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Abstract
The Hamiltonian Friedrichs model [1] describing the evolution of a two-level
system coupled to a continuum is used in order to modelize the decay of the
kaon states K1, K2. Using different cut-off functions of the continuous degrees
of freedom, we show that this model leads to a CP violation that qualitatively
fits with experimental data improving previous numerical estimates. We also
discuss the relation of our model to other models of open systems.

PACS numbers: 03.65.Ud, 03.67.Dd, 89.70.+c

Introduction

There have been several theoretical approaches to CP violation in kaons (see e.g, the collection
of papers edited in [2]), and the question is partially open today. In this paper, we use
a Hamiltonian model, describing a two-level states coupled to a continuum of degrees of
freedom, that makes it possible to obtain the phenomenology of neutral kaons and provides a
new numerical estimate of the parameters of CP violation. Solving the Schrödinger equation
for the Hamiltonian, we derive a master equation for the decaying two-level states similarly to
the generalization of the Weisskopf–Wigner approach formulated by Lee, Oeheme and Yang
[3] (LOY) in the case of kaonic decay. Later on, Chiu and Sudarshan [4] used a Lee model in
order to obtain a correction to the LOY theory for short times, departing from the exponential

decay. Their Hamiltonian describes (K0, K
0
) modes as done in the LOY theory. In this

paper the authors point out to a numerical Khalfin estimate of the CP violation parameter
ε ∼ 0.06 × eiπ/4. That is 30 times the experimental data. Our new approach is based on the
derivation of a master equation from a Hamiltonian describing (K1, K2) decaying modes and

not for (K0, K
0
) modes as done in LOY theory. Under weak coupling hypothesis this leads

to a Markovian master equation which allows us to simulate the kaonic lifetimes as well as
kaonic oscillations and regeneration. It even fits closer the CP symmetry breaking parameter.
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Unfortunately, this last prediction is not quite accurate quantitatively, which, in a sense, is not
astonishing for such a simplified approach. In a first example with non-bounded spectrum
in energy, we obtain the exact angle while the modulus is 14 times the experimental data.
However, we show that using different cut-off functions of the continuous degrees of freedom
we can improve the above estimate.

We prove that it is possible to obtain all the interesting features of the model when the
Hamiltonian possesses a spectrum only bounded from below. In this case, with Gaussian
cut-off the previous estimate is improved and we obtain a CP violation parameter value only
three times the experimental data. Our treatment confirms that it is possible with a very
simple model such as the two-level Friedrichs model to compute some essential features of
the very rich kaon phenomenology. It also confirms that the essential ingredient for deriving
an irreversible in time dynamics of subsystems is the presence of a continuous degrees of
freedom of environment.

In general, quantum mechanics provides a continuous, reversible in time and unitary
evolution law (via the Schrödinger equation). This description contradicts our everyday
experience in which ageing, dissipation and irreversibility are omnipresent. In this context, it
is interesting to study hybrid quantum systems, sufficiently complex, that exhibit altogether
unitary and dissipative in time evolutions. This goal can be achieved in the framework of the
Friedrichs model.

One-level Friedrichs model is well understood [5–7]: it predicts that the excited state
disappears and ‘fuses’ into the continuum. Its survival probability decays exponentially in
time. The lifetime is proportional to the coupling between the discrete mode and the continuum.
Exponentially decaying systems are very common in classical and quantum physics. They
are relatively trivial when we consider them from the point of view of temporal irreversibility
because, although the decay law is not reversible in time, such systems behave as if they did
not possess an internal clock or memory: the decay rate is constant throughout time, and
the non-decayed system is in the same state at all times. Roughly speaking, exponentially
decaying systems exhibit an irreversible behaviour but ignore ageing.

The two-level Friedrichs system makes it possible to describe a class of systems that
exhibit richer behaviour: oscillations, regenerations and so on. If we accept a general
definition [8, 9] according to which each departure from the pure exponential decay law
can be labelled as a Zeno behaviour (or anti-Zeno, depending on the sign of the departure),
then, as we shall show the two-level Friedrichs model is rich enough in order to describe Zeno
and anti-Zeno behaviour (for N-levels generalizations see [9]), and provides a relatively exact
phenomenological model of kaons physics.

In the first section we define the two-level Friedrichs model. In the second section
we recall the main features of kaon phenomenology. In the third section we show how to
simulate them, thanks to the Friedrichs model, when (a) the spectrum of the continuous mode
is unbounded, in the presence of a Gaussian cut-off and (b) in the presence of a Gaussian
cut-off when negative energy levels of the continuum are decoupled from the two-level
system.

In the fourth section we compare our approach with other recent approaches [10–17]
where an open system interacts with its environment having a Lindblad form of evolution, and
we also discuss the question of decoherence.

1. The two-level Friedrichs model

The Friedrichs interaction Hamiltonian between the two discrete modes and the continuous
degree of freedom is given by the operator H on the Hilbert space of the wavefunctions of the
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form |ψ〉 = {f1, f2, g(ω, t)}, f1, f2 ∈ C, g ∈ L2(R+):

H = H0 + λ1V1 + λ2V2, (1.1)

where λ1 and λ2 are the positive coupling constants, and

H0|ψ〉 = {ω1f1, ω2f2, ωg(ω, t)}, (ω1 and ω2 > 0). (1.2)

The operators Vi(i = 1, 2) are given by

V1{f1, f2, g(ω, t)} = {〈v(ω), g(ω, t)〉, 0, f1.v(ω)}
V2{f1, f2, g(ω, t)} = {0, 〈v(ω), g(ω, t)〉, f2.v(ω)}, (1.3)

where

〈v(ω), g(ω, t)〉 =
∫

dω v∗(ω)g(ω, t) (1.4)

is the inner product. Thus H can be represented as a matrix:

HFriedrich =

 ω1 0 λ1v

∗(ω)

0 ω2 λ2v
∗(ω)

λ1v(ω) λ2v(ω) ω


 . (1.5)

Here ω1,2 represent the energies of the discrete levels and the factors λiv(ω)(i = 1, 2) represent
the couplings to the continuous degree of freedom. The energies ω of the different modes of
the continuum range from −∞ to +∞ when v(ω) = 1, but we are free to tune the coupling
v(ω) in order to introduce a selective cut-off to extreme energy modes. Let us now solve the
Schrödinger equation and trace out the continuum in order to derive the master equation for
the two-level system. The two-level Friedrichs model Schrödinger equation with h̄ = 1 is
formally written as

 ω1 0 λ1v
∗(ω)

0 ω2 λ2v
∗(ω)

λ1v(ω) λ2v(ω) ω





 f1(t)

f2(t)

g(ω, t)


 = i

∂

∂t


 f1(t)

f2(t)

g(ω, t)


 . (1.6)

Easily, we obtain

ω1f1(t) + λ1

∫
dω v∗(ω)g(ω, t) = i

∂f1(t)

∂t
, (1.7)

ω2f2(t) + λ2

∫
dω v∗(ω)g(ω, t) = i

∂f2(t)

∂t
, (1.8)

and

λ1v(ω)f1(t) + λ2v(ω)f2(t) + ωg(ω, t) = i
∂g(ω, t)

∂t
. (1.9)

Integrating the last equation we obtain g(ω, t) assuming g(ω, t = 0) = 0:

g(ω, t) = −i e−iωt

∫ t

0
dτ [λ1f1(τ ) + λ2f2(τ )]v(ω) eiωτ , (1.10)

then, we substitute g(ω, t) in the above equation (1.7) and obtain

i
∂f1(t)

∂t
= ω1f1(t) − iλ1

∫
dω|v(ω)|2 e−iωt

∫ t

0
dτ [λ1f1(τ ) + λ2f2(τ )] eiωτ , (1.11)

we also obtain the same relation for f2(t) as

i
∂f2(t)

∂t
= ω2f2(t) − iλ2

∫
dω|v(ω)|2 e−iωt

∫ t

0
dτ [λ1f1(τ ) + λ2f2(τ )] eiωτ . (1.12)

In the following section, we shall make use of the Friedrichs model in order to simulate
interesting properties of the kaonic systems. Before we do so, it is useful to recall certain of
them.
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2. Main features of kaon phenomenology

Kaons are bosons that were discovered in the 1940s during the study of cosmic rays. They
are produced by collision processes in nuclear reactions during which the strong interactions

dominate. They appear [18, 19] in pairs K0, K
0
. It is possible to produce preferentially the K0

particle essentially due to the fact that the K
0

kaon is less probable kinematically and that the
threshold pion energy for its production is higher.

The K mesons are eigenstates of the parity operator P: P |K0〉 = −|K0〉 and P |K0〉 =
−|K0〉. K0 and K

0
are charge conjugate to each other C|K0〉 = |K0〉 and C|K0〉 = |K0〉. We

thus get

CP |K0〉 = −|K0〉, CP |K0〉 = −|K0〉. (2.1)

Clearly |K0〉 and |K0〉 are not CP eigenstates, but the following combinations,

|K1〉 = 1√
2
(|K0〉 + |K0〉), |K2〉 = 1√

2
(|K0〉 − |K0〉), (2.2)

are CP eigenstates.

CP |K1〉 = −|K1〉, CP |K2〉 = +|K2〉. (2.3)

In the absence of matter, kaons disintegrate through weak interactions. Actually, K0 and

K
0

are distinguished by their mode of production, and K1 and K2 are distinguished by their
mode of decay [18]. In first approximation, we can neglect CP violation so that the weak
Hamiltonian commutes with CP . In this regime, the weak disintegration process distinguishes
the K1 and the K2 states. The lifetime of the K1 kaon is short

(
τS ≈ 8.92 × 10−11 s

)
, while the

lifetime of the K2 kaon is longer (τL ≈ 5.17 × 10−8 s). The difference of the mass of
the 1 and 2 kaons is quite small in comparison to their mass (mL−mS

mS+mL
≈ 0.35 × 10−14, with

(mL − mS)c
2 ≈ 3.52 × 10−6 eV). The amplitudes of state K1 at time t can be written as

a1(t) = a1(0) e− iES
h̄

t e− �S
2h̄ t , (2.4)

where ES is the total energy of particle; so ωS = ES

h̄
is the angular frequency and �S = h̄

τS
is

the width of the state. We can write the amplitude of the state K2 in a similar fashion for the
long lifetime. The intensity is

I1(t) = a1(t)a
∗
1(t) = a1(0)a∗

1(0) e− �S
h̄

t

= I1(0) e− t
τS . (2.5)

Setting h̄ = c = 1 and considering a situation during which kaons are at rest we get that τS is
the proper lifetime and ES = mS , the rest mass of the K1 particle. Its amplitude is then

a1(t) = a1(0) e−(imS+ �S
2 )t . (2.6)

Similarly, for K2,

a2(t) = a2(0) e−(imL+ �L
2 )t . (2.7)

From equation (2.2) we can write [18] the corresponding amplitudes of K0 and K0 as

a0(t) = 1√
2
(a1(t) + a2(t)), a0(t) = 1√

2
(a1(t) − a2(t)), (2.8)

and the intensities are equal to

I0(t) = I0(0)

4

(
e−�St + e−�Lt + 2 e− �S +�L

2 t cos(	mt)
)

(2.9)
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and

I 0(t) = I 0(0)

4

(
e−�St + e−�Lt − 2 e− �S +�L

2 t cos(	mt)
)
. (2.10)

Here 	m = |mL − mS | ≈ 3.52 × 10−6 and 	mτS ≈ 0.47, so that K0 and K
0

intensities
oscillate with the frequency |	m|.

This corresponds to the process called strangeness oscillation. We can explain it intuitively
as follows: in the vacuum the disintegration of kaons is due to weak interactions, and the weak
Hamiltonian controls and dominates the evolution. Therefore, the eigenstates of the ‘free’
(weak) Hamiltonian in vacuum are (in first approximation) the K1 and K2 kaons. In the
presence of matter, strong interactions are present during the collisions between kaons and

nuclei. They dominate the decay process and therefore K0 and K
0

kaons are observed, and it is
also possible to distinguish them experimentally because they possess different disintegration
channels. This can be compared, if we develop the analogy with spin-1/2 systems, to situations
in which the spin is measured along the Z direction while it undergoes a precession due to
a magnetic field along the X direction between preparation and measurement. This is also
analogue to what occurs when polarized light propagates in birefringent supports3. Because
the preparation and measurement bases differ from the eigenbasis of the Hamiltonian that
controls the free evolution, interference effects are likely to occur. This is the essence of
strangeness oscillations. What is interesting is that if we compare their difference of mass
(in convenient units) to the inverse of the lifetime of the K1 kaon, we get a comparable
result: (mS − mL)τS ≈ 0, 47. Thanks to this relation and due to the fact that it was possible
experimentally to carry out observations during a time comparable to the lifetime of the K1

kaon, which is relatively long in comparison to other elementary particles, it was possible to
observe strangeness oscillations experimentally.

Generation and regeneration are similar phenomena. If we produce (in matter, in the

strong regime) K0 particles, no K
0

particle is present, but if we wait (in the absence of matter)
during a time long relatively to τS the lifetime of the K1 kaon, the K2 particle only has survived

and the probability to find a K
0

particle is 0.5, so that K
0

particles were generated.

Regeneration is due to the fact that in the presence of matter, the K
0

particle disintegrates
more quickly than the K0 particle. Henceforth their respective amplitudes are not equal in
modulus with as a consequence that a1(t) = 1√

2
(a0(t)+a0(t)) differs from zero. Consequently,

even if we wait (in the absence of matter, in the weak regime) a time longer than the lifetime
of the K1 kaon, and that only the K2 particle is present, the K1 component is regenerated in
the presence of matter.

CP violation is another interesting feature of the kaons phenomenology. It was discovered
by Christenson et al [20]. CP violation means that CP symmetry is slightly violated
(by a factor of 10−3) by weak interactions so that the CP eigenstates K1 and K2 are not
exact eigenstates of the decay interaction. Let us consider that KS(S = short-lived) and
KL(L = long-lived) are the eigenstates of the decay interaction; they can be expressed as a
superpositions of the K1 and K2 eigenstates. Then

|KL〉 = 1√
1 + |ε|2

[ε|K1〉 + |K2〉]

= 1√
2(1 + |ε|2)

[(1 + ε)|K0〉 − (1 − ε)|K0〉], (2.11)

3 This analogy is carefully developed in [10].
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and

|KS〉 = 1√
1 + |ε|2

[|K1〉 + ε|K2〉]

= 1√
2(1 + |ε|2)

[(1 + ε)|K0〉 + (1 − ε)|K0〉], (2.12)

where |ε| 
 1 and ε does not have to be real. KL and KS are the eigenstates of the Hamiltonian
for a mass-decay matrix [18, 19], i.e.

H = M − i

2
� ≡

(
M11 − i

2�11 M12 − i
2�12

M21 − i
2�21 M22 − i

2�22

)
, (2.13)

where M and � are individually Hermitian since they correspond to observables (mass and
lifetime). The corresponding eigenvalues of the mass-decay matrix are equal to

mL − i

2
�L, mS − i

2
�S. (2.14)

The CP violation was established by the observation that KL decays not only via three-pion,
which has natural CP parity, but also via the two-pion mode with a |ε| of order 10−3, which
is truly unexpected. The experimental value of ε is [21]:

|ε| = (28.1 ± 4.1) × 10−4, arg(ε) = 43.37. (2.15)

3. Friedrichs’s model and kaon phenomenology

In what follows, we shall identify the discrete modes of the Friedrichs model with the K1 and
K2 states. This is our basic postulate according to which we can now make use of the Friedrichs
model in order to establish a phenomenology for the kaonic behaviour. More precisely, we
shall assume that

|K1〉 =
(

1
0

)
and |K2〉 =

(
0
1

)
. (3.1)

Let us consider the solution of the two-level Friedrichs model Schrödinger equation (1.6).
According to this equation, the state is at time t superposition of two components that
correspond to the two (complex) eigenvalues of the effective Hamiltonian. In order to avoid
confusion, we shall use different parameters when we deal with the ‘real’ kaons that are
associated with the experimental data and when we deal with the ‘theoretic’ ones in the
framework of the Friedrichs model.

– The masses mS and mL and the lifetime τS and τL will remain attributed to the real
objects.

– The parameters ω1, ω2, λ1, λ2, ω+ and ω− will refer to the theoretic quantities.

3.1. Solutions for v(ω) = e−αω2/2, α > 0, α → 0

3.1.1. Case ω ∈ ]−∞, +∞[. If we substitute v(ω) = e−αω2/2 in equations (1.11) and
integrate from −∞ to ∞ we obtain

i
∂f1(t)

∂t
= ω1f1(t) − iλ1

√
π

α
[λ1f1(t) + λ2f2(t)] ∗ e− t2

4α , (3.2)

where we used the convolution relation, i.e.
∂y(t)

∂t
= f (t) +

∫ t

0
k(t − u)y(u) du

= f (t) + k(t) ∗ y(t). (3.3)
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Then the Laplace transformation of the above equation is

sY (s) − y(0) = F(s) + K(s)Y (s). (3.4)

Thus we write the Laplace transformation of equation (3.2) as

i(sF1(s) − f1(0)) = ω1F1(s) − iπλ1[λ1F1(s) + λ2F2(s)] eαs2
Erfc(

√
αs), (3.5)

where

Erfc(x) = 1 − Erf(x) = 1 − 2√
π

∫ x

0
e−y2

dy. (3.6)

Expanding Erfc and exponential functions (this corresponds to the Markovian or Wigner–
Weisskopf regime) we obtain

i(sF1(s) − f1(0)) = ω1F1(s) − iπλ1[λ1F1(s) + λ2F2(s)]

(
1 − 2

√
α

π
s

)
+ O(α). (3.7)

Now, the inverse Laplace transformation yields

i
(
1 − 2

√
παλ2

1

)∂f1(t)

∂t
= ω1f1(t) − iπλ1[λ1f1(t) + λ2f2(t)] + 2iλ1λ2

√
πα

∂f2(t)

∂t
. (3.8)

We can obtain the same relation for f2. Then we can easily obtain

i
∂

∂t

(
f1(t)

f2(t)

)
=


 ω1−iπλ2

1

1−2
√

παλ2
1

λ1λ2
(− iπ

(1−2
√

παλ2
1)

+ 2
√

παω2

1−2
√

πα(λ2
1+λ2

2)

)
λ1λ2

(− iπ
(1−2

√
παλ2

2)
+ 2

√
παω1

1−2
√

πα(λ2
1+λ2

2)

) ω2−iπλ2
2

1−2
√

παλ2
2




×
(

f1(t)

f2(t)

)
, (3.9)

in which we neglect the O(λ4) contributions. The eigenvalues of the above effective
Hamiltonian, here denoted by Heff , are

ω+ = ω1 − iπλ2
1

1 − 2
√

παλ2
1

+ O(λ4) ≈ (
ω1 − iπλ2

1

)(
1 + 2

√
παλ2

1 + · · · )
≈ (

1 + 2
√

παλ2
1

)
ω1 − iπλ2

1, (3.10)

and

ω− ≈ (
1 + 2

√
παλ2

2

)
ω2 − iπλ2

2. (3.11)

In this approximation the eigenvectors of the effective Hamiltonian are obtained as follows:

|f+〉 =
(

1
0

)
and |f−〉 =

(
0
1

)
. (3.12)

Comparing the eigenvalues in equations (3.10) and (3.11) with the equations in (2.14) we
obtain

2πλ2
1 = �S, ω1 = mS

1 + 2
√

πα�S

≈ mS(1 − 2
√

πα�S),

2πλ2
2 = �L, ω2 = mL

1 + 2
√

πα�L

≈ mL(1 − 2
√

πα�L).
(3.13)

CP violation. Let us study in this case the CP violation. The Friedrichs model allows us to
estimate the value of ε. If the effective Hamiltonian (equation (3.9)) acts on |KL〉 vector states
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(equation (2.11)) as an eigenstate corresponding to the eigenvalue ω− = (
1 + 2

√
παλ2

2

)
ω2 −

iπλ2
2 we must impose (as the sign of ε is arbitrary), that Heff

(−ε

1

) = ω−
(−ε

1

)
, from which we

obtain straightforwardly that, at the dominating order,

ε =
−λ1λ2

(− iπ
(1−2

√
παλ2

1)
+ 2

√
παω2

1−2
√

πα(λ2
1+λ2

2)

)
[(

1 + 2
√

παλ2
2

)
ω2 − iπλ2

2

] − [(
1 + 2

√
παλ2

1

)
ω1 − iπλ2

1

] , (3.14)

and if we expand and neglect O(λ4), we obtain

ε ≈ −λ1λ2(−iπ + 2
√

παω2)(
1 + 2

√
παλ2

1

)
ω2 − (

1 + 2
√

παλ2
2

)
ω1 − iπ

(
λ2

2 − λ2
1

) . (3.15)

If we replace λs and ωs by their corresponding values from equation (3.13) we have

ε ≈
i
2

√
�L�S

(
1 + 2i

√
α
π
mS

)
(mL − mS) − i

2 (�L − �S)
. (3.16)

In the zeroth approximation of α we obtain thus

ε ≈
√

(1.82 × 10−3)/2 ei(43.37)◦ , (3.17)

which shows that our estimation of the modulus of ε is ∼14 times greater than its experimental
value while the estimated phase is correct. Now, in the case α �= 0, ε is given as

ε ≈
√

(1.82 × 10−3)/2 ei(43.37)◦
(

1 + 2i

√
α

π
mS

)
. (3.18)

We see that α > 0 both changes the argument of ε and increases its modulus. Henceforth, a
Gaussian test function in ]−∞,∞[ is not a good choice if we aim at improving the fit with
the experimental CP violation.

3.1.2. Case ω ∈ [0, +∞[. If we substitute v(ω) = e−αω2/2 in equations (1.11) and integrate
from 0 to ∞ we obtain

i
∂f1(t)

∂t
= ω1f1(t) − i

λ1

2

√
π

α
[λ1f1(t) + λ2f2(t)] ∗ e− t2

4α Erfc

(
it

2
√

α

)
. (3.19)

The Laplace transformation and the expansion in α of the above equation (3.19) lead to

i(sF1(s) − f1(0)) = ω1F1(s) − iπλ1

2
[λ1F1(s) + λ2F2(s)]

×
[(

1 − 2i

π

)
+ 2(−1 + i)

√
α

π
s

]
+ O(α). (3.20)

Now, the inverse Laplace transformation yields

i
(
1 − (1 − i)

√
παλ2

1

)∂f1(t)

∂t
= ω1f1(t) − (iπ + 2)λ1

2

× [λ1f1(t) + λ2f2(t)] + (1 + i)λ1λ2
√

πα
∂f2(t)

∂t
. (3.21)

We can obtain the same relation for f2. Then we can easily obtain

i
∂

∂t

(
f1(t)

f2(t)

)

=

 ω1−( iπ

2 +1)λ2
1

1−(1−i)
√

παλ2
1

λ1λ2
(− (iπ+2)

2(1−(1−i)
√

παλ2
1)

+ (1+i)
√

παω2

1−(1−i)
√

πα(λ2
1+λ2

2)

)
λ1λ2

(− (iπ+2)

2(1−(1−i)
√

παλ2
2)

+ (1+i)
√

παω1

1−(1−i)
√

πα(λ2
1+λ2

2)

) ω2−( iπ
2 +1)λ2

2

1−(1−i)
√

παλ2
2




×
(

f1(t)

f2(t)

)
, (3.22)
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in which we neglected the O(λ4) contributions. Obtaining the eigenvalues of the above
effective Hamiltonian and comparing with the equations in (2.14) we get

λ2
1 ≈ �S

π

(
1 − 2mS

√
α

π

)
, ω1 ≈ mS + �S − 6mS�S

√
α

π
,

λ2
2 ≈ �L

π

(
1 − 2mL

√
α

π

)
, ω2 ≈ mL + �L − 6mL�L

√
α

π
.

(3.23)

CP violation. Once again, let us estimate the value of ε. We obtain

ε ≈ i
√

�L�S

[(
1
2 − i 1

π

)
+

(−2 + iπ+2
π

)
mS

√
α
π

]
(mL − mS) − i

2 (�L − �S)

≈
√

2(1.82 × 10−3) ei(43.37)◦
[(

1

2
− i

1

π

)
+

(
−2 + i

π + 2

π

)
mS

√
α

π

]
. (3.24)

We see that if mS

√
α
π

= 1
2+π

the imaginary part in the bracket of the above equation is zero
and the real part is equal to 0.111, which corresponds to the estimation

ε = 6.69 × 10−3 ei(43.37)◦ . (3.25)

So, in this case, |ε| = 6.69 × 10−3 which is only ∼ three times greater than the experimental
value while the estimated phase is correct.

4. Discussion of other approaches

We present here a heuristic discussion of other recent approaches to the decay phenomena in
quantum mechanics and a comparison with the Friedrichs model. Our approach in the above
sections considers the decay, oscillation, regeneration and CP violation of kaons in the Hilbert
space. On the other hand, the open systems approach aims, briefly speaking, to study some
basic questions namely decoherence, Bell inequality, nonlocality, etc [10, 13, 14, 17, 22, 23].

The key ingredient for deriving irreversible in time evolution laws from the unitary
Schrödinger evolution is indeed, in open systems approach, to focus on subsystems of a very
large system (system plus environment). The role of the environment is played in the Friedrichs
model by continuous degree of freedom, while the subsystem is a discrete (two-level in our
case) system. As we have shown, these ingredients (discrete system coupled to a continuum)
suffice in order to be able to derive a non-unitary master equation for the two-level system.
It is worth noting that this approach in which the environment is coupled to the subsystem is
very general in quantum physics. It is for instance the approach followed in order to derive
master equations [14, 13], or to solve the measurement problem in the so-called decoherence
approach [24] and it led to interesting treatments of the general Zeno paradox in the sense of
[8, 9].

In the usual formulation of the Friedrichs model, the border line between the system and
environment is ill defined because the Hilbert spaces associated with those degrees of freedom
are not the tensorial product of their respective Hilbert spaces but are rather their direct sum.
Nevertheless it is possible, as we shall see below, to imbed the direct sum of the Hilbert spaces
associated with the discrete and continuous degrees of freedom into a larger space in which
those subspaces (tensorially) factorize, and to formulate an equivalent Hamiltonian dynamics
that contains as a special subset of solutions all the solutions of the original model. Such a
framework is also useful and necessary, as we shall show, in order to compare our model with
other approaches of open, dissipative, noisy dynamics that have recently been proposed to
describe kaon phenomenology and possible new experimental tests on entangled kaonic pairs.
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This modified Friedrichs model can be explained heuristically as follows. Instead of
representing the state of the system at time t by a direct sum of the Hilbert spaces associated
with the discrete and continuous degrees of freedom, we imbed it into the tensorial products
of a three-dimensional Hilbert space C

3 (that corresponds to the two discrete levels plus their
decay product) and of a Fock space; C

3 ⊗
Hphoton,

ψkaon =

f0

f1

f2


 and ψphoton =




f 0

f 1(ω′)
f 2(ω′, ω′′)

. . .




and the state is given by


0,1,2,ωi =

f0

0
0


 ⊗




0
f 1(ω′)

f 2(ω′, ω′′)
·
·
·

f 2(ω′, ω′′, . . . , ω(n))

. . .




+


 0

f1

f2


 ⊗




f 0

0
0
·
·
·




, (4.1)

where f0 represents the amplitude of a new discrete state |0〉 that is assumed to contain the
‘decay products’ resulting from the disintegration of the two discrete kaonic states |1〉 and |2〉;
besides, f n(ω′, ω′′, . . . , ω(n)) (n = 1, 2, . . .) represents the amplitude of the n environment
particles.

Now that we defined our representation of the state of the system, we can define the free
Hamiltonian:

Hfree =

ω0 0 0

0 ω1 0
0 0 ω2


 ⊗ Id.ω + Id.0,1,2 ⊗ ωa†.a. (4.2)

The first part of it represents the energies of the discrete modes, while the second one contains
the energies of the excited modes. Here the operators a†.a count the number of excitations in
the mode ω.

The interaction Hamiltonian, Hint, is equal to

Hint =

0 λ1v(ω) λ2v(ω)

0 0 0
0 0 0


 ⊗ a† +


 0 0 0

λ1v
∗(ω) 0 0

λ2v
∗(ω) 0 0


 ⊗ a. (4.3)

In analogy with quantum optics, this interaction represents the decay of the kaonic ‘excited’
states (1 and 2) to the ‘ground’ state (0), with excitation of a mode of energy (ω) while by
unitarity the inverse process is also possible (diminution of the energy of a continuous mode
by one quantum of energy ω (here h̄ = 1), and repopulation of the discrete states |1〉 and |2〉).
If the initial state is such that no continuous mode is excited (f i(ω′, ω′′, . . . , ω(i), t = 0) =
0 ∀i > 0), then, the dynamics of the state 
0,1,2,ω(t) is considerably simplified because there
will never occur more than one excitation.

In that case f1(t), f2(t) and f 1(ω, t) obey a closed system of three equations

ω1f1(t) + λ1

∫
dω v∗(ω)f 1(ω, t) = i

∂f1(t)

∂t
, (4.4)

ω2f2(t) + λ2

∫
dω v∗(ω)f 1(ω, t) = i

∂f2(t)

∂t
, (4.5)
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and

λ1v(ω)f1(t) + λ2v(ω)f2(t) + ωf 1(ω, t) = i
∂f 1(ω, t)

∂t
, (4.6)

where we used 〈v(ω), f 1(ω)〉 = ∫
dω v∗(ω)f 1(ω), and the components f0 and f 0 remain

unaffected on the evolution so we take them equal to 1, all the other modes are zero.
After identification of f 1(ω, t) and our previous g(ω, t), we recover a system of equations

of evolution that is rigorously identical to the system of equations (1.7), (1.8) and (1.9) derived
in the framework of the Friedrichs model.

At this level, we can compare the Friedrichs model with other models where a system
interacts with its environment, which leads to a non-unitary evolution for the reduced system.
Quite an amount of recent literature [10, 11, 14], theoretical and phenomenological, deals
precisely with the possibility of treating kaon properties by making them an open system. In
those dissipative models, the evolution law can be brought to the Lindblad form (this form
is standard provided we assume that the evolution law is completely positive, not merely
positive, an hypothesis which can be justified, to some extent, on physical grounds [14]). The
Markovian Lindblad evolution has the following form:

∂

∂t
ρ = −iHeffρ + iρH

†
eff − D(ρ), (4.7)

where Heff is a non-necessary Hermitian Hamiltonian, while D(ρ) is the so-called dissipator
(see e.g. [11, 13] for its precise description) of which the main effect is that it induces a loss
of coherence of the reduced system. This is not the case with the Hamiltonian part Heff of the
evolution operator as shown by direct computation: the von Neumann entropy of the reduced
system ρN = ρ/(Tr(ρ)), which is by definition equal to S(ρN(t)) = −Tr(ρN(t) log2 ρN(t))

is constant in time whenever the dissipator D(ρ) is identically equal to zero throughout time.
This means among others that in this case pure states remain pure states (up to a global decay),
which is effectively the case in our model where the dissipator is identically equal to zero
throughout time as can be seen from the Markovian limits (3.9) and (3.22) (the Wigner–
Weisskopf regime) of equations (1.11) and (1.12). However, another result may be obtained
if we consider a weak coupling limit of the evolution of a kaon system state tensorized with
an equilibrium state of an infinite environment [27]. This is quite different from our approach
and out of the scope of this paper which makes the weak coupling limit in the frame of the
Hilbert space. Here we considered only the process of emission and absorption of one particle
of the environment.

It is worth noting that properties that make kaonic phenomenology so interesting
and attractive such as oscillations, generation and regeneration are a manifestation of the
superposition principle, which is of application precisely because pure states remain pure
throughout time.

Remark. The coherence between the decay products |0〉 on one side and the space spanned by
the kaonic modes |1〉 and |2〉 on the other side is not preserved under the partial trace. In fact,
this comes out from the computation of the partial trace over the biorthogonal decomposition
of the full state:


0,1,2,ωi (t) =

1

0
0


 ⊗




0
f 1(ω1, t)

0
·
·
·




+


 0

f1(t)

f2(t)


 ⊗




1
0
0
·
·
·




. (4.8)
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Recall that if |
〉AB = ∑
i,j αij |i〉A ⊗ |j 〉B then

TrA(|
〉AB AB〈
|) =
∑
i,j,j ′

αijαij ′ |j 〉B ⊗ B〈j ′| (4.9)

and

TrB(|
〉AB AB〈
|) =
∑
i,i ′,j

αijαij ′ |i〉A ⊗ A〈i ′|. (4.10)

Then, taking a partial trace of this state over continuous degrees of freedom it is easy to check
that the reduced density matrix of the discrete (tripartite) degrees of freedom is equal to

ρkaons =

‖f 1‖2 0 0

0 |f1|2 f1f
∗
2

0 f ∗
1 f2 |f2|2


 , (4.11)

where ‖f 1‖2 = ∫ |f 1(ω)|2 dω and ‖f 1‖2 + |f1|2 + |f2|2 = 1. This is clearly the incoherent
sum of the decay products and a pure state that is coherent superposition of the K1 and K2

modes.

5. Concluding remarks

We have shown that the framework of the Friedrichs model is relevant in order to grasp, despite
its simplicity, essential features of kaons decay. This model allows us to describe complex
temporal evolutions (such as kaonic oscillations, generation and regeneration) and to simulate
at least qualitatively CP violation. We also recover the experimental value of the phase,
43.37◦ as a results of equations (3.16), (3.17) and (3.25).

The measurement problem suggests that two regimes characterize the temporal evolution
of a quantum system: a continuous, unitary evolution in the absence of measurement, and a
sudden, irreversible in time evolution during the measurement process (quantum jump). In the
present paper, we studied an approach in which the evolution of a two-level system coupled to
a continuum is continuous in time but possesses both a unitary and a non-unitary components.

We showed that in the framework of the Friedrichs model the main feature that is
responsible for the derivation of an irreversible in time master equation for the discrete
system is the energy continuum. We also showed that the Friedrichs model is relevant in
order to describe complex temporal evolutions (such as kaonic oscillations, generation and
regeneration) and to simulate at least qualitatively CP violation.

In section 4, we discussed the Lindbladian approach to decay problem using a Fock space
formulation for the Friedrichs model.

It is out of the scope of the present paper, but it would be very interesting to study the
properties of the Friedrichs model and of kaonic oscillations in terms of the time operator
approach. This can be done for the one-level Friedrichs model [25, 26], but higher level
systems present more subtle and involved temporal behaviour [9] so that it is worth studying
the time operator in this context.
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