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Two-level Friedrichs model and kaonic phenomenology
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Abstract

In the present Letter, we study in the framework of the Friedrichs model the evolution of a two-level system coupled to a continuum. This unitary
evolution possesses a non-unitary component with a non-Hermitian effective Hamiltonian. We show that this model is well adapted in order to
describe kaon phenomenology (oscillation, regeneration) and leads to a CP violation, although in this case the prediction is not quantitatively
quite satisfying.
© 2006 Elsevier B.V. All rights reserved.

PACS: 03.65.Ud; 03.67.Dd; 89.70.+c
1. Introduction

We shall show that the two-level Friedrichs system [1] makes
it possible to describe a class of systems that exhibit rich and
complex behaviors: oscillations, regenerations and so on, and
provides a relatively exact phenomenological model of kaons
physics. There have been several approaches to CP -violations
in kaons using gauge theory [2] or renormalization theory [3].
We do not consider these aspects here, also because the ques-
tion is still partially open today. Our treatment is based on the
description of decaying systems similarly to the generalization
of the Weisskopf–Wigner approach, formulated by Lee, Oehme
and Yang (LOY) [4] in the case of kaonic decay. Later on, Chiu
and Sudarshan [5] used a Lee model in order to obtain a cor-
rection to the LOY theory for short times (Zeno effect). Our
new approach is based on the derivation of a Master equation
from a Hamiltonian description for K1 and K2 decaying modes
weakly coupled to the decay product and not for (K0, K̄0)
modes as done in LOY theory. In this Letter, we use a sim-
ple version of the model with a constant factor form. This leads

* Corresponding author.
E-mail addresses: courbage@ccr.jussieu.fr (M. Courbage),

thomdurt@vub.ac.be (T. Durt), saberi@ccr.jussieu.fr (S.M. Saberi Fathi).
0375-9601/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2006.09.102
to a Markovian master equation which allows us to simulate
the kaonic lifetimes as well as kaonic oscillations and regener-
ation. It even predicts a CP symmetry breaking. Unfortunately
this last prediction is not very accurate quantitatively, which, in
a sense, is not astonishing for such a simplified approach. In
any case, our computations show that it is possible with a very
simple model such as the two-level Friedrichs model to capture
essential features of the very rich kaon phenomenology, and of
their non-trivial temporal survival distributions.

In Section 2, we recall the main features of kaon phenom-
enology. In the third section we show how to simulate them
thanks to the Friedrichs model. We show that the fit with phe-
nomenological data about CP -violation is satisfying since we
recover the experimental data for the phase, but not quantita-
tively (our estimation of the modulus effect is fourteen times
too strong in comparison to experimental data). At the end of
the Letter, we make some remarks on an improvement of the
model.

2. Main features of kaon phenomenology

Kaons are bosons that were discovered in the forties dur-
ing the study of cosmic rays. They are produced by collision
processes in nuclear reactions during which the strong interac-
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tions dominate. They appear in pairs K0, K̄0 [6,7]. It is possible
to produce preferentially the K0 particle essentially due to the
fact that the K̄0 kaon is less probable kinematically and that the
threshold pion energy for its production is higher.

The K mesons are eigenstates of the parity operator P :
P |K0〉 = −|K0〉, and P |K̄0〉 = −|K̄0〉. K0 and K̄0 are charge
conjugate to each other C|K0〉 = |K̄0〉, and C|K̄0〉 = |K0〉. We
get thus

(2.1)CP
∣∣K0〉 = −∣∣K̄0〉, CP

∣∣K̄0〉 = −∣∣K0〉.
Clearly |K0〉 and |K̄0〉 are not CP -eigenstates, but the following
combinations

(2.2)

|K1〉 = 1√
2

(∣∣K0〉 + ∣∣K̄0〉), |K2〉 = 1√
2

(∣∣K0〉 − ∣∣K̄0〉),
are CP -eigenstates.

(2.3)CP |K1〉 = −|K1〉, CP |K2〉 = +|K2〉.
In the absence of matter, kaons disintegrate through weak in-
teractions [7]. Actually, K0 and K̄0 are distinguished by their
mode of production, K1 and K2 are distinguished by their
mode of decay. In first approximation we can neglect CP -vio-
lation so that the weak Hamiltonian commutes with CP . In this
regime, the weak disintegration process distinguishes the K1
states which decay only into “2π” while the K2 states decay
into “3π,πeν, . . .” [8]. The lifetime of the K1 kaon is short
(τS ≈ 8.92 × 10−11 s), while the lifetime of the K2 kaon is
quite longer (τL ≈ 5.17 × 10−8 s). The difference of mass of
the 1 and 2 kaons is quite small in comparison to their mass
( mL−mS

mS+mL
≈ 0.35×10−14, with (mL−mS)c2 ≈ 3.52×10−6 eV).

The amplitude of the mode K1 at time t can be written as

(2.4)a1(t) = a1(0)e
− iES

h̄
t
e
− ΓS

2h̄
t
,

where ES is the total energy of particle and ΓS = h̄
τS

is the
width of the state. We can write the amplitude of the mode K2
in a similar fashion for the long lifetime. The intensity is

I1(t) = a1(t)a
∗
1(t) = a1(0)a∗

1(0)e
− ΓS

h̄
t

(2.5)= I1(0)e
− t

τS .

Setting h̄ = c = 1 and considering a situation during which
kaons are at rest we get that τS is the proper lifetime and
ES = mS , the rest mass of the K1 particle. Its amplitude is then

(2.6)a1(t) = a1(0)e−(imS+ ΓS
2 )t .

Similarly, for K2,

(2.7)a2(t) = a2(0)e−(imL+ ΓL
2 )t .

From Eq. (2.2) we can write [6] the corresponding amplitudes
of K0 and K̄0 as

(2.8)

a0(t) = 1√
2

(
a1(t) + a2(t)

)
, ā0(t) = 1√

2

(
a1(t) − a2(t)

)

and the intensities are equal to

(2.9)I0(t) = I0(0)

4

(
e−ΓSt + e−ΓLt + 2e− ΓS+ΓL

2 t cos(�mt)
)

and

(2.10)Ī0(t) = Ī0(0)

4

(
e−ΓSt + e−ΓLt − 2e− ΓS+ΓL

2 t cos(�mt)
)
.

Here �m = |mL − mS | = 3.52 × 10−6 and �mτS ≈ 0.47, so
that K0- and K̄0-intensities oscillate with the frequency |�m|.

This corresponds to the process called kaonic oscillation. We
can explain it intuitively as follows: in the vacuum the disin-
tegration of kaons is due to weak interactions, and the weak
Hamiltonian controls and dominates the evolution. Therefore,
the eigenstates of the “free” (weak) Hamiltonian in vacuum are
(in first approximation) the K1 and K2 kaons. In the presence
of matter, strong interactions are present during the collisions
between kaons and nuclei. They dominate the decay process
and therefore K0 and K̄0 kaons are observed, and it is also pos-
sible to distinguish them experimentally because they possess
different disintegration channels. Because the preparation and
measurement bases differ from the eigenbasis of the Hamil-
tonian that controls the free evolution, interference effects are
likely to occur. This is the essence of kaonic oscillations. What
is interesting is that if we compare their difference of mass (in
convenient units) to the inverse of the lifetime of the K1 kaon,
we get a comparable result: (mL−mS)τS ≈ 0.47. Thanks to this
relation and due to the fact that it was possible experimentally
to carry out observations occurring during a time comparable
to the lifetime of the K1 kaon, which is relatively long in com-
parison to other elementary particles, it was possible to observe
kaonic oscillations experimentally.

Generation and regeneration are similar phenomena. If we
produce (in matter, in the strong regime) K0 particles, no K̄0

particle is present, but if we wait (in absence of matter) during
a time long relatively to τS the lifetime of the K1 kaon, the
K2 particle only has survived and the probability to find a K̄0

particle is 0.5, so that K̄0 particles were generated.
Regeneration is due to the fact that in the presence of mat-

ter, the K̄0 particle disintegrates more quickly than the K0 one.
Henceforth their respective amplitudes are not equal in modu-
lus with as a consequence that a1(t) = 1√

2
(a0(t)+ ā0(t)) differs

from zero. Consequently, even if we wait (in the absence of mat-
ter, in the weak regime) a time longer than the lifetime of the K1
kaon, and that only the K2 particle is present, the K1 component
is re-generated in the presence of matter.

CP -violation is another interesting feature of the kaons
phenomenology. It was discovered by Christenson et al. [9].
CP -violation means that the long-lived kaon can also decay
to “2π” then, the CP symmetry is slightly violated (by a fac-
tor of 10−3) by weak interactions so that the CP eigenstates K1
and K2 are not exact eigenstates of the decay interaction. Let us
consider that KS (S = short-lived) and KL (L = long-lived) are
the eigenstates of the decay interaction; they can be expressed
as a superpositions of the K1 and K2 eigenstates. Then
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|KL〉 = 1√
1 + |ε|2

[
ε|K1〉 + |K2〉

]
(2.11)= 1√

2(1 + |ε|2)
[
(1 + ε)

∣∣K0〉 − (1 − ε)
∣∣K̄0〉],

and

|KS〉 = 1√
1 + |ε|2

[|K1〉 + ε|K2〉
]

(2.12)= 1√
2(1 + |ε|2)

[
(1 + ε)

∣∣K0〉 + (1 − ε)
∣∣K̄0〉],

where ε is a CP -violation parameter, |ε| � 1 where ε does not
have to be real. KL and KS are the eigenstates of the Hamil-
tonian for the mass-decay matrix [7,8], i.e.

(2.13)H = M − i

2
Γ ≡

(
M11 − i

2Γ11 M12 − i
2Γ12

M21 − i
2Γ21 M22 − i

2Γ22

)
,

where M and Γ are individually hermitian since they corre-
spond to observable (mass and lifetime). The corresponding
eigenvalues of the mass-decay matrix are equal to

(2.14)mL − i

2
ΓL, mS − i

2
ΓS.

The CP -violation was established by the observation that KL

decays not only via three-pion, which has natural CP parity,
but also via the two-pion mode with a |ε| of order 10−3, which
is truly unexpected. The experimental value of ε is

(2.15)|ε| = (2.27 ± 0.02) × 10−3, arg(ε) = 43.37

3. Friedrichs’s model and kaon phenomenology

3.1. The two-levels Friedrichs model

The Friedrichs interaction Hamiltonian between the two
modes and the continuous degree of freedom is the following
[1,10–12]:

(3.1)HFriedrichs =
(

ω1 0 λ1
0 ω2 λ2
λ1 λ2 ω

)
.

The masses ω1,2 represent the energies of the discrete levels,
and the factors λ1,2 represent the couplings to the continuum
of decay product. In this model, the energies ω of the different
modes of the continuum range from −∞ to +∞. The two-level
Friedrichs model Schrödinger equation is

(3.2)

(
ω1 0 λ1
0 ω2 λ2
λ1 λ2 ω

)(
f1(t)

f2(t)

g(ω, t)

)
= i

∂

∂t

(
f1(t)

f2(t)

g(ω, t)

)

which means:

(3.3)ω1f1(t) + λ1

∞∫
−∞

dωg(ω, t) = i
∂f1(t)

∂t
,

(3.4)ω2f2(t) + λ2

∞∫
dωg(ω, t) = i

∂f2(t)

∂t
,

−∞
and

(3.5)λ1f1(t) + λ2f2(t) + ωg(ω, t) = i
∂g(ω, t)

∂t
.

ω is coupled here through uniform factor forms (λ1, λ2); this
constitutes a very rough approximation which allows an inte-
gration of the equation of motion and an illustration of the appli-
cation to CP -violation in kaons. More physical cutoffs that can
improve our estimation will be studied in a future publication,
as well as the analogy between our model and models used in
quantum optics in order to simulate certain spontaneous radia-
tive processes. Let us now solve the Schrödinger equation and
trace out the continuum in order to derive the master equation
for the two-level system. From Eq. (3.5) we can obtain g(ω, t),
taking g(ω,0) = 0, as

(3.6)g(ω, t) = −ie−iωt

t∫
0

dτ
[
λ1f1(τ ) + λ2f2(τ )

]
eiωτ ,

where t > 0. Then, we substitute g(ω, t) in Eq. (3.3) we obtain

i
∂f1(t)

∂t
= ω1f1(t)

− iλ1

∞∫
−∞

dω e−iωt

(3.7)×
t∫

0

dτ
[
λ1f1(τ ) + λ2f2(τ )

]
eiωτ ,

we also obtain the same relation for f2(t) from Eq. (3.4):

i
∂f2(t)

∂t
= ω2f2(t)

− iλ2

∞∫
−∞

dω e−iωt

(3.8)×
t∫

0

dτ
[
λ1f1(τ ) + λ2f2(τ )

]
eiωτ .

3.2. The two-levels Friedrichs model and kaonic behavior

In this subsection, we shall make use of the Friedrichs model
in order to simulate interesting properties of the kaonic systems.
In order to do so, we shall identify the discrete modes of the
Friedrichs model with the K1 and K2 states and ω1 and ω2 with
their masses, respectively. This is our basic postulate according
to which we can now make use of the Friedrichs model in order
to establish a phenomenology for the kaonic behavior. More
precisely, we shall assume that

(3.9)|K1〉 =
(

1
0

)
and |K2〉 =

(
0
1

)
.

The continuum mode aims at representing the decay prod-
ucts as explained in Section 2. Let us consider the solution of
two-level Friedrichs model Schrödinger Eq. (3.2). According to
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this equation, the state is at time t superposition of two compo-
nents that correspond to the two (complex) eigenvalues of the
effective Hamiltonian. In order to avoid confusion, we shall use
different parameters when we deal with the “real” kaons that
are associated with experimental data and when we deal with
the “theoretic” ones in the framework of the Friedrichs model.

It is worth noting that the use of simple two-level models to
explain kaon oscillations goes back to Gell-Mann and Pais (see
Feynman lectures vol. III, pp. 11–16). What is new in our Letter
is that we introduce a continuous degree of freedom (a scalar
field) in a simple and exactly solvable model to describe kaon
decay, in which |K1〉 and |K2〉 particles communicate via the
decay channel (and not |K0〉 and |K̄0〉 as in the LOY theory).

• The masses mS and mL and the lifetimes τS and τL will
remain attributed to the real objects.

• The parameters ω1, ω2, λ1, λ2, ω+ and ω− will refer to the
theoretic quantities.

To solve Eqs. (3.7) and (3.8) we shall compute the integral
part of Eq. (3.7) f1 and f2 being supposed integrable functions
on [0,∞[. We consider a test function as e−α2ω2

, then we can
rewrite it as follows

(3.10)

t∫
0

dτ
(
λ1f1(τ ) + λ2f2(τ )

) ∞∫
−∞

dω e−iω(t−τ)e−α2ω2
,

with the limit α → 0. After integration on ω of in the above
equation we obtain

(3.11)

√
π

α

t∫
0

dτ
[
λ1f1(τ ) + λ2f2(τ )

]
e
− (t−τ )2

4α2

or

(3.12)

√
π

α

[
λ1f1(t) + λ2f2(t)

] ∗ e
− t2

4α2

where we used the convolution definition, i.e.

(3.13)

t∫
0

k(t − u)y(u)du = k(t) ∗ y(t).

Laplace transformation of Eq. (3.12) yields

(3.14)π
[
λ1F1(s) + λ2F2(s)

]
eα2s2

Erfc(αs),

where

(3.15)Erfc(x) = 1 − Erf(x) = 1 − 2√
π

x∫
0

e−y2
dy.

Taking the limit α → 0 we obtain

(3.16)π
[
λ1F1(s) + λ2F2(s)

]
,

and taking and the inverse Laplace transformation yields
π[λ1f1(t) + λ2f2(t)]. So we proved
∞∫
−∞

dω e−iωt

t∫
0

dτ
[
λ1f1(τ ) + λ2f2(τ )

]
eiωτ

(3.17)= π
[
λ1f1(t) + λ2f2(t)

]
.

Now, we substitute the above result in Eqs. (3.7) and (3.8).
Thus, we obtain

(3.18)i
∂

∂t

(
f1(t)

f2(t)

)
=

(
ω1 − iπλ2

1 −iπλ1λ2

−iπλ1λ2 ω2 − iπλ2
2

)(
f1(t)

f2(t)

)
.

Thus, we obtain an effective non-Hermitian Hamiltonian evo-
lution, Heff = M − iΓ

2 . The eigenvalues of the system are

ω± = 1

2

{
(ω1 + ω2) − iπ

(
λ2

1 + λ2
2

)
± [(

(ω1 + ω2) − iπ
(
λ2

1 + λ2
2

))2

(3.19)− 4
(
ω1ω2 − iπ

(
λ2

1ω2 + λ2
2ω1

))]1/2}
,

and under the weak coupling constant approximation, they be-
come

ω+ = ω1 − iπλ2
1 + O

(
λ4),

(3.20)ω− = ω2 − iπλ2
2 + O

(
λ4).

In a first and very rough approximation, the eigenvectors of
the effective Hamiltonian are the same as the postulated kaons
states.

(3.21)|f+〉 =
(

1
0

)
= |K1〉 and |f−〉 =

(
0
1

)
= |K2〉,

and the solutions of Schrödinger equations are superpositions
of these two states with amplitudes

(3.22)f1(t) = e−iω+t , f2(t) = e−iω−t .

Phenomenology imposes that the complex Friedrichs en-
ergies ω± coincide with the observed complex energies. The
Friedrichs energies depend on the choice of the four parame-
ters ω1, ω2, λ1 and λ2 and the observed complex energies are
directly derived from the experimental determination of four
other parameters, the masses mS and mL and the lifetimes τS

and τL. We must thus adjust the theoretical parameters in order
that they fit the experimental data. This can be done by com-

paring the normalized intensities 4I0(t)
I0(0)

and 4Ī0(t)

Ī0(0)
of Eqs. (2.9)

and (2.10) with the theoretical prediction for the K0 and K̄0 in-
tensities:∣∣f1(t) ± f2(t)

∣∣2

(3.23)= (
e−2πλ2

1t + e−2πλ2
2t ± 2e−π(λ2

1+λ2
2)t cos(�ωt)

)
,

where �ω = |ω1 − ω2|. From this comparison of experimental
and theoretical results we obtain (see Eqs. (2.9) and (2.10)).

ω1 = mS, 2πλ2
1 = ΓS,

(3.24)ω2 = mL, 2πλ2
2 = ΓL.

CP -violation: Let us study in this case the CP -violation. The
Friedrichs model allows us to estimate the value of ε. For this
purpose, the effective Hamiltonian (Eq. (3.18)) acts on the |KS〉
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vector states (Eq. (2.11)) as an eigenstate corresponding to the
eigenvalue ω+ = ω1 − iπλ2

1 = mS − iΓS

2 , so that we must im-

pose that Heff
(1
ε

) = ω−
(1
ε

)
, from which we obtain after straight-

forward calculations that

(3.25)ε = iπλ1λ2

(ω2 − ω1) − iπ(λ2
2 − λ2

1)

and if we replace λ’s and ω’s by corresponding values in
Eq. (3.24) we have

(3.26)ε =
i
2

√
ΓLΓS

(mL − mS) − i
2 (ΓL − ΓS)

.

By using the above experimental values of ΓL, ΓS , mL, mS

and the ratio (mL−mS)
−(ΓL−ΓS)

≈ �mτS ≈ 0.47 we obtain the following

estimated value for ε:

(3.27)ε =
√

(1.82 × 10−3)/2ei(43.37)◦

which shows that our estimation of the modulus of ε is ∼ 14
times greater than its experimental modulus value while the es-
timated phase is correct.

Although this last prediction is not very accurate quantita-
tively, which in a sense is not astonishing for such a simpli-
fied approach, we think that a better fit is possible provided
we finely tune the cutoff between the discrete levels and the
continuous modes, especially when negative energy modes are
decoupled from the two-level system. In any case, our compu-
tations show that it is possible with a very simple model such
as the two level Friedrichs model to capture essential features
of the very rich kaon phenomenology, and of their non-trivial
temporal survival distributions.

4. Conclusions

We have shown that the framework of the Friedrichs model
is relevant in order to grasp, despite of its simplicity, essen-
tial features of kaons decay. This model allows us to describe
complex temporal evolutions (such as kaonic oscillations, gen-
eration and regeneration) and to simulate at least qualitatively
CP -violation. We also recover the experimental value of the
phase, 43.37◦, as a result of Eqs. (3.26)–(3.27).

We have to notice that ever since LOY paper, new problems
and effects have been studied in CP -violation among then we
notice the paper of Khalfin [16] which could not be considered
in the scope of this Letter.

It is also out of the scope of the present Letter but it would be
very interesting to study the properties of the Friedrichs model
and of kaonic oscillations in terms of the time operator ap-
proach. This can be done for the one-level Friedrichs model
[13,14] but higher level systems present more subtle and in-
volved temporal behavior [15] so that it is worth studying the
time-operator in this context.

One should consider situations during which the spectrum
of the continuous degree of freedom is cutoff, because an un-
bounded spectrum in energy is not very sound from a physical
point of view. This will be studied in a future publication as well
as the analogy between our model and models used in quan-
tum optics in order to simulate certain spontaneous radiative
processes.

Finally, it is worth comparing our results with those obtained
in Refs. [17,18] where it is shown that in the framework of the
rigged Hilbert space approach another effect of CP -violation is
also predicted despite of the fact that the Hamiltonian respects
the CP symmetry. In our case the Friedrichs Hamiltonian does
not respect this symmetry, that is, if we consider all the de-
grees of freedom of the system, the commutator between the
Hamiltonian and the CP operator is different from zero. The
commutator is equal to zero when we consider the free Hamil-
tonian (corresponding to λ1 = λ2 = 0). As we noted before,
this result can be understood as follows: in our approach, the
continuous degree of freedom mediates an effective weak-like
interaction of order two in the coupling constants, which “ex-
plains” why the CP -violation is small.
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