV /N

Vn(r) = e =—7r". (33)

This result can be proven by extending the Hankel identity to the generalized spherical Bessel
function in R”, as explained in appendix A.

Let r, be the projection of r onto the subspace orthogonal to n. If r;, = |r |, then we
have

rt =[(r-r)— (r-n)’. (34)

Then the delta function in the subspace of dimension (N — 1) orthogonal to n has a manifest
rotational invariant expression

5(r) =8 (%[(r r) - (r-n)zl”z‘) . (35)

Consequently the Green’s function has the form function

G(r) = I:%sgn(n-r)+c]8 <%[(r-r) - (r-n)z]NZl). (36)

2.5. Integral representation of the Green’s function over the unit sphere in dual space RV

An alternative explicit form of the Green’s function can be given using spherical coordinates
in Fourier space. Let k = k& where @ is the unit vector of K, then we have

dk = kN1 dk d@, (37

where d@ is the area element on the unit sphere in R¥~!. Hence

1 [® k(@ 1
G(r) = — / / KN~ dk d e ke [— + 5@ n)] - (3%
o Jov k(

27 @-n)  k
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Performing first the k-integration using Lavoine’s table [7]
oo . I\ w=-2r CaN-2), ~
/ kN2 dk ePTHET) — <E) [—(_5 Tt im (=Y 28V (-5 - r)}, (39)
0
we end up with an integral on the unit sphere in R

Y [ wN=21 N2, ~ 1 ~
G(r) = (E) LN_I dw[m+lﬂ(—l) 1) (—a)-l')i| [m+c‘5(a}~n)] .
(40)

Here V=2 (x) is the (N — 2)th derivative of the §-function with respect to its argument. The
right-hand side of equation (40) is a sum of two terms. For given N, one term is real and
the other imaginary. Thus, as G(r) is a real valued function, only the real term is the correct
expression, the other should vanish.

For ¢ = 0, we have explicitly:

with N = 2m
(=D 2em - 2)! ~ !
Gl(r) - (27.[)2m /SAmel dwm, (41)
and with N = Qm + 1)
B (—l)m_l ~8(2m—1)(_&3 . r)
G0 = 3 vzt /Sz I .

These are precisely the expressions one can derive from formulae established by Gel’fand for
the Green’s functions of general constant coefficients elliptic partial differential operators [6].
As an illustration, we examine the two simplest cases, i.e. N = 2, 3.
For N =2,

1 1
G = —— dN#, 43
0 =" L Y@ 0@ n) @3
we can also explicitly show that the imaginary part is 0, i.e.
. S(—5.
[ ggieen (44)
4 Js! (o -m)
For N = 3,
~8(-&-1)
Gi(r) = —_— (45)

s [, @ -
82 Jg (w - n)

and the imaginary part can be shown to be 0 by computation, i.e.

i 1
- do—————=0. 46
872 /Sz @ 2@ 0 (46)
As for the G, we compute the real parts (proportional to ¢) of equation (40). Thus
with N = 2m

G _ (=D"2m —=2)! /‘ 9 1 53 47
o(r) = o o O (@ -n), (47)
and with N = 2m + 1)
_ (_1)m+1 ~ o2m—1),_~ ~
Go(r) = W./slm dw s (—w-r)§(w - n). (48)

These integrals should vanish, as one expects them to be the solution of the homogeneous
equation. Explicit calculations can be performed in low dimensions, i.e.
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for N =2,
1 ~ 1 ~
Go(r) = P /S‘ dwmﬂw -n) =0, (49)
and for N = 3,

Go(r) = da)S (@-r)d(@-n) =0. (50)

T 872
where the proof is obtained as follows. considering ¥ (r, 6, ¢) as a test function and supposing
n in the z-direction, = (1,0, ¢) and r = (r, a, B)

J= ! da)w(r 0, )8 (@ -r)s(w - n)
872
27'[
= 8_7112 d¢>/ sin@ dovr (r, 8, ¢)8' (r(cos O cos a + sin @ sin a cos(B — ¢)))5(cos O)

2n
— _/ d¢¢ ¢>) 8'(r sina cos(B — ¢))
v'(r5.3)

51
2r2 sin? o Gb

- %/O Ay ( ¢) 5'(r sina cos(B — ¢)) =

in equation (50), the test function is just 1 thus, G((r) is equal to 0.

2.6. Integral representation of the Green’s function in RY

Equation(12) can be transformed into a ray representation via the Fourier representation of

1 o ) 1
= / dse 2 iskm [ _son(s) | . (52)
2mi(n - K) oo 2

In fact, we have after exchanging integration order

Gl (l‘) = f ds (l Sgn(s) + C> / dk 672nik(r7sn)’
—o0 2 RN
= (C"'l)/ d35(“—sn)+<c—l)/ ds 8(r +sn). (53)
27 Jo 2/ Jo

We can verify that each integral of equation (55) is separately a solution of equation (6).
Observe that from the definition of G (r), given in equation (12) we have

oo

Go(r) = / dke?™*T§(n-r) = f ds 8(r — sn). (54)
RN

—0Q

2.7. Solution of the problem as divergent beam x-ray transform

The solution of equation (3) using G (r) can now be given as a linear combination of integrals

of p(r)
d(r,n) = <c+ %) /00 ds p(r —sn) + (c — %) /oods p(r+sn), (55)
0 0

along the directions of n and —n in R". In fact each of these two integrals are also solutions
oo oo
/ ds p(r +sn), resp. / ds p(r — sn) (56)
0 0
provided that p(Jr| — o0o0) = 0 (resp. p(|r| > —o0) = 0).

8
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Since ®(r, n) depends on r and on n, or (2N — 1) parameters, equation (56) can only
be considered as the definition of an integral transform, if (N — 1) necessary conditions
are imposed before an inversion procedure is contemplated. Of course the previous
parametrization is redundant. It is sufficient to give n(N — 1) parameters and then consider
inside the hyperplane orthogonal to n containing the coordinate origin O a point of the chosen
line, with (N — 1) parameters. So the net number of independent parameters is 2(N — 1).
To reconstruct a function on RY, we have several possibilities depending on how we restrict
n and r in space such that the total number of variables is N. If n is unrestricted on the unit
sphere, then r must be on a curve, i.e. r(¢) with ¢t € R. This is precisely the divergent beam
x-ray transformation (or cone-beam transform) in RY, see [11], [12]. In particular, for R3, it
is known that one must require that r = r(¢) or that the point source describes a conditioned
space curve [13] to have an inverse transform. If n belongs to a circle of the unit sphere
(intersection of a hyperplane and the unit sphere), then r can describe a hypersurface, i.e.
r(u, v)., etc. This important topic will be tackled in a future work.

3. The special case N = 2 and its complex extension

In two dimensions, the situation is interesting since the labeling of the line integral by r and
the angle 0 for the unit vector n is redundant in a coordinate system. It is sufficient to give the
distance from the coordinate origin to the line and 8. Then this x-ray transform is equivalent
to the Radon transform in R?. In this section, we examine its relation to this simple partial
differential equation.

3.1. Green’s functions of the complex formulation

As shown earlier, the Green’s function in R? (without the homogeneous part) is G (r) given
by a distribution in two dimensions

Gi(r) = {sgn(r-n)s(r-n). (57)

Here once n is given, nt is uniquely defined, if the positive rotation direction in R? is

specified. In a Cartesian coordinates system, with r = (x,y),n = (cosf,sinf) and
n' = (—sin#, cos ), the directional derivative operator n - V is explicitly

ad 0
n-V=<c0s9—+sin9—), (58)
ax dy

and introducing the complex notations (z = x +1iy,Z = x — iy), it writes as

n-v= (eei + e—iei_> : (59)
0z 9z
In previous sections, we have already found the Green’s function G of this operator, i.e.
n- VG, = §(x, y) and established that it is a product of two one-dimensional distributions
along orthogonal directions. A natural question to ask is whether or not this Green’s function
can be represented as boundary values of analytic functions with respect to a complex parameter
on some contour in C. In the original form, the real parameter here is, of course, the
angle 6 of the unit vector n, which has appeared in equation (59) as a unimodular complex
number e’
In the following, we shall extend it to a complex parameter A = |A| e’ and introduce the
‘extended’ form of the n - V operator which shall be called V;,

(et LAY (21
V., =1{I|Ale + —— ) =(A—+-=). (60)
9z  |r|e? 97 9z A 07
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Under this form both derivatives with respect to z and to 7 appear. We may ask whether a
choice of a new variable can eliminate, for example, one of them and turns V,_ operator into a
Cauchy—Riemann operator, or d-operator.

Let us now consider the new complex variable

|

¢=-('z-22), 61)

i
where [ is a real number. Its expression in terms of the original vectors (r, n, n') is particularly
simple

¢ =AM+ MDY@ -nh) +i(A = [ATH (T -m)], (62)

displaying clearly real and imaginary parts.
Now, under this change of complex variable, the operator V; of equation (60), transforms
into

) 0
Vi= (A = A —=. (63)
1 a;

What is readily known about the so-called 9-operator is that its elementary solution, (see
[14]) for a complex variable z = x +1y, is 1/(rz) (see appendix B), i.e.

a1

Prm 8(x, y). (64)
Zmz

Recall that x and y are real Cartesian coordinates and that §(x, y) = §(x)§(y). This result

can be derived, for example, from the elementary solution of the Laplace operator in two

dimensions. We thus conclude that

a 1 _ .
—=— =8+ A7H -0 LA — A7) -m), (65)
ac ¢
which, using the scaling property of the one-dimensional delta function, can be rewritten as
a1 1

—_—— . L1 .
agw  ERE - T (©0

Hence by multiplying this equation on both sides by

S~ A1) (©7)
and using

sgn(|Al® — A7) = % = sgn(|Al — 1), (68)
we obtain

A (%) = %sgn(m —DS(r-n,r-nb). (69)

But as the transformation from the real variables (s = (r-nt),s = (r-n)) to the variables
(x, y) is just a rotation of angle 0, the Jacobian determinant being 1, we can write
8((r-m), (r-n*) = 8(x, y). (70)
Hence
il sgn(|A] — 1)
V.. (— =48(x,y), (71)
44

10
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and the elementary solution of the operator V; is
~ ilsgn(2] — D\ _ sgn(lA] — 1)
G(5) = = ——— "
i T(AZ — A7 1z)
a result found by [1]. As can be observed, this expression is independent of [/ after the
substitution of the expression of ¢ from equation (61) and explicitly we have
i sgn(|A| — 1)

[(EEALY oty + i (A=) (e m)]

Thus we have two elementary solutions depending on whether || is larger or smaller than 1.
Observe also apart from this sign factor sgn(|A| — 1), it has the correct form of the analytical
representation of a delta function (see [15])

o= [Cal0 _ 11 (74)
¢ _2171]_00 (t—z2) 27z

We now look at the limiting cases for which |A| — 1 to see whether or not the found G
yields the constructed solution G (r) of equation (57). In the two limiting cases of, we can
see that using the so-called Plemelj formulae [15]

(72)

5(r-n,r-nL,)\)= L (73)
2

1 1
lim_, o+ — =PV.— Find(x), (75)
x i€ X

we get the following results.
For |A\| = 1+¢€, withe — 0

~ 1
lim G(r-n,r-nt A) =G, = lim — .
e—0* e—0" 27t (r-nt) +ie(r-n)
i 1 1
= E . .m+§sgn(r-n)5(r-n ) (76)
For |A| =1 — €, withe — 0F
i —1

limé(r-n,r-nl,)\)zG,:lim— -
0 e—0* 27 (r-nt) +ie(r.n)
i 1 1 N
= _EP'V' oD + Esgn(r-n)S(r-n ). (o))
The sought Green’s function being real, we can see that the real parts of the two limits, which
are even functions of (r - n') (whereas the imaginary parts are odd functions of (r - nt)), are

the same and give the expected answer.

3.2. Construction of solutions using the Green’s functions

The Green’s functions of equations (76) and (77), obtained in the last section for A — 1 with
|A| > 1 and with |A| < 1, allow us to construct the limiting values @ (r, A) of the solution of
the equation

V,®(r, L) = p(r). (78)

Thus the two solutions @ (r, n) constructed respectively for lim,_.o+ |A| = 1 + ¢ and for
limg o+ [A] =1 — € are

®_(r,n) = / dr'Gi(r—r',n)p) = / dr'G.L(r’',m)p(r —1r'). (79)
R? R?

Now using the following parametrization:

L €L

r=1n+sn and r =tn+on, (80)

11
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in equations (76) and (77) we get

—_ _ 1
oim = (pv. [ ds [ aPTZOnF©@ =)
2mi R - B

:l:in/ dr sgn(t)p((t —t)n+anl)>. (81)
R

The first integral on the right-hand side can be reformulated, using the definition of the Hilbert
transform H f of a function f

HP o) = 1Py, [ as L) (82)
b R O—S
as
Fl 1
O (r,n) = —,H/ dt p(r —tn) + —/ dr sgn(t)p(r — tn). (83)
2i R 2 R

The first term is the Hilbert transform of the Radon transform of p and the second term is just
the Radon transform of p, the integration can be rewritten over all R. Thus we have obtained
the boundary values of two analytic functions in A € C, at the boundary |A| = 1. According
to the general theory of representation of distributions of bounded support [15, 16], their jump
across this boundary represents the true distribution ¢(r, n) on this boundary, which is

@r,n) = o, (r,n) —@_(r,n) = —iH/ dt p(r — tn) = —i(HRp)(r, n), (84)
R
where Rp denotes the two-dimensional Radon transform of p. Since & (r, n) is a solution
of equation (3), we also observe that
n-Ve(r,n) =0. (85)

Now an analytic function in the A complex plane, which has exactly this jump on the
unit circle T (or |A| = 1), can be constructed by means of a Cauchy contour integral on 7, as
specified in [15, 16]

l 3
®(r, 1) = —/ ALl AeC\T. (86)
271 Jr n—A
Equation (78) shows that, for A — 0
0
— ima1 2
p(r) = ){I_)H(l))» 8Z¢(r’ A, 87)
also the Taylor expansion of equation (86), for A — 0, gives
1 5 1 b
o) = — [ au20H L a2 L 002, (88)
271 Jr m 271 Jr u?

The first integral on the right-hand side of equation (88) is in fact equal to zero (see [17])
and equation (87) yields

1 1 0
=— [ du—— . 8
pr) = >— fT no gp P ) (89)

Asp e T,weset u =e and du = ie'” d9. This leads to

1 [ 0
p(r) = — / doe™ —p(r,0)
0 07

2w
1 [ .. a .9

= — df(cosf —isinf)| — +i— |e(r, 0). (90)
4 Jo ax  ady

12
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So we have expressed the density p(r) in terms of ¢ (r, 8), which is the value of the
measured quantity on the boundary A = 1. The question is to see whether this expression given
by equation (90) is a Radon transform inversion formula [19]. Recalling thatn = (cos 6, sin6)
and n* = (—sin#, cos ), we can rewrite equation (90) as

1 2
p(r) = 4—/ df[n - Vo(r, 0) +n* - V(ip)(r, 0)], ©n
T Jo
because of equation (85), we end up with
1 2
pr) = — / don* - V(ig)(r, 0). ©92)
47{ 0

Now, replacing ¢ by its expression from equation (84) and calling g = Rp, the Radon
transform of p(r), we arrive at the form

2
p(r>=p(x,y)=—i/ ot - V(Hg)m" -1, 6). (93)
47'[ 0

Since r = (nf + n's), see equation (80), we have V = (n% + nL%) and after insertion
in equation (93) we obtain

1 2 a n
pr) =p(x,y) = —4—/ d9—(Hg)(n" -r,6)
T Jo as

1 27 00 w
=—— do P.V. do —2—. 94
472 J, /700 ? (nt-r)—o 9

This gives precisely the standard inversion formula for the Radon transform, found in
textbooks, e.g. [18, 19] and a remarkable connection of the directional derivative operator
in two dimensions and the Radon transform has been established.

3.3. 9 method in complex analysis

In complex analysis, see e.g. [20], the non-homogeneous equation written with the operator
of equation (63) has a standard solution. Here we show that p(r) can be reconstructed using
complex analysis. The n-V operator in the complex form yields the following non-holomorphic
equation:

I 5 5. 0

;(IKI — [A] )B—ECD(E) = p(X,Y), 95)
where the real and imaginary parts of ¢ are X = NR(¢) and ¥ = 3(¢), consequently,
d¢ Ad¢ = —2idX AdY := —2idX dY. If we use the definition of (61) for ¢ then,

X =1(A + A Ys and Y =1(A] — A7 He, (96)

where s = (—xsinf + ycosf) and t = (x cosf + y sin6) are obtained from equation (80).
Now, by definition

~ 1 p(X,Y)
X,Y)=-———7—, 97
PXY) = e 97
equation (95) is written as
d ~
—=®(@) =pX,Y). (98)
¢
Then, @ is obtained by the following integral formula [21]:
1 -p(X,Y)
@ (20) = ¢(20) + —/ dg A d¢ ; 99)
271 Je £ —20

13
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where ¢ is the holomorphic solution of 3, i.e. i(p(g“) = 0. Hence, ¢(z) is obtained by

1 —p(X,Y)
@(z0) = P(20) — 5= dC d¢ : (100)
2 £ — 20
The integral in equation (100) can be recast as
(X, Y)
——/ /dXdY (101)
X +1Y — ZO

Using equations (97), (96) and dX dY = I?(|x|> — |A|~2) ds d¢ the above integral becomes
i e LAAHATDs LA =D 0)

- / / PP = A7) ds dr RN .
71 Jr Jr A+ [ADs +i(A] = A7) = (0 +iT)]
_ i//dsdt LA+ A1 7Ds, LA = 1A 7DD
i (1A + A" Ds +i(A] = A7t = (o +iT)’
where 7o = [(o+it). Now, by making the variable changes (|A|—|A|~)t’ = ((JA|—|A|" )t —1)
and (JA| + |A|™Ds" = ((A| + |A|~)s — o) we obtain

(102)

! 73 p(s'+o,t"+1)

;/D%Ads a ("“*'2’\"‘)3/+i(\)\llell")t/’ (103)
where
o(s' +o,t' +1) :=2p.(U(\| + I)»I_I)S +lo, I(|A] — I)»I_])t +17). (104)

We can rewrite p(t'+7, s’+0) with a vector argument in the form, i.e. p((#'+7)n+(s’+0o)nt),
then the integral in (103) becomes

’ 1
// Lar? (7' +7)n+(s'+0)n ) (105)

(BT g g (B
Finally, for || = 1 then, we have
1 ds’jR dt'p((t' + T)n + (s’ + o)nt) _ i / a4’ (Rp)(zn+ (s’ + o)nt)
i Jr s’ T Jr —s’
= i(HRp)(tn +onb), (106)

where (Rp) = fR dt' p((t'+7)n+ (s’ +0)nt) is the two-dimensional Radon transform and the
integral over s’ is the Hilbert transform at point zero. Now, by substituting the above equation
into equation (100), ¢(zp) is obtained as

@(z0) = P(20) — iI(HRp)(20)- (107)
Now the above equation and equation (86) yields a solution as a Cauchy integral (as a solution
of a corresponding Riemann—Hilbert problem) on 7, the unit circle {|u| = 1}

1
d(r,A) = — duM
21 Jr nw—»x
1 O(r, 1 i(HR ,
I O B G lLn) 108)
27i Jr w—A 27i Jr n—A
@ (r, ) is identically zero on T [20]. Hence,
1 i(HR ,
o) = —— [ 4y HRAT W) (109)
27i Jr w—A

Consequently, by equation (87) we obtain

A7 /d i(HRp)(r, 1)
= )

Finally, following the same procedure as described after equation (87), one can deduce

equations (93) and (94).

(110)
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4. Conclusion and perspectives

In this paper we have presented, in an elementary and tutorial way, the properties of a very
simple inhomogeneous partial differential equation. The salient aspect is its connection to a
class of integral transforms called divergent beam x-ray transform arising in reconstruction
problems for x-ray computed tomography (CT). In fact, this equation is a special case of the
stationary transport equation with attenuation and external source which has been investigated
by many authors in two dimensions, in relation to the attenuated x-ray transform for ionizing
radiation emission imaging [2]. This problem is several orders of magnitude harder than that
treated here and has not been extended in higher dimensions. With our approach we hope
to be able to deal directly with the three-dimensional case and not resort to a tomographic
procedure for imaging object in real three dimensions. The two challenging problems are first
the inclusion of two conditions to bring down the number of parameters to three and second
the way to complexify the equation in C2.

Appendix A. On spherical bessel functions in R

Spherical Bessel functions are described in many treatises, e.g. [22, 23]. This appendix is
meant to explain rapidly their connection to ordinary Bessel functions. We start with the
Helmholtz equation in RY

(VZ+iHy =0. (A.1)
The radial part of this equation is
1 d [/, d , L?
(era <V 5)"‘]( _r_2 M](V):O. (AZ)

By factorizing the solution into a radial part and an angular part, which is an N-dimensional
harmonic function of level L such that L? = [(I + N — 2) and by making the following change
of function

2-N
fitr)y =r 2 u(r), (A.3)
we arrive at the following radial equation:
2
Eh)  1dhe) (o (+2F)
+ — + |k — =0. A4
dr? rodr r? filr) “.4)
This is just the Bessel equation with index v =1 + % Thus, u;(r) has the following form:
2-N 2-N
w(r) =r= Jynz(kr), ui(r) =r2 Nz (kr). (A.5)
It is customary to denote the spherical Bessel functions by the symbol j;(x):
. Cyv \?
Ji(x) = (m) J(p,%)(x)» (A.6)
where Cy is a constant which is to be determined as follows.
Letr = (xq, x2, ..., xy) = rXy, then
1 o0 /2 .
S(r) = ——38(r) = / kN1 dk / Qy_i siny dy e?rkreosy (A.7)
Qyriv-t 0 0

where Qy = 27V/2/ F(%) is the ‘solid’ angle of N-dimensional hypersphere. Consequently,

the spherically symmetric delta function in R" has the form, generalizing the formulae found
inforN =2,3

1 o 2Qn-1 [ v
— 5(r) =2QN_ KNV dk jo(2rk =—/ KNLAK o (k'r), A8
Qur i1 (r) N 1/0 JoQmkr) 2 I, Jo(k'r) (A.8)
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thanks to the application of Hankel’s identity for generalized spherical Bessel functions in RY
2Qn_1

QuriVt ~em
with 7 = 0. Now replacing the spherical Bessel function by their expression in terms of the
Bessel function (equation (A.6)) we have

5 — 1) f KL AR oK) joK'r), (A.9)
0

8(r—r') 282N-1 /Mnkfdkj’ k') Jvs (K7
—r—r)=——— 2 (k'r)In=2 (K'r
Qyri-! QmNCyrh-2 ), N i
S S N YA (A.10)
= r—r), .
Qm)NCyrN-1
hence,
2QN 12N 1
N = - —. (A.11)
TN =)
Therefore, we obtain the following relation between j;(x) and J, (x):
() (ZQN19N>11 @) ( 1 )é‘] ) (A12)
X)=———= v-2,(x) = v-2,(X). .
Ji (27.[)NXN72 +55=) ZN—3\/EI‘(%)F(N2_') +55%)

Having these expressions, a new form of the Hankel identity can be given in terms of
these new Bessel functions.

Appendix B. The Green’s function of the 8-operator in R*

This appendix is devoted to the derivation of the Green’s function of the 3-operator in C from
the Green’s function of the Laplace operator in R?. The aim is to show that there is a problem
to represent the delta function in R?, despite several investigations on this subject [8].

The Green’s function of the Laplace operator is the solution of the equation

AG(r) = 6(r), B.1)

where 8 (r) represents a unit point source at the coordinate origin. The problem has a manifest
symmetry of revolution. Thus it is appropriate to use polar coordinates r = (r, ), so that

A= 82+18 B.2
—[m ;5] -2
G(r) =G(®). (B.3)

On the right-hand side, we have §(r), but we shall not give yet its expression in terms of polar
coordinates.
Inspection shows that G(r) is of the form

G(r) = Clnr + const. (B.4)

To determine the coefficient C, we use the Stokes theorem. Both sides of equation (B.1) can
be integrated over R?. Then the left-hand side may be treated as an integral on the divergence
of VG, which is equal to the flux of VG through a closed curve around the origin. In Cartesian
coordinates

(VG), = G'(r) cosd (B.5)
(VG), = G'(r) sin6. (B.6)
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For a circle of radius r centered at the origin O, the area element da, also in Cartesian
coordinates, is

da = (rdf cosb, rdfsinb), (B.7)

so that the elementary flux is G’(r)r dé, thus

%G’(r)r do = f gr do =2xC. (B.8)
On the right-hand side, the integration should yield

/R” dré(r) = 1. (B.9)
We conclude that C = 1/(27) and

G(r)= % Inr + const. (B.10)

We now shift to complex coordinates in R? with z = x +iy and Z = x — iy. We can see that
the area element in R? transforms as

dxAdy:%dz/\dZ, (B.11)
one can check that this quantity is real. Now we also have
82
A=4——, (B.12)
0207
as well as
1 1
G(r) = —Invzz = —Inzz = G(z,3). (B.13)
2 4
Thus equation (B.1) reads now
2
4——=G(z,2) = 4&(r). (B.14)
0207
Hence one gets one of the two following possibilities:
a1
—— =38(r)=4(x,y), (B.15)
0zmz
a 1
—— =46(r) =45(x,y). (B.16)
dzmz

We see that the explicit representation of the two-dimensional delta function in terms of z and
7 is irrelevant. It is sufficient to have for arguments of the two-dimensional delta function the
real and imaginary parts of the complex variable utilized in the d-operator.
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