
Iranian Journal of Fuzzy Systems Vol. 9, No. 1, (2012) pp. 121-140 121

FUZZY LINEAR REGRESSION BASED ON

LEAST ABSOLUTES DEVIATIONS

S. M. TAHERI AND M. KELKINNAMA

Abstract. This study is an investigation of fuzzy linear regression model for

crisp/fuzzy input and fuzzy output data. A least absolutes deviations approach
to construct such a model is developed by introducing and applying a new

metric on the space of fuzzy numbers. The proposed approach, which can deal

with both symmetric and non-symmetric fuzzy observations, is compared with
several existing models by three goodness of fit criteria. Three well-known

data sets including two small data sets as well as a large data set are employed

for such comparisons.

1. Introduction and Literature Review

Regression analysis is an important tool in evaluating the functional relationship
between a certain variable called the dependent variable, and a set of other variables
called explanatory variables. In statistical regression analysis, the estimation of the
parameters and the prediction of variables are done based on a set of crisp data. On
the other hand, it is usually assumed that the parameters of the underlying model
are exact numbers (i.e. the relationship between variables is crisp). But in systems
in which human intelligence participates, we usually encounter the following two
cases:
1) the observations due to the variables are fuzzy, and/or
2) the relationship between variables is imprecise.
We need, therefore, to investigate some soft methods for dealing with these situ-
ations. Fuzzy set theory provides appropriate tools for regression analysis when
the relationship between variables is vaguely defined and/or the observations are
reported as imprecise quantities.

After introducing fuzzy set theory, several approaches to fuzzy regression have
been developed by some authors. Let us briefly review some important studies in
fuzzy regression models. For the first time, Tanaka et al. [32] proposed a linear
regression model with fuzzy parameters. Their method, in which the observed data
are crisp, has been developed in different directions by some authors, (see for exam-
ple [10, 16, 31, 37]). Tanaka et al.’s approach is essentially based on transforming
the problem of fitting a fuzzy model on a data set to a linear programming problem.
Pourahmad et al. [25, 26] introduced two fuzzy logistic regression models which are
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used when the explanatory (input) variables are crisp but the value of the binary
response (output) variable is reported as a number between zero and one or by a
linguistic term.

Another approach to fuzzy regression is introduced by Celmins [3] and Dia-
mond [12], using a generalized least squares method. In fuzzy least squares ap-
proach, the optimal model is usually derived based on a metric on the space of
fuzzy numbers. For more on this approach and some applications see, for example,
[1, 5, 11, 14, 15, 23, 36].

Both of the above approaches to fuzzy regression are sensitive in terms of outlier
data points. In such cases, when there exist some outliers in the data set, it is
usually preferred to use a robust approach. Traditionally, the regression analysis
based on the method of least absolutes deviations (LAD) was used as a robust
method with respect to the least squares (LS) method in modeling a data set in
which there were some outliers ([13, 28]). The problem of existing outliers may
occur when we want to model a set of fuzzy (imprecise) data. So, it is necessary
to develop fuzzy regression methods based on the LAD approach. So far, there are
just a few researches in this topic, which are reviewed below. Chang and Lee [6]
studied the fuzzy LAD regression based on a ranking method for fuzzy numbers.
Torabi and Behboodian [33] proposed a LAD-based method to estimate the fuzzy
parameters in a linear model with fuzzy input and fuzzy output. Choi and Buck-
ley [9] suggested the LAD estimators to construct the fuzzy regression model, and
investigated the performance of their regression models in comparison with least
squares method. Taheri and Kelkinnama [30] studied a least absolutes regression
model, based on crisp input-fuzzy output data. Hassanpour et al. [17] proposed
a goal programming approach to fuzzy regression modeling for non-fuzzy input-
fuzzy output data, which is in some sense based on absolute errors. They applied
a similar goal programming approach to fuzzy regression with fuzzy input-output
data, too [18]. By using the generalized Hausdorff metric, Chachi and Taheri [4]
investigated a least absolutes approach to multiple fuzzy regression modeling for
crisp input-fuzzy output data.

The main contribution of this work is to investigate the fuzzy regression model
with crisp/fuzzy input and fuzzy output, as follows

Ŷi = a0 ⊕ (a1Xi1)⊕ (a2Xi2)⊕ · · · ⊕ (apXip)⊕ E, (1)

on the basis of observed data set {(Xi, Yi) : i = 1, · · ·n}, Xi = (1, Xi1, Xi2,
· · · , Xip), where Xij , i = 1, .., n, j = 1, ..., p, and Yi, i = 1, ..., n are fuzzy numbers.
In model (1), a0, a1, ..., ap are crisp coefficients, and E is the fuzzy error term. Note
that, by considering the fuzzy error term E, the model could be used for cases in
which all input observations are crisp too.

Here, we briefly review the important studies which have been done on the
above fuzzy regression model. Kao and Chyu [19] proposed a two-stage approach
for analyzing such a model. In stage one, using the defuzzified observations by
centroid method, they estimated the crisp coefficients by employing the ordinary
least squares method. Then, in the second stage, they added the fuzzy error term
E = (0, α, β) to the estimated model and for estimating the spreads of E, they used
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the error criterion which have been proposed by Kim and Bishu [20], (see section
5.1). They designed a nonlinear programming which minimized the sum of errors
between the observed and estimated fuzzy responses. Kim et al. [21] adopted the
Kao and Chyu’s approach and replaced least squares estimators by least absolutes
estimators in stage one.

It should be mentioned that these two approaches have some disadvantages.
First, note that the Kim and Bishu’s error criterion (which is the absolute dif-
ference of membership functions of two fuzzy numbers) is independent of distance
between fuzzy numbers when the intersection of these numbers is empty. Therefore,
their criterion doesn’t measure the distance correctly.

The second disadvantage of the Kao and Chyu’s approach is that in their method,
for computing error criterion, one must determine a specific form of relative posi-
tion of Yi and Ŷi. But, in practice, there are more than one form of such a position
and therefore one can not easily determine which shape would result in minimizing
the sum of errors.

Choi and Buckley [9] designed a two-stage procedure to obtain least absolutes
estimators in a certain fuzzy regression model. In stage one, like Kao and Chyu’s
procedure, they defuzzified fuzzy observations using the centroid method. Since
for non-symmetric fuzzy numbers, the left and right spreads may affect in such a
defuzzification, they found least absolute deviations estimators more efficient than
the least squares deviations estimators. In stage two, because of the first problem
in Kim and Bishu’s criterion, i.e. occasional independency of distance, they used
another distance to estimate the spreads of the fuzzy error term. They minimized
the sum of absolute differences between left (and right) endpoints of supports of
the observed and estimated fuzzy responses to estimate the left (and right) spread
of E. In fact, their approach is a three-stage approach. It should be mentioned
that, by using the defuzzification in the first stage, one may lose some information
which is involved in the fuzzy data.

It is noticeable that the above approaches don’t use a metric on the space of
fuzzy numbers. In this regard, Arabpour and Tata [1] applied Diamond’s metric
[12] to obtain least square deviations estimators in some fuzzy regression mod-
els. In special cases, for fuzzy input-fuzzy output data, they considered the model
Y = a + bX, where a and b are crisp numbers. But, since this model does not
contain any fuzzy error term, it can not be applied when the input data are crisp.

The purpose of this paper is to introduce a new metric, based on absolute devi-
ations, on the space of fuzzy numbers, and then apply such a metric to develop a
new approach to analyze the fuzzy regression model (1). As we will show, unlike
the Kao and Chuy, and Choi and Buckley’s approaches, we determine the crisp re-
gression coefficients and fuzzy error term simultaneously based on minimizing the
sum of distances between the observed and estimated fuzzy responses, i.e. Yi and
Ŷi.

In addition, we investigate some appropriate criteria to evaluate the goodness of
fit of the fuzzy regression models.

Concerning the above discussions, as we will see in details in section 6, our ap-
proach can remove the above disadvantages.
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This paper is organized as follows: in the next section, we provide some pre-
liminaries about fuzzy numbers and algebraic operations on fuzzy numbers. In
section 3, we define a new metric on the space of fuzzy numbers and investigate its
properties. In section 4, we propose a new LAD-based approach to fuzzy regres-
sion modeling. In section 5, we investigate some criteria for evaluating goodness
of fit of fuzzy regression models. In section 6, using three well-known data sets,
we describe the performance of the proposed method with respect to some usual
methods. Finally, section 7 provides a brief conclusion.

2. Preliminaries

In this section, we recall some necessary definitions which are used throughout
this paper. For more details, see e.g. [38].

Let X be a universal set. A fuzzy set A of X is defined by its membership
function A : X −→ [0, 1]. Let A and B be two fuzzy sets of X. Then, A is called
a subset of B, A ⊆ B, iff A(x) ≤ B(x),∀x, and A is called equal to B, A = B, if
A(x) = B(x),∀x. The fuzzy set A is called normal if there exists an element x s.t.
A(x) = 1. In the following, we assume that the universal set is the real numbers,
R. The α-level set of A is defined by Aα = {x : A(x) ≥ α}, for 0 < α ≤ 1, and for
α=0, A0 is defined as the closure of the set {x : A(x) > 0}. The fuzzy set A of R
is called convex if all Aα, 0 < α ≤ 1, are convex sets.

Definition 2.1. A fuzzy number M is a normal convex fuzzy set of R with a
piecewise continuous membership function.

Definition 2.2. Let L (and R) be decreasing, shape functions from R+ ∪ {0} to
[0, 1] with L(0) = 1;L(x) < 1 for all x > 0, L(x) > 0 for all x < 1; L(1) = 0 or
(L(x) > 0 for all x and L(+∞) = 0). Then a fuzzy number M is called of LR-type
if for m, α > 0, β > 0 in R

M(x) =


L
(
m−x
α

)
, x ≤ m

R
(
x−m
β

)
, x > m

where m is called the mode of M , and α and β are called the left and right spreads,
respectively. Symbolically, M is denoted by (m,α, β)LR. We denote the set of all
fuzzy numbers by F (R) and the set of all LR fuzzy numbers with specified left and
right reference functions L and R, by FLR(R).

In special case, where L(x) = R(x) = max(0, 1 − |x|), M is called triangular
fuzzy number and is denoted by (m,α, β)T . If, in addition, α = β, M is called
symmetric triangular fuzzy number and is denoted by (m,α)T .

Algebraic operations on fuzzy numbers are defined based on the extension prin-
ciple. For our purposes, we recall two well-known results.

Definition 2.3. Let M,N ∈ F (R), f : R −→ R be a unary operation and ∗ :
R× R −→ R be a binary operation. Then
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a) f(M) is defined by a fuzzy set of R with the following membership function

f(M)(y) = supx;y=f(x)M(x)

b) M ~ N (~: extended operation of ∗) is defined as a fuzzy set of R with the
following membership function

(M ~N)(z) = supx,y;x∗y=zmin{M(x), N(y)}

Proposition 2.4. Let M = (m,α, β)LR and N = (n, γ, δ)LR be two LR-type fuzzy
numbers and λ ∈ R. Then

a) λM =


(λm,−λβ,−λα)RL, λ < 0
I{0}(.) λ = 0
(λm, λα, λβ)LR, λ > 0

b) M ⊕N = (m,α, β)LR ⊕ (n, γ, δ)LR = (m+ n, α+ γ, β + δ)LR.

c)If N = (n, γ, δ)RL, then

M 	N = (m,α, β)LR ⊕ (−n, δ, γ)LR = (m− n, α+ δ, β + γ)LR.

3. A New Metric on FLR(R)

In this section, we define a new metric on the set of all LR fuzzy numbers, with
specified shape functions L and R, FLR(R), based on L1-norm. We will employ
this metric to construct the fuzzy regression model in the next section.

Definition 3.1. The metric DLR on FLR(R) is defined by

DLR(X,Y ) =
1

3
{|mx −my|+ |(mx − lαx)− (my − lαy)|

+|(mx + rβx)− (my + rβy)|} (2)

where, l =
∫ 1

0
L−1(w)dw, r =

∫ 1

0
R−1(w)dw, X = (x, αx, βx)LR, and Y = (y, αy, βy)LR.

Theorem 3.2. (FLR(R), DLR) is a metric space.

Proof. It is sufficient to show that

(1) ∀X,Y ∈ FLR(R), DLR(X,Y ) > 0,
(2) DLR(X,Y ) = 0 ⇔ X = Y,
(3) ∀X,Y ∈ FLR(R), DLR(X,Y ) = DLR(Y,X),
(4) ∀X,Y, Z ∈ FLR(R), DLR(X,Z) ≤ DLR(X,Y ) +DLR(Y,Z).

The first three items are obviously held. We prove the triangular inequality, i.e.
item (4). We have

1
3 |mx −mz| ≤ 1

3 |mx −my|+ 1
3 |my −mz|,
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1
3 |(mx−lαx)−(mz−lαz)| ≤ 1

3 |(mx−lαx)−(my−lαy)|+ 1
3 |(my−lαy)−(mz−lαz)|,

1
3 |(mx+rβx)−(mz+rβz)| ≤ 1

3 |(mx+rβx)−(my+rβy)|+ 1
3 |(my+rβy)−(mz+rβz)|.

Now, we add the left sides and also the right sides of the above three inequalities
to obtain the triangular inequality. �

Theorem 3.3. (FLR(R),DLR) is a complete metric space.

Proof. We must show that any Cauchy sequence in FLR(R) converges to a member
of FLR(R). Let {Xn : n ≥ 1} be a Cauchy sequence in FLR(R) where Xn =
(mxn , αxn , βxn)LR. Then 1

3 |mxn − mxn′ | ≤ DLR(Xn, Xn′) → 0 as n, n′ → ∞.
Thus, {mxn}∞n=1 is a Cauchy sequence in R and mxn → mx, as n→∞.
On the other hand, 1

3 |(mxn − lαxn) − (mxn′ − lαxn′ )| ≤ DLR(Xn, Xn′) → 0 as
n, n′ → ∞, and so {mxn − lαxn}∞n=1 is a Cauchy sequence in R. Since {mxn}∞n=1

is a Cauchy sequence and l is constant, it follows that {αxn}∞n=1 is also a Cauchy
sequence in R, and αxn → αx, as n→∞. Similarly, βxn → βx, as n→∞.
Therefore, DLR(Xn, X) = 1

3{|mxn −mx|+ |(mxn − lαxn)− (mx − lαx)|+ |(mxn +

rβxn) − (mx + rβx)|} n→∞−→ 0. Thus, Xn
n→∞−→ X, where X = (mx, αx, βx)LR ∈

FLR(R). �

Remark 3.4. In special cases, when two fuzzy numbers reduce to crisp numbers,
i.e. αx = βx = αy = βy = 0, the metric DLR reduces to the ordinary metric in R;
that is, d(mx,my) = |mx −my|.

Remark 3.5. Yang and Ko [26-28] have introduced a metric on FLR(R) similar to
the metric DLR, but based on L2-norm, (i.e. squared distance). They have applied
the metric for studying some fuzzy regression methods and fuzzy clustering, (see
Coppi et al. [11] for a generalization of their method to the case with LR fuzzy
response.) It should be mentioned that our metric and the Yang and Ko’ one,
have an advantage with respect to the Diamond’s metric [12] in which the shape of
fuzzy numbers has not been considered in determination of the distance between
two fuzzy numbers.

4. Fuzzy Least Absolutes Deviations Regression

In this section, based on the metric introduced in section 3, we propose and
investigate a new least absolutes deviations approach to fuzzy regression modeling,
for fuzzy input and fuzzy output data in which the parameters of the model are
assumed to be crisp numbers. We will assume that all fuzzy data are symmetric
LR fuzzy numbers.

Consider the set of observed data {(Xi, Yi): i = 1, · · ·n}, where Xi = (1, Xi1, Xi2,
· · · , Xip) and Xij = (xij , sxij )LL, i = 1, .., n, j = 1, ..., p. Also, Yi = (yi, syi)LL.

Our aim is to fit a fuzzy linear regression model with crisp coefficients to the
aforementioned data set, as

Ŷi = a0 ⊕ (a1Xi1)⊕ (a2Xi2)⊕ · · · ⊕ (apXip)⊕ E,
where E = (0, α, β)LL is the error term. Using Proposition 2.4, we obtain the

following form for Ŷi
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Ŷi = (

p∑
j=0

ajxij ,

p∑
j=1

|aj |sxij + α,

p∑
j=1

|aj |sxij + β)LL, i = 1, · · · , n, (3)

where xi0 = 1. To find the best fuzzy linear model of the form (1), using the metric

DLR, we minimize the sum of distances between Yi and Ŷi , i.e.
∑n
i=1DLR(Yi, Ŷi),

which is equivalent to minimize the following expression
n∑
i=1

1

3
{|yi −

p∑
j=0

ajxij | + |(yi − lsyi )− (

p∑
j=0

ajxij − l(
p∑
j=1

|aj |sxij + α))|

+|(yi + lsyi )− (

p∑
j=0

ajxij + l(

p∑
j=1

|aj |sxij + β))|}. (4)

By solving this minimization problem, the crisp coefficients and the parameters
(spreads) of the error term would be estimated.

Now, for simplifying this problem, we translate it to a standard mathematical
programming problem. For the first absolute expression in (4), by introducing two

nonnegative deviation variables dM+
i , dM−i , we can write

|yi −
∑p
j=0 ajxij | = dM+

i + dM−i ,

yi −
∑p
j=0 ajxij = dM+

i − dM−i .

The variables dM+
i and dM−i are called the positive and negative deviation vari-

ables, respectively. The reason is that if yi −
∑p
j=0 ajxij ≥ 0, then dM+

i =

yi −
∑p
j=0 ajxij and dM−i = 0, and if yi −

∑p
j=0 ajxij < 0, then dM+

i = 0 and

dM−i = −(yi −
∑p
j=0 ajxij). In other words, at least one of these variables will be

zero. Similarly, by defining nonnegative deviation variables dL+i , dL−i for the sec-

ond absolute expression in (4), and dR+
i , dR−i for the third one, we can reformulate

these two expressions as follows

|(yi − lsyi )− (
∑p
j=0 ajxij − l(

∑p
j=1 |aj |sxij + α))| = dL+

i + dL−i ,

(yi − lsyi )− (
∑p
j=0 ajxij − l(

∑p
j=1 |aj |sxij + α)) = dL+

i − dL−i ,

and
|(yi + lsyi )− (

∑p
j=0 ajxij + l(

∑p
j=1 |aj |sxij + β))| = dR+

i + dR−i ,

(yi + lsyi )− (
∑p
j=0 ajxij + l(

∑p
j=1 |aj |sxij + β)) = dR+

i − dR−i .

Finally, the problem of minimizing the expression (4) is reformed to the following
mathematical programming problem

min

n∑
i=1

1

3
(d
M+
i

+ d
M−
i

+ d
L+
i

+ d
L−
i

+ d
R+
i

+ d
R−
i

)

s.t.

yi −
p∑
j=0

ajxij = d
M+
i

− dM−
i

,

(yi − lsyi ) − (

p∑
j=0

ajxij − l(
p∑
j=1

|aj |sxij + α)) = d
L+
i
− dL−

i
,

(yi + lsyi
) − (

p∑
j=0

ajxij + l(

p∑
j=1

|aj |sxij + β)) = d
R+
i
− dR−

i
,

d
M+
i

, d
M−
i

, d
L+
i

, d
L−
i

, d
R+
i

, d
R−
i
≥ 0, i = 1, · · · , n,

aj ∈ R, j = 0, ..., p, α, β ≥ 0. (5)
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Note that deviation variables are auxiliary variables which are unknown and si-
multaneous to estimating parameters they will be known.

It is noticeable that, because of some absolute terms, the problem (5) is a non-
linear programming problem. Such a problem could be solved by some suitable
softwares, (we use LINGO for all numerical examples in this study).

In many applications, the sign of aj ’s can be determined by experts. So that,
by predetermining the signs of coefficients, one can translate the above problem to
a linear programming problem, which produces global estimates.

4.1. Extension to Non-Symmetric Fuzzy Observations. In this part, we ex-
tend the proposed method to the cases in which the observations are non-symmetric
fuzzy numbers. Consider the aforementioned data set in which Xij = (xij , αxij , βxij )LL,

i = 1, .., n, j = 1, ..., p, Yi = (yi, αyi , βyi)LL, i = 1, ..., n, and E = (0, α, β)LL. According
to Propositions 2.4, the spreads of multiplication of any real number aj and a (tri-
angular) fuzzy number depend on the sign of aj . Suppose that we know the signs
of coefficients, then we can determine the sets P = {j : aj > 0, j = 1, ..., p} and
N = {j : aj < 0, j = 1, ..., p}. Thus, we can write

Ŷi = (

p∑
j=0

ajxij ,
∑
j∈P

ajαxij−
∑
j∈N

ajβxij+α,
∑
j∈P

ajβxij−
∑
j∈N

ajαxij+β)LL,

The linear programming problem, therefore, is obtained similar to the problem (5)

min

n∑
i=1

1

3
(d
M+
i + d

M−
i + d

L+
i + d

L−
i + d

R+
i + d

R−
i )

s.t.

yi −
p∑
j=0

ajxij = d
M+
i − dM−i ,

(yi − lαyi )− (

p∑
j=0

ajxij − l(
∑
j∈P

ajαxij−
∑
j∈N

ajβxij+α)) = d
L+
i − dL−i ,

(yi + lβyi )− (

p∑
j=0

ajxij + l(
∑
j∈P

ajβxij−
∑
j∈N

ajαxij+β)) = d
R+
i − dR−i ,

d
M+
i , d

M−
i , d

L+
i , d

L−
i , d

R+
i , d

R−
i ≥ 0, i = 1, · · · , n,

aj ∈ R, j = 0, ..., p, α, β ≥ 0. (6)

Remark 4.1. Our proposal to determine the signs of aj ’s is as follows:

We could employ the classic least absolutes deviations regression, using the
modes of fuzzy explanatory (inputs) variables and fuzzy response (output) vari-
ables. The modes of fuzzy numbers have a degree of membership equal to one and
have the most importance, so that they could determine the major trend of regres-
sion line (plane). By estimating the coefficients, we then know the trend between
the fuzzy response variable and jth explanatory variable, i.e. the sign of aj (similar
procedure has been employed by some authors, see for example [8]).

Sometimes, the signs of some estimated aj ’s are different from the predetermined
one’s. This often occurs when the corresponding estimated coefficients from clas-
sical regression are almost zero. In this situation, with respect to the sign of the
new estimated aj ’s, one can swap j in P or N , then solve the new optimization
problem. The procedure is continued until the sign of all estimated aj ’s are the
same as their predetermined signs in P and N .
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5. Goodness of Fit

In this section, first, we investigate an index of goodness of fit introduced by Kim
and Bishu [20]. Then, based on a similarity of measure between two fuzzy sets, we
introduce a new criterion as goodness of fit index for evaluating the fuzzy regression
models. In addition, we employ another goodness of fit measure, introduced and
applied by Chen and Hsueh [7].

5.1. Error Index. A popular criterion in the literature, for evaluating fuzzy re-
gression models is the Kim and Bishu’s error criterion [20], which is based on the
absolute differences between the membership functions of the estimated and ob-
served fuzzy responses.

Definition 5.1. For the fuzzy linear regression model (1), let Yi and Ŷi be the
observed and estimated fuzzy response for the ith observation, respectively. Then,
the related error measure is defined by

Ei =

∫
SYi∪SŶi

|Ŷi(x)− Yi(x)|dx∫
SYi

Yi(x) dx

where, Yi(x) and Ŷi(x) are the membership functions of Yi and Ŷi, respectively, and
SYi and SŶi are their supports.

Definition 5.2. For the fuzzy regression model (1), mean of the errors between
estimated and observed values, as a measure for goodness of fit of the model, is
defined by

ME =
1

n

n∑
i=1

Ei.

5.2. Similarity Measure. Similarity measures (in some literature: capability in-
dices) are used to measure the similarity between fuzzy sets [24, 27]. In this work,
we use the following index to evaluate the goodness of fit of fuzzy regression models.

Definition 5.3. [24] Suppose that A and B are two fuzzy numbers. The similarity
measure between A and B is defined by

SUI(A,B) =
Card(A ∩B)

Card(A ∪B)

where

Card(A) =

∫
R
A(x)dx

in which the ”min” operator is used for intersection of two fuzzy sets and the ”max”
operator is used for the union of them.

Theorem 5.4. Let A, B, and C be three fuzzy numbers. Then

(1) 0 ≤ SUI(A,B) ≤ 1,
(2) SUI(A,B) = SUI(B,A),
(3) ∀x, (A ∩B)(x) = 0⇔ SUI(A,B) = 0,
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(4) A = B ⇔ SUI(A,B) = 1,
(5) A ⊆ B ⊆ C =⇒ SUI(A,C) ≤ min{SUI(A,B), SUI(B,C)}.

Proof. (1) and (2) are obvious. We prove the other items.

3) (=⇒) is trivial
(⇐=) Let SUI(A,B) = 0, then Card(A∩B) = 0 and so in the continuous case (the
discrete case is similar) ∫

R
(A ∩B)(x)dx = 0.

Since (A ∩B)(x) ≥ 0, from the above equality we have for all x, (A ∩B)(x) = 0.

4)(=⇒) is trivial.
(⇐=) Let SUI(A,B) = 1, then Card(A∩B) = Card(A∪B), and so in the contin-
uous case (the discrete case is similar)∫

R
[(A ∪B)(x)− (A ∩B)(x)]dx = 0.

But, (A ∩B) ⊆ (A ∪B) and so (A ∩B) = (A ∪B) and hence A = B.

5) From A ⊆ B ⊆ C, it follows that A ∪ C = B ∪ C and A ∩ C ⊆ B ∩ C. Thus

SUI(A,C) =
Card(A ∩ C)

Card(A ∪ C)
≤ Card(B ∩ C)

Card(A ∪ C)

=
Card(B ∩ C)

Card(B ∪ C)
= SUI(B,C).

On the other hand, from A ⊆ B ⊆ C, we have A∪B ⊆ A∪C and A∩C = A∩B.
Thus

SUI(A,C) =
Card(A ∩ C)

Card(A ∪ C)
=

Card(A ∩B)

Card(A ∪ C)

≤ Card(A ∩B)

Card(A ∪B)
= SUI(A,B).

So, SUI(A,C) ≤ min{SUI(A,B), SUI(B,C)}. �

Definition 5.5. For the fuzzy linear regression model (1), the mean of similarity
measures (MSM) is defined by

MSM =
1

n

n∑
i=1

SUI(Yi, Ŷi).

Note that, 0 ≤ MSM ≤ 1. We will use MSM index to evaluate the goodness of
fit of fuzzy regression models.

5.3. Distance Criterion. Concerning the weakness of Choi and Buckley’s error
index in reflecting the distance between fuzzy numbers in the case of no intersection,
Chen and Hsueh [7] proposed a distance criterion based on α-levels.
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Definition 5.6. For the fuzzy regression model (1), let Di be the average error for
the ith case by m α-levels, as

Di =
1

2m

m∑
k=1

(|(Ŷi)Lαk − (Yi)
L
αk
|+ |(Ŷi)Uαk − (Yi)

U
αk
|)

where, for a certain α-level, (Ŷi)
L
α and (Ŷi)

U
α are the lower and upper bounds of the

ith estimated fuzzy response, and (Yi)
L
α and (Yi)

U
α are the lower and upper bounds

for ith observed fuzzy response. Then, the MD index, as a measure of goodness of
fit for the model (1), is defined by

MD =
1

n

n∑
i=1

Di.

Chen and Hsueh [7] applied only two α-levels, α = 0, 1, for obtaining their
models and comparing some fuzzy models. In the next section, we will use these
two α-levels for comparing different fuzzy regression models.

6. Numerical Examples and Comparison Studies

In this section, we illustrate our proposed approach and its performances using
some well-known data sets. In addition, we compare our approach with several
existing fuzzy regression approaches based on the criteria explained in section 5.

First, we consider an example in which the observations of input variables are
crisp, but the observations of the dependent variable are fuzzy. In the second
example, we will consider the case in which both sets of observations are fuzzy. In
the third example, we use a large non-symmetric data set.

Example 6.1. The real data set in Table 1 is used by Kim and Bishu [20]. The
observations of independent variables are crisp but the observations of the depen-
dent variable are presented as symmetric triangular fuzzy numbers.

Choi and Buckley [9] claimed that for modeling this data set the least absolutes
fuzzy regression works better than the Kim and Bishu’s approach (which is the

No. Y x1 x2 x3
1 (5.83, 3.56) 2.00 0.00 15.25
2 (0.85, 0.52) 0.00 5.00 14.13
3 (13.93, 8.50) 1.13 1.50 14.13
4 (4.00, 2.44) 2.00 1.25 13.63
5 (1.65, 1.01) 2.19 3.75 14.75
6 (1.58, 0.96) 0.25 3.50 13.75
7 (8.18, 4.99) 0.75 5.25 15.25
8 (1.85, 1.13) 4.25 2.00 13.50

Table 1. Data Set in Example 6.1
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least squares fuzzy regression method) since there is one outlier data point (No. 3).
Using the Choi and Buckley’ method, the optimal model (CB) is

ŶCB = −2.8273	 0.3878 x1 	 1.0125 x2 ⊕ 0.6185 x3 ⊕ (0, 1.0696, 2.0042)T .

The above relation is derived based on the model 2.2 in [7], and it is noticeable this
model yields more efficient results than those of based on the model 2.1 in their
work.

Chen and Hsueh [8] proposed a least squares approach to fuzzy regression models
with crisp coefficients. They minimized total estimation errors in terms of the sum
of Ei’s, where Ei is denoted by the average squared distances (errors) between
the observed and estimated fuzzy responses for the ith observation based on a few
α-levels. Their optimal model (CH) is

ŶCH = −16.7956	 1.0989 x1 	 1.1798 x2 ⊕ 1.8559 x3 ⊕ (0, 2.8888)T .

Hassanpour et al. [17] proposed a least absolutes regression method that mini-
mizes the differences between centers (modes) of the observed and estimated fuzzy
responses and also between the spreads of them, using a goal programming ap-
proach. They took into account fuzzy coefficients for crisp inputs in their model.
Employing their method for the above data set yields the following model (HMY )

ŶHMY = (−2.8273, 0.0000)T 	 (0.3877, 0.0000)T x1 	 (1.0125, 0.0000)T x2 ⊕
(0.6185, 0.1790)T x3.

On the other hand, by employing the proposed method in section 4, the optimal
model (TK) is obtained as

ŶTK = −15.5578	 0.2444 x1 	 0.9976 x2 ⊕ 1.5142 x3 ⊕ (0, 1.1300)T .

Now, for evaluating the performance of our proposed model (TK), we compare
it with the other models, based on the three goodness of fit criteria introduced in
section 5.

First, we compared the models using the error index, ME. The results are given
in Table 2. It is obvious that, based on this criterion, the proposed model (TK) has
a smaller ME, and, therefore, it is fitted to the data better than the other models.

Second, the similarity of measures between the observed values and estimated
values for different models were calculated. The results are shown in Table 3. As
one can see, the MSM for the proposed model is 0.3710 which is better than the
MSM for the other models.

For more comparison, we calculated the MD criterion for different models. By
comparing the results given in Table 4, it is obvious that our model is better than
the other models based on distance criterion.

As mentioned above, in the data set in Table 1, there exists one outlier datum.
Similar to classical regression, it seems that in fuzzy regression modeling, the least
absolutes deviations estimators are more suitable than the least squares ones, when
there are some outliers in the data set.
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In the above example, the models (CB), (HMY ), and (TK) (which are LAD-
based) work better than the model (CH) (which is LS-based) in terms of different
goodness of fit criteria.

No. CB CH HMY TK
1 0.5683 1.4273 0.2332 0.7648
2 2.6957 6.2552 4.6581 1.7125
3 1.1777 1.1847 1.2857 1.1329
4 0.4099 0.6258 0.3431 0.6219
5 1.0171 3.0368 2.2312 1.3494
6 1.3307 3.6758 1.6449 0.2718
7 1.3080 1.1329 1.5395 1.2264
8 0.4123 1.9204 1.6706 0.0000

ME 1.1150 2.4074 1.7008 0.8850

Table 2. Comparison Between the Models in Example 6.1,

Using the Error Index ME

No. CB CH HMY TK
1 0.4317 0.1186 0.7668 0.2654
2 0.1894 0.0234 0.1146 0.2989
3 0.0013 0.0615 0.0046 0.0000
4 0.5981 0.5545 0.7072 0.4035
5 0.4252 0.1194 0.2366 0.2220
6 0.3231 0.0434 0.3684 0.7780
7 0.0000 0.1645 0.0024 0.0000
8 0.7020 0.2987 0.3052 1.0000

MSM 0.3339 0.1730 0.3132 0.3710

Table 3. Comparison Between the Models in Example 6.1,

Using the Index MSM

No. CB CH HMY TK
1 1.0119 3.4791 0.4154 1.8225
2 0.5086 2.6793 1.0048 0.3051
3 9.7412 7.5132 9.9747 9.8647
4 0.6707 0.8278 0.4382 0.9825
5 0.2637 2.0981 0.8153 0.8504
6 0.6900 2.7390 0.9788 0.1499
7 6.9480 3.6913 7.1816 6.0669
8 0.2336 1.1898 0.6434 0.0000

MD 2.5085 3.0272 2.6815 2.5053

Table 4. Comparison Between the Models in Example 6.1,

Using the Index MD
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No. Y X

1 (4.0, 0.5) (2.0, 0.5)

2 (5.5, 0.5) (3.5, 0.5)

3 (7.5, 1.0) (5.5, 1.0)

4 (6.5, 0.5) (7.0, 0.5)

5 (8.5, 0.5) (8.5, 0.5)

6 (8.0, 1.0) (10.5, 1.0)

7 (10.5, 0.5) (11.0, 0.5)

8 (9.5, 0.5) (12.5, 0.5)

Table 5. Data Set in Example 6.2

Example 6.2. In this example, using a well-known data set (including fuzzy input-
fuzzy output data) we perform a comparison between our proposed model with some
existing models.

The data set in Table 5 used by several authors are initially presented by Sakawa
and Yano [29]. In this data set, fuzzy input and fuzzy output observations are
symmetric triangular fuzzy numbers.
The results of fitting several models to this data set are as follows:

Using Choi and Buckley’ method (CB), the following model is obtained

ŶCB = 3.9444⊕ 0.4444 X ⊕ (0, 0.2778)T .

The Arabpour and Tata’s model (AT ) [1], which is a fuzzy least squares regression
model, is

ŶAT = 3.4873⊕ 0.5306 X.

Based on the Chen and Hsueh’s method [8], the optimal model (CH) is obtained
as

ŶCH = 3.5750⊕ 0.5196 X ⊕ (0, 0.3006)T .

Finally, the Hassanpour et al.’s model (HMY ) [18] is obtained as

ŶHMY = 3.9444⊕ 0.4444 X.

On the other hand, based on the proposed method in section 4, the optimal
model (TK) is obtained as

ŶTK = 3.9444⊕ 0.4444 X ⊕ (0, 0.2778)T . (12)

Note that the (TK) and (CB) models are the same. Also the coefficients of (HMY )
model are similar to those of (TK ′s) and (CB′s).

Now, we compare the above models based on three criteria: ME, MSM , and
MD. The amounts of errors between observed and estimated fuzzy responses, for
several models, are given in Table 6. As one can see, the mean of errors ME of
the model (HMY ) is smaller than that of the other models. In what follows, we
compare the above four models based on the other criteria.

The values of similarity measures for the models are given in Table 7. As one can
see, the mean of similarity measures for the proposed model is much larger than
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the others so that based on this criterion the proposed model (TK) is supposed to
be the best model.

Finally, we use the values of distances between the observed and estimated fuzzy
responses to calculate the MD index for the models. The results are given in Table
8 indicating that, based on the distance criterion, the model (TK) is the best model.

Now, for more comparison as well as to study the effect of outliers, we change
the fifth data as Y = (18.5, 0.5)T , and reconstruct the above models. The summary
of results are given in Table 9.

To compare the effect of the outlier, we calculate the difference between each
criterion for all five models with and without the outlier. The results of three
criteria are given in Tables 10-12.

As it can be seen, the models (TK) and (CB) are somewhat similar. Note that
the models (TK), (CB), and (HMY ), which are least absolutes regression models
(LAD-based), have affected by the outlier less than the two models (AT ) and (CH),
which are least squares regression models (LS-based). This shows the robustness
of least absolutes fuzzy regression models with respect to outliers in this data set.

No. AT CH HMY TK
1 1.4078 1.7431 1.4444 1.9444
2 0.6124 0.4118 0.5556 0.0008
3 1.4063 1.5112 1.3676 1.5056
4 1.5200 1.8863 1.3672 1.6043
5 1.3502 1.5565 1.4444 1.9016
6 1.3850 1.4722 0.9631 1.0047
7 1.5300 2.1202 1.4444 2.0000
8 1.4753 1.6531 0.5556 0.0024

ME 1.3360 1.5443 1.1428 1.2455

Table 6. Comparison Between Different Models in Example 6.2,

Using the Error Index ME

No. AT CH HMY TK
1 0.0431 0.0976 0.0000 0.0141
2 0.4239 0.6747 0.4444 1.0000
3 0.0417 0.0926 0.0273 0.0672
4 0.0039 0.0584 0.0275 0.1099
5 0.0608 0.1533 0.0000 0.0253
6 0.0508 0.1055 0.1999 0.2630
7 0.0000 0.0000 0.0000 0.0000
8 0.0193 0.1238 0.4444 0.9976

MSM 0.0804 0.1632 0.1429 0.3095

Table 7. Comparison Between Different Models in Example 6.2,

Using the Index MSM
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No. AT CH HMY TK
1 0.5485 0.6130 0.8332 0.8332
2 0.1951 0.1085 0.1390 0.0002
3 1.0944 1.0705 1.1114 1.1114
4 0.7015 0.7080 0.5552 0.5552
5 0.5026 0.5135 0.7782 0.7782
6 1.0586 1.0245 0.6106 0.6106
7 1.1761 1.2160 1.6672 1.6672
8 0.6198 0.5625 0.1392 0.0006

MD 0.7371 0.7271 0.7292 0.6946

Table 8. Comparison Between Different Models in Example 6.2,

Using the Index MD

Model CB ŶCB = 3.9444⊕ 0.4444 X ⊕ (0, 0.2772, 0.2780)T
Model AT ŶAT = 4.0290⊕ 0.6242 X

Model CH ŶCH = 4.0915⊕ 0.6160 X ⊕ (0, 0.2400)T
Model HMY ŶHMY = 3.9444⊕ 0.4444 X

Model TK ŶTK = 3.9444⊕ 0.4444 X ⊕ (0, 0.2778)T

Table 9. The Obtained Models for the Data Set with

Outlier in Example 6.2

Model CB CH AT HMY TK
without outlier 1.2455 1.5443 1.3360 1.1428 1.2455
with outlier 1.2576 1.6903 1.4120 1.1428 1.2455
absolute difference 0.0121 0.1460 0.0760 0.0000 0.0000

Table 10. The Values of ME for the Models in Example 6.2

Model CB CH AT HMY TK
without outlier 0.3095 0.1632 0.0804 0.1429 0.3095
with outlier 0.3064 0.1454 0.0976 0.1429 0.3095
absolute difference 0.0031 0.0178 0.0172 0.0000 0.0000

Table 11. The Values of MSM for the Models in Example 6.2

Model CB CH AT HMY TK
without outlier 0.6946 0.7271 0.7371 0.7292 0.6946
with outlier 1.9452 2.3060 2.3214 1.9792 1.9446
absolute difference 1.2506 1.5789 1.5843 1.2500 1.2500

Table 12. The Values of MD for the Models in Example 6.2
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No. X1 X2 X3 X4 Y
1 (50, 8, 8) (98, 6, 2) (71, 9, 11) (70, 11, 13) (30, 11, 9)
2 (29, 8, 8) (76, 6, 2) (61, 9, 11) (46, 11, 13,) (20, 13, 10)
3 (41, 8, 8) (88, 6, 2) ( 73, 9, 11) (58, 11, 13) (25, 11, 12)
4 (60, 9, 7) (62, 9, 10) (79, 9, 6) (66, 8, 9) (45, 12, 10)
5 (49, 9, 7) (50, 9, 10) (75, 9, 6) (54, 8, 9) (38, 12, 8)
6 (59, 9, 7) (60, 9, 10) ( 85, 9, 6) (64, 8, 9) (43, 11, 9)
7 (61, 9, 11) (77, 8, 6) (85, 5, 8) (18, 7, 13) (40, 17, 11)
8 (58, 9, 11) (75, 8, 6) (82, 5, 8) (16, 7, 13) (38, 11, 12)
9 (55, 9, 11) (72, 8, 6) (79, 5, 8) (13, 7, 13) (37, 12, 12)
10 (66, 8, 7) (59, 17 11) (39, 8, 9) (83, 14, 11) (60, 11, 12)
11 (69, 8, 7) (63, 17, 11) (49, 8, 9) (87, 14, 11) (59, 10, 9)
12 (59, 8, 7) (53, 17, 11) (39, 8, 9) (77, 14, 11) (54, 11, 8)
13 (74, 4, 6) (89, 11, 5) (70, 12, 13) (82, 14, 10) (61, 14, 3)
14 (41, 4, 6) (57, 11, 5) (58, 12, 13) (50, 14, 10) (34, 10, 8)
15 (49, 4, 6) (65, 11, 5) (66, 12, 13) (58, 14, 10) (38, 9, 9)
16 (76, 8, 7) (75, 10, 8) (37, 8, 11) (75, 5, 10) (64, 16, 9)
17 (57, 8, 7) (56, 10, 8) (18, 8, 11) (56, 5, 10) (56, 13, 7)
18 (72, 8, 7) (71, 10, 8) (33, 8, 11) (71, 5, 10) (63, 11, 9)
19 (78, 7, 8) (65, 6, 6) (82, 11, 11) (64, 8, 12) (66, 16, 5)
20 (58, 7, 8) (45, 6, 6) (62, 11, 11) (44, 8, 12) (49, 12, 9)
21 (72, 7, 8) (59, 6, 6) (76, 11, 11) (58, 8, 12) (55, 10, 12)
22 (90, 8, 5) (95, 13, 3) (80, 11, 8) (72, 7, 13) (67, 11, 14)
23 (68, 8, 5) (73, 13, 3) (58, 11, 8) (50, 7, 13) (53, 10, 9)
24 (71, 8, 5) (76, 13, 3) (61, 11, 8) (53, 7, 13) (54, 9, 10)
25 (92, 8, 6) (76, 6, 9) (78, 10, 6) (27, 9, 15) (70, 13, 7)
26 (94, 8, 6) (78, 6, 9) (80, 10, 6) (29, 9, 15) (68, 9, 10)
27 (87, 8, 6) (71, 6, 9) (73, 10, 6) (22, 9, 15) (65, 10, 9)
28 (94, 6, 5) (51, 9, 8) (30, 9, 11) (29, 9, 16) (75, 5, 14)
29 (95, 6, 5) (52, 9, 8) (31, 9, 11) (30, 9, 16) (84, 10, 7)
30 (86, 6, 5) (43, 9, 8) (22, 9, 11) (21, 9, 16) (80, 12, 6)

Table 13. Data Set in Example 6.3

Example 6.3. In this example, we provide a comparison study using a large data
set (see Table 13). This data set, that is presented by Chen and Hsueh [8], contains
four input variables and one output variable for which all observations are non-
symmetric triangular fuzzy numbers. Chen and Hsueh [8] performed a fuzzy least
squares regression model. Their model (CH) for this data set is obtained as

ŶCH = 12.093⊕ 0.859X1 ⊕ (−0.207)X2 ⊕ (−0.134)X3 ⊕ 0.108X4

⊕(0, 1.299, 0.039)T .

Applying the Choi and Buckley’s method results in the following model (CB)

ŶCB = 14.9668⊕ 0.8482X1 ⊕ (−0.1515)X2 ⊕ (−0.1937)X3 ⊕ 0.0526X4

⊕(0, 0.0059, 0.0053)T .
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Model CB CH HMY TK
ME 0.2333 0.2736 0.2406 0.2140
MSM 0.8227 0.7746 0.7936 0.8210
MD 1.3588 1.6687 1.4464 1.3570

Table 14. Goodness of Fit Criteria in Example 6.3

In addition, the Hassanpour et al.’s method yields the following model (HMY )

ŶHMY = 20.3559⊕ 0.8197X1 ⊕ (−0.1661)X2 ⊕ (−0.2144)X3 ⊕ 0.0351X4.

For applying our proposed method to this data set, we first performed a least ab-
solutes regression for the modes of input and output data. The estimated intercept
and coefficients were obtained as 21.14, 0.82,−0.18,−0.21, and 0.036, respectively.
Therefore, by considering the signs of the coefficients in program (6), the optimal
model (TK) is obtained as

ŶTK = 16.7295⊕ 0.8464X1 ⊕ (−0.1679)X2 ⊕ (−0.1947)X3 ⊕ 0.0517X4

⊕(0, 0.8320, 0.5490)T .

The values of goodness of fit criteria are summarized in Table 14. The amounts of
MD and ME for the proposed model (TK) are smaller than those of the models
(CB), (CH), and (HMY ). Also, the amount of MSM for the proposed model
is very close to that of the model (CB). Therefore, the TK’s method performs a
better model than the other methods for this data set.

7. Conclusion

A new method, based on least absolutes deviations, is proposed for fuzzy regres-
sion modeling, using a new metric on the space of fuzzy numbers. In regard to
three criteria for goodness of fit, it is shown that the proposed method performs
more convenient models with respect to some well-known methods in some data
sets, especially when the data set includes some outlier data point(s).

Concerning the proposed approach, the research on the other robust approaches
to fuzzy regression and also investigating other methods for the outliers detection
may be some more topics for the future research.
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