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a b s t r a c t

The quantum description of the unstable systems is investigated starting from the Schrö-
dinger equation and using Hamiltonian describing discrete levels interacting with a contin-
uum. This approach is applied to kaons decay processes by using a simple Hamiltonian
model. Then, CP-violation and decoherence properties are displayed and studied.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The description of the decay processes of unstable quantum systems is a long standing problem [1]. It is generally admit-
ted that the decay probability of radioactive nuclei follows an exponential law which defines the lifetime of the nucleus.
Most elementary particles are unstable so a quantum-mechanical description of the decay process was the subject of many
investigations. After the general treatment given by Weisskopf and Wigner [2] in order to obtain the exponential law, Khalfin
[3] has pointed that, for a quantum system with energy spectrum bounded from below, the decay could not be exponential
for large times. It was also observed [4] that short-time behavior of decaying systems could not be exponential and this led to
the so-called Zeno effect [5,6]. The departure from the exponential type behavior has been experimentally observed (see [7]).

In this paper, we consider a model of decay which is applied to the case of neutral kaon decay. It is well known [8] that kaons
appears in pair K0 and K0 each one being conjugated of the other. The decay processes of K0 and K0 communicate so that they
correspond to combinations of two orthogonal decaying modes K1 and K2, that are distinguished by their lifetime. The discovery
of the small CP-violation effect, led to non-orthonormality of the short- and long-lived decay modes, now denoted KS and KL,
slightly different from K1 and K2 and depending on a CP-violation parameter �. Lee, Oehme and Yang (LOY) [9] proposed a gen-
eralization of the Weisskopf and Wigner theory in order to account the empirical data. But, Khalfin again using a Weisskopf and
Wigner type theory with lower bounded Hamiltonian, corrected the parameter �. This estimation has been presented and reex-
amined in [7,10].

Our approach to these problems considers a different model expressing the interaction between jK1i and jK2imodes and
the continuum. Our approach is distinct from the Weisskopf–Wigner approach in which the approximation consists in
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extending the energy spectrum from �1 to þ1. It is based on an exactly solvable Hamiltonian model of weak interaction
with a positive energy and where the parameter a of the cutoff plays the role of the control of the physical energy band,
which could not be arbitrarily extended. The interaction plays also a fundamental role, through the coupling constants
and the parameter a, in the expression of the effective Hamiltonian (2.34), as well as in the derivation of the CP-violation
parameter as shown in the formulae (2.35), (2.36) and (2.38). This provides a better estimate of the � parameter. We also
consider decoherence problem in the light of this model in which the continuum is interpreted as an environment.

To be more precise, let us present the fundamental ideas of the theory of spontaneous emission an atom interacting with
the electromagnetic field, given by Weisskopf and Wigner. This treatment aims to obtain an exponential time dependence
for states by integrating over continuum energy. It is to be noted that the interval of integration over continuum energy is
changed to � �1;1½. Now, in the case of two-level atom the Hamiltonian is

H ¼ H0 þ HI; ð1:1Þ
H0 ¼ x1j1ih1j þx2j2ih2j þ

X
k

xkjkihkj; ð1:2Þ

HI ¼
X2

i¼1

X
k

½V�i ðxkÞjiihkj þ ViðxkÞjkihij�; ð1:3Þ

where we consider �h ¼ c ¼ 1 and ViðxkÞ a factor form. Therefore, the Schrödinger equation is

i
owðtÞ

ot
¼ HwðtÞ; ð1:4Þ

where wðtÞ � fa1ðtÞj1i; a2ðtÞj2i; bðxk; tÞjkig. Thus, we have

i
oa1ðtÞ

ot
¼ x1a1ðtÞ þ

X
k

V�1ðxkÞbðxk; tÞ; ð1:5Þ

i
oa2ðtÞ

ot
¼ x2a2ðtÞ þ

X
k

V�2ðxkÞbðxk; tÞ ð1:6Þ

and

i
obðxk; tÞ

ot
¼ xkbðxk; tÞ þ ½V1ðxkÞa1ðtÞ þ V2ðxkÞa2ðtÞ�: ð1:7Þ

Usually one makes some approximations [11,12]. First, replacing summation with integration asX
k

ViðxkÞ !
Z 1

0
dxv iðxÞ; ð1:8Þ

i.e. we assume that the modes of fields are closely spaced. Then, we have to assume the variations of v1ðxÞ and v2ðxÞ over x
are negligible with jxjK ‘‘uncertainty of the original state energy”, i.e. v iðxÞ � v i ði ¼ 1;2Þ. Also, another assumption is: the
lower limit of integration over x is replaced by �1. Finally, one obtains the following Markovian form of the reduced Schrö-
dinger equation, see e.g. [13]

i
o

ot
a1ðtÞ
a2ðtÞ

� �
¼ ðM � iCÞ

a1ðtÞ
a2ðtÞ

� �
; ð1:9Þ

where

M � iC ¼
x1 � i2pjv1j2 �i2pv�1v2

�i2pv1v�2 x2 � i2pjv2j2

 !
: ð1:10Þ

Weisskopf–Wigner treatment also assumes that the unstable state is of the form [11,12]

a1ðtÞ
a2ðtÞ

� �
¼ we�mt ; ð1:11Þ

then subtituting into (1.9) it gives

ðM � iCÞw ¼ mw: ð1:12Þ

In order to apply this theory to the decay of the neutral kaons, LOY formulated a generalization of the Weisskopf–Wigner
theory. Before, to introduce the LOY theory, it is useful to recall some properties of kaons.

Kaons are bosons that were discovered in the 1940s during the study of cosmic rays. They are produced by collision pro-
cesses in nuclear reactions during which the strong interactions dominate. They appear in pairs K0;K0 [8,14].

The K mesons are eigenstates of the parity operator P: PjK0i ¼ �jK0i and PjK0i ¼ �jK0i. K0 and K0 are charge conjugate to
each other CjK0i ¼ jK0i and CjK0i ¼ jK0i. We get thus
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CPjK0i ¼ �jK0i; CPjK0i ¼ �jK0i: ð1:13Þ

Clearly, jK0i and jK0i are not CP-eigenstates, but the following combinations

jK1i ¼
1ffiffiffi
2
p ðjK0i þ jK0iÞ; jK2i ¼

1ffiffiffi
2
p ðjK0i � jK0iÞ ð1:14Þ

are CP-eigenstates.

CPjK1i ¼ �jK1i; CPjK2i ¼ þjK2i: ð1:15Þ

In the absence of matter, kaons disintegrate through weak interactions [14]. Actually, K0 and K0 are distinguished by their
mode of production. K1 and K2 are the decay modes of kaons. In absence of CP-violation, the weak disintegration process dis-
tinguishes the K1 states which decay only into ‘‘2p” while the K2 states decay into ‘‘3p;pem; . . .” [15]. The lifetime of the K1

kaon is short (sS � 8:92� 10�11 s), while the lifetime of the K2 kaon is quite longer (sL � 5:17� 10�8 s).
CP-violation was discovered by Christenson et al. [16]. CP-violation means that the long-lived kaon can also decay to ‘‘2p”.

Then, the CP symmetry is slightly violated (by a factor of 10�3) by weak interactions so that the CP-eigenstates K1 and K2 are
not exact eigenstates of the decay interaction. That KS (S = short-lived ) and KL (L = long-lived ) can be expressed as a super-
positions of the K1 and K2 eigenstates. Then

jKLi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�j2
q ½�jK1i þ jK2i�; jKSi ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�j2

q ½jK1i þ �jK2i�; ð1:16Þ

where � is a complex CP-violation parameter, j�j � 1 and � does not have to be real. KL and KS are the eigenstates of the Ham-
iltonian for the mass-decay matrix [14,15], which has in the basis jK0i and jK0i has the following form:

H ¼ M � i
2

C �
M11 � i

2 C11 M12 � i
2 C12

M21 � i
2 C21 M22 � i

2 C22

 !
; ð1:17Þ

where M and C are individually Hermitian since they correspond to observable (mass and lifetime). The corresponding
eigenvalues of the mass-decay matrix are equal to

mL �
i
2

CL; mS �
i
2

CS: ð1:18Þ

The CP-violation was established by the observation that KL decays not only via three-pion, which has natural CP parity, but
also via the two-pion (‘‘2p”) mode with a j�j of order 10�3, which is truly unexpected. The experimental value of � is [17]

j�j ¼ ð2:232	 0:007Þ � 10�3; argð�Þ ¼ 43:4
: ð1:19Þ

The LOY model uses the Weisskopf–Wigner treatment of the time-dependent Schödinger equation of the amplitudes of
the particles K0 and K0 as follows:

i
dwðtÞ

dt
¼ HwðtÞ ¼ ðM � iCÞwðtÞ; ð1:20Þ

where M and C are both 2� 2 Hermitian matrices. They consider weak interaction as a perturbation in the total Hamiltonian,
i.e. H ¼ Hst þ Hel þ Hwk, where Hst;Hel and Hwk are the strong, electromagnetic and weak interactions Hamiltonian, respec-
tively. Since Hst þ Hel commute with CPT, then jK0i and jK0i are the eigenstates of Hst þ Hel with degenerate mk eigenvalue.
Weak interaction connects K0 and K0 with the other continuum states such as 2p;3p;pem, etc. Thus, various decay modes
removes their degeneracy [15]. Lee gave theorems which explain the mass-decay matrix [15]:

(i) If CPT invariance holds, then independently of T symmetry C11 ¼ C22; M11 ¼ M22.
(ii) If T invariance holds, then independently of CPT symmetry C�12

C12
¼ M�12

M12
.

(iii) If CPT invariance holds, then independently of T invariance, E ¼ hKSjKLi is a real number.
(iv) If T invariance holds, then independently of CPT invariance, E is an imaginary number.

CP-violation: If both CPT and T were exact symmetries, then CP must be conserved and then E ¼ 0. Thus, E can be a good
CP-violation parameter. Now, the eigenvalue equation of Eq. (1.20) is written as

ðM � iCÞw	 ¼ x	w	; ð1:21Þ

where w� ¼ jKSi and wþ ¼ jKLi are the eigenstates of the kaons decay and the x	 are the corresponding eigenvalues. The
fractional number of kaon that decay at time t after production is given by

NðtÞdt ¼ �d½wyw�: ð1:22Þ

Using Eq. (1.20), one obtain
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NðtÞ ¼ � d
dt
½wyw� ¼ wyCw: ð1:23Þ

Finally, the above equation becomes [9]

NðtÞ ¼ 1
2
ð1þ EÞ�1fcþe�CSt þ CLe�CLt þ Ee�

1
2ðCSþCSÞt ½ðCS þ CLÞ cos Dmt � 2Dm sin Dmt�g; ð1:24Þ

where E ¼ hKSjKLi ¼ wyþw� is a real number that represents the non-orthogonality of these two eigenstates. The four real
numbers CS;CL;Dm;E characterize the decay of the kaon and satisfy the inequalities [9]

CS;L P 0; jEj2 6 4CSCL

ðCS þ CLÞ2 þ 4ðDmÞ2
; ð1:25Þ

which follow from C is positive Hermitian matrix. LOY considered the indications of the experimental values which showed
that CL=CS > 100 then, from Eq. (1.25) they showed jEj2 < 4CS=CL < 0:04 [9].

In the 1980s, Khalfin (see [18]) pointed out to some theoretical deficiencies of the LOY theory due to the un physical en-
ergy interval � �1;1½ and gave estimates of the departure from this theory. His estimate of the CP-violation parameter has
30 times greater magnitude order than the experimental measurement. Later on, Chiu and Sudarshan [7] and Jankiewicz and
Urbanowski [10] presented a new solution which improves the Khalfin computation.

Although some aspects of the questions involved in the theory of decaying phenomena may be formulated in a general
manner, it has been proved very useful to study such phenomena using simple Hamiltonian models that permit explicit cal-
culations. As a matter of fact, the first systematic discussion of the validity of the results of Weisskopf and Wigner was done
in a basic paper of Friedrichs [20] where he analyzed the evolution of a solvable model. He considered a ‘‘free” Hamiltonian
H0 having a simple absolutely continuous spectrum and a point eigenvalue embedded in it. The eigenvalue is coupled to the
continuum through a bounded interaction kV . Because of the interaction, the eigenvalue disappears and the total Hamilto-
nian Hð¼ H0 þ kVÞ has no point spectrum (at least for small values of the coupling parameter k). Friedrichs has shown that
the exponentially decaying solution of Weisskopf and Wigner becomes exact in the so-called weak coupling limit, that is,
when jkj ! 1; t ! 0, while k2t is kept finite [19].

We shall consider such a model for the problem of an estimation of the CP-violation parameter.

2. Dissipative evolution from Hamiltonian dynamics of kaons

The Friedrichs interaction Hamiltonian between two discrete modes and continuous degree of freedom is the following
[20–23]:

HFriedrich ¼
x1 0 k1v�ðxÞ
0 x2 k2v�ðxÞ

k1vðxÞ k2vðxÞ x

0
B@

1
CA; ð2:26Þ

where x1;2 represent the energies of the discrete levels, and the factors kivðxÞ ði ¼ 1;2Þ represent the couplings to the con-
tinuous degree of freedom. The energies x of the different modes of the continuum range from 0 to þ1, we are free to tune
the coupling vðxÞ in order to introduce a selective cut off to extreme energy modes. Let us now solve the Schrödinger equa-
tion in order to derive the master equation for the two-level system. The Schrödinger equation associated to the correspond-
ing Friedrichs model with �h ¼ 1 is formally written as

x1 0 k1v�ðxÞ
0 x2 k2v�ðxÞ

k1vðxÞ k2vðxÞ x

0
B@

1
CA

f1ðtÞ
f2ðtÞ

gðx; tÞ

0
B@

1
CA ¼ i

o

ot

f1ðtÞ
f2ðtÞ

gðx; tÞ

0
B@

1
CA: ð2:27Þ

That is,

x1f1ðtÞ þ k1

Z
dxv�ðxÞgðx; tÞ ¼ i

of1ðtÞ
ot

; ð2:28Þ

x2f2ðtÞ þ k2

Z
dxv�ðxÞgðx; tÞ ¼ i

of2ðtÞ
ot

ð2:29Þ

and

k1vðxÞf1ðtÞ þ k2vðxÞf2ðtÞ þxgðx; tÞ ¼ i
ogðx; tÞ

ot
: ð2:30Þ

Integrating the last equation, we obtain gðx; tÞ assuming gðx; t ¼ 0Þ ¼ 0:

gðx; tÞ ¼ �ie�ixt
Z t

0
ds½k1f1ðsÞ þ k2f2ðsÞ�vðxÞeixs; ð2:31Þ
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then, we substitute gðx; tÞ in the above equation (2.28), we obtain

i
of1ðtÞ

ot
¼ x1f1ðtÞ � ik1

Z
dxjvðxÞj2e�ixt

Z t

0
ds½k1f1ðsÞ þ k2f2ðsÞ�eixs; ð2:32Þ

we also obtain the same relation for f2ðtÞ. Now, we shall make use of the Friedrichs model in order to simulate interesting
properties of the kaonic systems.

In what follows, we shall identify the discrete modes of the Friedrichs model with the K1 and K2 states. This is our basic
postulate according to which we can now make use of the Friedrichs model in order to establish a phenomenology for the
kaonic behavior. More precisely, we shall assume that

jK1i ¼
1
0

� �
and jK2i ¼

0
1

� �
: ð2:33Þ

Let us consider the solution of the two-level Friedrichs model Schrödinger equation (2.27). According to this equation, the
state is at time t superposition of two components that correspond to the two (complex) eigenvalues of the effective Ham-
iltonian. In order to avoid confusion, we shall use different parameters when we deal with the ‘‘real” kaons that are associ-
ated with experimental data and when we deal with the ‘‘theoretic” ones in the framework of the Friedrichs model.

–The masses mS and mL and the lifetime sS and sS will remain attributed to the real objects.
–The parameters x1, x2, k1, k2, xþ and x� will refer to the theoretic quantities.

In order to present the idea of the method for obtaining the CP-violation, we consider first the case where x 2� �1;þ1½.
If we substitute vðxÞ ¼ e�ax2=2; a > 0, a! 0 in Eqs. (2.32) and integrate from �1 to 1, we can easily derive the effective
master equation

i
o

ot
f1ðtÞ
f2ðtÞ

� �
¼

x1�ipk2
1

1�2
ffiffiffiffiffi
pa
p

k2
1

k1k2 � ip
ð1�2

ffiffiffiffiffi
pa
p

k2
1Þ
þ 2

ffiffiffiffiffi
pa
p

x2
1�2

ffiffiffiffiffi
pa
p

ðk2
1þk2

2Þ

� �
k1k2 � ip

ð1�2
ffiffiffiffiffi
pa
p

k2
2Þ
þ 2

ffiffiffiffiffi
pa
p

x1
1�2

ffiffiffiffiffi
pa
p

ðk2
1þk2

2Þ

� �
x2�ipk2

2
1�2

ffiffiffiffiffi
pa
p

k2
2

0
B@

1
CA f1ðtÞ

f2ðtÞ

� �
; ð2:34Þ

in which we neglect the Oðk4Þ contributions. The eigenvalues of the above effective Hamiltonian, here denoted Heff , are

xþ ¼
x1 � ipk2

1

1� 2
ffiffiffiffiffiffiffi
pa
p

k2
1

þ Oðk4Þ � ð1þ 2
ffiffiffiffiffiffiffi
pa
p

k2
1Þx1 � ipk2

1 ð2:35Þ

and

x� � ð1þ 2
ffiffiffiffiffiffiffi
pa
p

k2
2Þx2 � ipk2

2: ð2:36Þ

In this approximation, the eigenvectors of the effective Hamiltonian are obtained as follows:

jfþi ¼
1
0

� �
and jf�i ¼

0
1

� �
: ð2:37Þ

Comparing the eigenvalues in Eqs. (2.35) and (2.36) with the equations in (1.18), we obtain

2pk2
1 ¼ CS; x1 ¼

mS

1þ 2
ffiffiffiffiffiffiffi
pa
p

CS
� mSð1� 2

ffiffiffiffiffiffiffi
pa
p

CSÞ;

2pk2
2 ¼ CL; x2 ¼

mL

1þ 2
ffiffiffiffiffiffiffi
pa
p

CL
� mLð1� 2

ffiffiffiffiffiffiffi
pa
p

CLÞ: ð2:38Þ

CP-violation: If the effective Hamiltonian (Eq. (2.34)) acts on jKLi vector states as an eigenstate corresponding to the eigen-

value x� ¼ ð1þ 2
ffiffiffiffiffiffiffi
pa
p

k2
2Þx2 � ipk2

2 according to Eq. (1.16), we must impose that Heff
��
1

� �
¼ x�

��
1

� �
, after some alge-

braic computation by replacing k’s and x’s by their corresponding values from Eq. (2.38), we have

� �
i
2

ffiffiffiffiffiffiffiffiffiffiffi
CLCS
p

ð1þ 2i
ffiffiffia
p

p
mSÞ

ðmL �mSÞ � i
2 ðCL � CSÞ

: ð2:39Þ

In the zeroth approximation of a [24], we obtain thus

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:82� 10�3Þ=2

q
eið43:4Þ
 ; ð2:40Þ

which shows that our estimation of the modulus of � is � 14 times greater than its experimental value while the estimated
phase is correct. Now, in the case a–0, � is given as

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:82� 10�3Þ=2

q
eið43:4Þ
 1þ 2i

ffiffiffiffi
a
p

r
mS

 !
; ð2:41Þ
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we see that a > 0 both changes the argument of � and increases its modulus. Henceforth, a Gaussian test function in
� �1;1½ is not a good choice if we aim at improving the fit with the experimental CP-violation.

In the realistic case x 2 ½0;þ1½. If we substitute vðxÞ ¼ e�ax2=2 in Eqs. (2.32) and integrate from 0 to 1, we obtain [25]

� �
i
ffiffiffiffiffiffiffiffiffiffiffi
CLCS
p

1
2� i 1

p

� �
þ ð�2þ i pþ2

p ÞmS
ffiffiffi
a
p

p	 

ðmL �mSÞ � i

2 ðCL � CSÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1:82� 10�3Þ

q
eið43:4Þ
 1

2
� i

1
p

� �
þ ð�2þ i

pþ 2
p
ÞmS

ffiffiffiffi
a
p

r" #
: ð2:42Þ

We see that if mS
ffiffiffia
p

p
¼ 1

2þp the imaginary part in the bracket of above equation is zero and the real part is equal to 0.111,
which corresponds to the estimation

� ¼ 6:69� 10�3eið43:4Þ
 : ð2:43Þ

So, in this case, j�j ¼ 6:69� 10�3 which is only � 3 times greater than the experimental value while the estimated phase is
correct.

3. Decoherence and open systems

The unitary evolution condemns the closed quantum system to ‘‘purity”. Yet if the outcomes of a measurement are to
become independent, a way must be found to dispose of the excess information. This disposal can be caused by interaction
with the degrees of freedom external to the system, which we shall summarily refer to as ‘‘the environment”.

If the relative phase between two wave function (j/1i and j/2i), is constant or it does not fluctuate randomly with time,
these wave function are coherent. Now, the superposition of two coherent wave functions, i.e. j/i ¼ a1j/1i þ a2j/2i; gives the
interference effect in the probability density j/j2 ¼ h/j/i. If this system is coupled to an environment, the relative phase be-
tween j/1i and j/2iwill typically fluctuate with time, and the interference terms will rapidly average to zero. Their vanishing
is called decoherence, i.e. the different components of wave function lose their ability to interfere.

We can also use the density matrix to describe the probability distribution for the alternative outcome, by taking the pure
state density matrix

q ¼ ja1j2j/1ih/1j þ a�1a2j/2ih/1j þ a�2a1j/1ih/2j þ ja2j2j/2ih/2j: ð3:44Þ

Thus, the decay of off-diagonal elements in the density matrix gives the reduced density as

qred ¼ ja1j2j/1ih/1j þ ja2j2j/2ih/2j: ð3:45Þ

Reduction of the state from q to qred decreases the information available to the observer about the composite system (sys-
tem + detector). Thus, its entropy increases as it must

MS ¼SðqredÞ �SðqÞ ¼ ja1j2 log ja1j2 þ ja2j2 log ja2j2: ð3:46Þ

The initial state described by q was pure, and the reduced state, qred is mixed [26–28].
It might appear as if accelerated decoherence is an inevitable fact, a fundamental natural law. This is, however, not the

case. It is well known by now that certain subspaces of Hilbert space might be completely decoherence free. Such a situation
arises if the coupling to the environment has a certain symmetry, in the sense that the interaction Hamiltonian, Hint has
degenerate eigenvalues. Denoting H ¼ Hs þ Hint, if j/1i; j/2i; . . . ; j/ni are eigenstates of Hint with the same eigenvalue, then
there is no accelerated decoherence in the subspace they span.

The physical principle behind this is very simple. If the system Hamiltonian can be neglected, the states of the system are
propagated by e�iHintt=�h. States that are eigenstates of Hint with the same eigenvalue acquire exactly the same phase factors as
a function of time. Therefore, the phase coherence between such states remains intact.

Recently, decoherence-free subspaces have attracted renewed attention in quantum computing. It has been shown that
general Markovian master equations for a density matrix, q, has the Lindblad form [27]

oq
ot
¼� i

�h
½Hs;q� þ LD½q�; ð3:47Þ

LD½q� ¼
1
2

XM

a;b
aabLab½q�; ð3:48Þ

Lab½q� ¼½Fa;qFyb� þ ½Faq; Fyb�; ð3:49Þ

where Hs is the Hamiltonian of the system and the coefficients aab form a Hermitian matrix. The operators Fa are known as
‘‘coupling agents” or, in the context of quantum computing, as ‘‘error generators”. They span an M-dimensional Lie algebra. A
decoherence-free subspace is defined as all states q with LD½q� ¼ 0, since then only the unitary evolution according to the
first terms in (3.47) remains [27].

In the usual formulation of the Friedrichs model, the border line between system and environment is ill defined because
the Hilbert spaces associated to those degrees of freedom is not the tensorial product of their respective Hilbert spaces but is
rather their direct sum. Nevertheless it is possible, as we showed in a previous paper [25], to imbed the direct sum of the
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Hilbert spaces associated to the discrete and continuous degrees of freedom into a larger space in which those subspaces
(tensorially) factorize, and to formulate an equivalent Hamiltonian dynamics that contains as a special subset of solutions
all the solutions of the original model.

In this modified Friedrichs model, instead of representing the state of the system at time t by a direct sum of the Hilbert
spaces associated to the discrete and continuous degrees of freedom, we imbed it into the tensorial products of a three-
dimensional Hilbert space C3 (that corresponds to the two discrete levels plus their decay product) and of a Fock space;

C3 �Hphoton, wkaon ¼
f0

f1

f2

0
@

1
A and wphoton ¼

f 0

f 1ðx0Þ
f 2ðx0;x00Þ

. . .

0
BB@

1
CCA and the state is given by

W0;1;2;xi ¼
f0

0
0

0
B@

1
CA�

0
f 1ðx0Þ

f 2ðx0;x00Þ
..
.

f 2ðx0;x00; . . . ;xðnÞÞ
. . .

0
BBBBBBBBB@

1
CCCCCCCCCA
þ

0
f1

f2

0
B@

1
CA�

f 0

0
0
..
.

0
BBBB@

1
CCCCA; ð3:50Þ

where f0 represents the amplitude of a new discrete state j0i that is assumed to contain the ‘‘decay products” resulting from
the disintegration of the two discrete kaonic states j1i and j2i; besides, f nðx0;x00; . . . ;xðnÞÞ ðn ¼ 1;2; . . .Þ represents the ampli-
tude of the n environment particles. We also define adequately the Hamiltonian on this space as in the Friedrichs model.

In analogy with quantum optics, this interaction represents the decay of the kaonic ‘‘excited” states (1 and 2) to the
‘‘ground” state (0), with excitation of a mode of energy ðxÞwhile by unitarity the inverse process is also possible (diminution
of the energy of a continuous mode by one quantum of energy x (here �h ¼ 1), and repopulation of the discrete states j1i and
j2i). If the initial state is such that no continuous mode is excited (f iðx0;x00; . . . ;xðiÞ; t ¼ 0Þ ¼ 0 8i > 0), then, the dynamics of
the state W0;1;2;xðtÞ is considerably simplified because there will never occur more than one excitation.

In that case f1ðtÞ, f2ðtÞ and f 1ðx; tÞ obey a closed system of three equations of evolution that can be shown to be rigorously
identical to the system of Eqs. (2.28)–(2.30) derived in the framework of the Friedrichs model [25].

The coherence between the decay products j0i at one side and the space spanned by the kaonic modes j1i and j2i at the
other side is not preserved under the partial trace. In fact, this comes out from the computation of the partial trace over the
biorthogonal decomposition of the full state (3.50). Then, taking a partial trace of this state over continuous degrees of free-
dom, it is easy to check that the reduced density matrix of the discrete (tripartite) degrees of freedom is equal to

qkaons ¼
kf 1k2 0 0

0 j f1j2 f1f �2
0 f �1 f2 j f2j2

0
BB@

1
CCA; ð3:51Þ

where kf 1k2 ¼
R
jf 1ðxÞj2dx and kf 1k2þ j f1j2þ j f2j2 ¼ 1. This is clearly the incoherent sum of the decay products and a pure

state that is coherent superposition of the K1 and K2 modes. The coherence between the decay products j0i and the space
spanned by the kaonic modes j1i and j2i is not preserved. The entanglement measure between continuous modes and
the kaons is given by the von Neumann entropy

S ¼ kf 1ðtÞk2 log kf 1ðtÞk þ ð1� kf 1ðtÞÞk2 logð1� kf 1ðtÞkÞ; ð3:52Þ

which is not zero. Tracing out the continuous degrees of freedom, the density matrix is the incoherent sum of the non-de-
cayed kaonic states at one side and the decay products at the other side.

We shall remark that our model at the present stage does not fit exactly in the general decoherence framework [28], in
the sense that asymptotically in time the state of the system (the three discrete modes) and the state of the environment (the
continuous mode) factorize. This is due to the fact that if we consider the kaonic decay as a measurement process, it is a
destructive process during which the original state is not preserved.

4. Conclusion and perspectives

We have shown that the framework of the Friedrichs model is relevant in order to grasp, despite of its simplicity, essential
features of kaons decay. This model allows us to describe complex temporal evolutions (such as kaonic oscillations, gener-
ation and regeneration) and to simulate with a good approximation CP-violation. We also recover the experimental value of
the phase, 43:4
 as a results of Eqs. (2.39), (2.40) and (2.43).

We have shown that in the framework of the Friedrichs model the main feature that is responsible for the derivation of an
irreversible in time master equation for the discrete system is the energy continuum.

To the contrary of entanglement, the localization of energy plays perfectly the role of time arrow pointer because during
the decay process, the continuous modes are irreversibly excited. The same phenomenon occurs in first approximation
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during the disexcitation of a metastable excited electronic state accompanied by the emission of a photon although in that
case a refined analysis shows that the final (ground) state of the atom is degenerate and remains generally entangled with
the electro-magnetic field due to general conservation laws (for instance conservation of impulsion). It is out of the scope of
the present paper to carry out exact computations but we could enrich our model by incorporating such features for instance
by introducing two ground states and two continuous modes, one coupled to the K1 state and one coupled to the K2 state in
which case the ground states as well as the emitted ‘‘x particles” keep track of their particle of origin. This model fits more
closely to experiments in which the K1 and K2 particles can be distinguished through their decay products. Moreover, such a
model fits in the decoherence program because it predicts an irreversible increase of the entanglement with the environment
during the measurement (here also decay) process.

Such a model could also be adapted in order to describe the strong coupling between kaons and hadrons in the presence
of matter, which makes it possible to distinguish K0 and K0 particles.

It is worth noting that even for this more sophisticated model where we would introduce two ground states in order to
simulate the fact that the decay products are different, depending on which kaonic mode was at their origin, the superpo-
sition principle remains valid for what concerns the non-decayed kaons, because the non-decayed kaonic sector factorizes
with the continuous mode (due to energy conservation: no decay means no excitation).

It has been shown that the departure from pure exponential decay for short time is characterized by a pure quadratic
term. This is the so-called Zeno regime for some time called the Zeno time [29]. It is out of the scope of the present paper
but it would worth to study Zeno effect in kaons specially on account of the shortness of the lifetime.

It would be also very interesting to study the properties of the Friedrichs model and of kaonic oscillations in terms of the
time operator approach [30]. This can be done for the one-level Friedrichs model [13,31–33] but higher level systems present
more subtle and involved temporal behavior [29] so that it is worth studying the time-operator in this context.
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