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Dominance effect refers to the allele interaction in a locus. In this study, different portions of dominance standard
deviations underlying quantitative trait loci (QTL) effect were considered. The F2 design is frequently employed
in QTL mapping experiments using Haley and Knott regression method for QTL mapping analysis. This
simulation study is carried out to consider the effect of the total standard deviation of QTL (SDQ) with different
portions of additive/dominance effects in the context of different levels of population size, marker spacing and
relative position of QTL from marker bracket on power of detecting QTL, precision of estimated QTL position
and additive and dominance effects. The other aims of the study were to design an optimal artificial neural
network (ANN) model to predict Haley�Knott (HK) results for more combinations of simulated parameters.
SDQ of QTL strongly affected the power of QTL detection, therefore, in every combination of other parameters
when SDQ is either 0.5 or 0.8, power was 100%. In all scenarios, the power increased when the ratio of additive
and dominant SD of QTL effects was low or high (0.25 or 0.75). Increase of additive effect compared with
the dominance effect decreased the precision of QTL location. Precision of estimated additive effect and
dominance effect was good but precision of dominance effect was more affected by the considered parameter
combinations than the additive effect. This study developed an ANN model with minimum dimensions and
minimum errors for prediction of efficiency parameters of HK method given the simulated parameters.
Moreover, for the first time, this study shows the use of trained ANN model for prediction of large-scale
combinations of simulated parameters.

Keywords: QTL mapping; F2 design; artificial neural network; dominance effect

Introduction

A large number of traits in agricultural species are

quantitative, mapping quantitative trait loci (QTL) is

a basic operation for positional cloning and for

application of marker-assisted selection or marker-

assisted introgression in genetic improvement (Soller

1994). In selfing species, and outcrossers for which

inbred lines are available, QTL mapping through

linkage analysis with genetic markers is efficiently

carried out in F2 or backcross populations (Soller

et al. 1976). In line-crossing experiments, a segregat-

ing population derived from the crosses of some

carefully chosen inbred lines, that is, F2 or backcross

populations, is widely used to map QTL (Zhu et al.

2007). QTL mapping in experimental crosses provides

an excellent alternative. By choosing a suitable model

organism we can home a particular aspect of the

phenotype of interest (Broman and Sen 2009). If a

QTL segregates between two strains, backcross and

F2 designs reliably detect it (Valdar et al. 2006). A

powerful approach to the detection of QTL is based

on crosses between inbred lines differing significantly

for the trait of interest (Baret et al. 1998).
The development of genetic maps of markers based

on DNA polymorphisms is beginning to provide the

experimental geneticists and the plant and animal

breeders with powerful tools for the study of quantita-

tive genetic variation. The use of markers to detect

individual locus responsible for quantitative genetic

variation (QTL) provides much greater power than

segregation analysis without marker information (Haley

and Knott 1992). The use of flanking marker methods

has proved to be a powerful tool for the mapping of

QTL in the segregating generations derived from crosses

between inbred lines (Haley and Knott 1992).
The mapping of QTL is the first step towards the

identification of genes and causal polymorphisms for

traits of importance in agriculture and human med-

icine (Haley and Knott 1992). Identification of QTLs

in experimental animals is critical for understanding

the biochemical bases of complex traits, and thus for

identification of the drug targets (Broman 2001).
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Haley�Knott (HK) regression method is based on
multiple regression which can be applied using any
general statistical package, as developed by Haley
and Knott (1992). They used the example of mapping
in an F2 population and showed that these regression
methods produce very similar results to those ob-
tained using maximum likelihood (Haley and Knott
1992). The HK regression method continues to be a
popular approximation to standard interval mapping
(IM) of QTL in experimental crosses (Feenstra et al.
2006). Currently, the HK method is preferred as a fast
approximation to the IM method for estimating
model parameters (Feenstra et al. 2006) and because
of fastness implementation of permutation tests to set
chromosome or genome-wide significance thresholds
(Churchill and Doerge 1994) and a bootstrap proce-
dure to estimate the confidence interval of a QTL
location (Visscher et al. 1996).

Empirical power is a critical part of results up
from any QTL mapping experiments. The other key
factor contributing to the success of a quantitative
trait locus mapping experiment is the precision, which
sometimes referred to as map resolution. The factors
affecting map resolution that can be controlled
during experimental design are the number of in-
dividuals in the sample and the nature of the genetic
cross (Mackay 2001).

The artificial neural network (ANN) technique is
used to solve a wide variety of problems in science
and engineering, particularly for some areas where
the mathematical modelling methods fail (Khazaei
et al. 2008). The most popular ANNs are the multi-
layer feed-forward neural networks, where the neu-
rons are arranged into layers of input, hidden and
output (Khazaei et al. 2008). ANN models are able to
learn relationships between dependent and indepen-
dent variables through the data itself rather than
assuming the functional form of the relationships
(Mittal and Zhang 2000). Several authors have shown
greater performances of ANN compared to regres-
sion models (Lek et al. 1996; Park et al. 2005). The
most powerful ability of ANN to solve large-scale
complex problems is training or education. The best-
known and most commonly used training algorithm
is back-propagation (Drummond et al. 2004; Zhang
et al. 2002).

In this study, a comprehensive simulation study is
carried out in order to determine the effect of marker
spacing, population size, standard deviation of QTL
(SDQ) effect, ratio of additive vs. dominance effect of
QTL and QTL location relative to flanking markers
on the efficiency of HK regression method. The other
objectives of this research were (1) to build up an
ANN model to approximate a non-linear function
relating simulated parameters to power of QTL

detection, precision of estimated QTL location and
its effects, (2) to evaluate the predictive performance
of the ANN model and (3) to predict power and
precisions of HK for large-scale combination of
simulated parameters using designed adequate
ANN. The review of literature found no studies of
ANN modelling on the effect of different parameters
on the precision of estimated QTL position, and
effects and power of QTL detection.

Material and methods

Haley and Knott regression method

We assume that yijgi�N(mgi,s2), where yi is the
phenotype of individual i and gi is its (unobserved)
QTL genotype. The conditional QTL genotype
given marker genotype was calculated using pij�
pr(gijMi), where Mi is marker genotype data of
individual I. Phenotype of individual i given marker
data follows a mixture of normal distribution.
E(yijMi)�Sjpijmj, where yi is the phenotype of
individual i, Mi is marker genotype data for indivi-
dual i, pij is probability of jth QTL genotype for
individual i given its marker data and mj is the mean
of individual’s phenotype with jth QTL genotype.
Hence, the conditional phenotype average given
marker data is linear in the mj and might be estimated
by the linear regression of yi on pij. Therefore, at each
position across genome, the pij was calculated and
then the phenotype was regressed on this matrix.

Data simulation

The F2 population derived from crossing between
two inbred lines each with alternate homozygote
genotype in marker loci and QTL, with different
population size was simulated. A total of 11 markers
were used with different equal spaces of 5 and 10
centimorgan (CM). The mapped chromosome length
was different corresponding to the marker spaces
from 50 and 100, respectively, in the presence of one
QTL at the chromosome. The F2 Populations were
simulated with parameter combination of population
sizes (PS) of 300, 600 and 900; and the SDQ effects of
0.2, 0.5, 0.8, and with different portions of additive to
dominance effects (Rad) of 0.25, 0.5 and 0.75. In each
parameter combination, QTL located between sixth
and seventh markers relatively with 0, 0.25 and 0.5 of
the interval separated from the sixth marker. There-
fore, 162 scenarios were considered. Each scenario
was replicated 100 times. The trait had a normal
distribution in all scenarios.

The genotypes of markers and QTL was sampled
from binomial distribution using haldane mapping
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function. Therefore, crossing over between markers
and between markers and QTL was simulated using
haldan mapping function. Trait value was sampled
from normal distribution with corresponding mean
according to genotype of QTL and with standard
deviation of unexplained variation by QTL equal 1
standard deviation (s�1).

QTL mapping analysis

Interval mapping (IM) of QTL was carried out by
employing Haley�Knott regression method using R/
qtl package. First, a genome scan with a single QTL
model for estimating probable QTL position with
higher log10 likelihood ratio (LOD) score on the
chromosome was carried out. The LOD scores were
calculated as LOD � (n/2)log10(RSS0/RSS1), where n
is the sample size, RSS0 is the null residual sum of
squares and RSS1 is the model residual sum of squares
(the model is defined as regression of phenotypes on
the conditional QTL genotypes depending on mar-
kers’ genotypes). For estimating intercept (mean),
additive effect and dominance effect and their corre-
sponding standard errors, a single QTL model using
HK method was fitted in the model. The permutation
with 1000 replications for finding threshold LOD
scores for a�0.05 was done by using the defined
model.

Efficiency of parameters

To evaluate the efficiency of parameters power of
QTL detection and Bias, mean square error (MSE)
and Precision of estimated QTL location, additive
and dominance effects were considered. The power
was calculated as the percent of significant QTLs with
5% type I error. For estimated QTL position,
additive and dominance effects of QTL, the bias,
MSE and precision (P) were calculated as follows:

Bais ¼ R EP � SPð Þ=n

where, EP is estimated parameter, SP is the simulated
parameter in each scenario and n is the number of
replicates that are significant for QTL.

MSE ¼
X

EP � SPð Þ2=n

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE � Bias2

p

Modelling using ANN

The results obtained from 162 scenarios, each with
nine components (five independent input or simulated
parameters and four dependent output or power of
QTL detection and the precision results for QTL

position and effects), were used for training and
testing the neural networks. To fit a multi-input,
multi-output model using ANN a total of 112 and 50
scenarios were randomly chosen and used for the
training and the testing, respectively. A multi-layer
perceptron ANN model trained by backpropagation
algorithms was developed to predict powers and
precisions of resulted parameters using HK method
based on the five simulated parameters. The best of
learning rate, momentum coefficient, the number of
hidden layers, the number of hidden neurons and the
number of training cycles or epochs were chosen to
obtain the optimal ANN. A wide range of network
parameters (containing learning rate, the momentum
coefficient, the number of hidden layers, the number
of hidden neurons and the number of training cycles
or epochs) tried to obtain the adequate ANN model.
The ANN modelling was carried out using the Neural
Works Professional II/plus software Version 5.23
(Neural Ware Inc.).

To determine the adequacy of the neural net-
works’ model, and to predict outputs for a given
data-set, three statistical parameters of root MSE
(RMSE), T value and R2 (Equation 1) were used. The
T statistics measures the scattering around fitted line
using the ANN. When T is close to 1.0, the fitting is
desirable (Khazaei et al. 2005). Ideally, the RMSE
values should be close to zero, indicating that, on
average, there were no significant differences between
predicted and measured values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Xm;i � Xp;i

� �2

s
T

¼ 1 �

Pn
i¼1

Xm;i � Xp;i

� �2

Pn
i¼1

Xm;i � X
� 	2

(1)

where, n is the number of data-set, X is the average of
X over the n samples and Xm and Xp are the actual
and by ANN model predicted HK efficiency para-
meters, respectively. The final network was selected
on the basis of the lowest error on the train data and
test data. The ANN configuration that minimised the
RMSE and optimised the T and R2 values was
selected as the optimum.

After finding the adequate parameters for the best
ANN, we repeated the step of randomly chosen test
data-set and train data-set, and the best ANN on
them was run for 10 times to predict variation of
different adequacy parameters of ANN with different
shuffled data-set.

By designing optimal ANN model, many scenar-
ios with different simulated parameters were solved
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by using the ANN model. The different combinations
of simulated parameters are presented in Table 1. In
total, a number of 36,036 different scenarios were
obtained by using different combinations of the
simulated parameters.

Results and discussion

In this study, the effects of PS, MS, SDQ, Rad and
rpQ on the efficiency parameters of HK method were
considered. Moreover, large-scale simulation study
was carried out using the ANN model. This study
showed that F2 design with HK method analysis is
preferable to detect QTLs with large and medium (SD
of QTL equal to 0.8 and 0.5) effects in every
combinations of demanding factors such as PS and
MS or other considered parameters. The results show
that in presence of both additive and dominance
effects, result of HK method was affected by the
simulated parameters, especially for precision of
additive effect; thus, when ratio of additive effect
increase it fairly decreases the precision.

Power

In any combination of parameters when SDQ is 0.5
or 0.8 the power was 100%. When SDQ was 0.2 with
increase of PS the power was increased and it was
decreased with increase in MS. However, the increase
was not constant with different PS and MS combina-
tions. Table 2 shows powers of different combina-
tions of parameters with SDQ of 0.2. QTLs with a
low standard deviation of effect can be detected
properly by population size of 900; the result is the
same as the results of Darvasi et al. (1993). The SDQ
of QTL strongly affects the power of QTL detection,

Table 1. The different combinations of simulated para-
meters which were analysed using optimal ANN model.

Population
size

Marker
space

SD of
QTL

Ratio of
additive to
dominance

SD

Relative
position of

QTL to
bracket

300 5 0.2 0.25 0.0
350 6 0.3 0.35 0.05
400 7 0.4 0.45 0.1
450 8 0.5 0.55 0.15
500 9 0.6 0.65 0.2
550 10 0.7 0.75 0.25
600 0.8 0.3
650 0.35
700 0.4
750 0.45
800 0.5
850
900
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because in all combinations of other parameters when
SDQ is 0.5 or 0.8 the power was 100%. Power
increased when Ratio of additive and dominant SDs
of QTL effects was low or high (0.25 or 0.75) in all
scenarios.

Bias, MSE and precision of estimated QTL position

Generally, by increasing PS and SDQ, precision was
improved. However, it was decreased by increase in
MS. Bias and MSE had the same trend as precision
was affected by mentioned parameters. Precision was
affected interactively by different combinations of the
parameters. Table 3 shows the average precision of
QTL position in different combinations of PS, SDQ
and MS, without respecting Rad and rpQ. As shown
in Table 3, increase of SDQ in every combination of
PS and MS remarkably increased the efficiency of
precision. The average precision of QTL position at
different levels of SDQ, Rad and rpQ without
attention to PS and MS is presented in Table 4. PS,
SDQ and MS are important in the precision of
estimated QTL position. The narrow marker spaces
positively affect the precision of QTL mapping even
with reduced size of population and effect. This study
showed that in medium or high SDQ increasing
proportion of dominance effect increased the preci-
sion of QTL map location. Increase of additive effect
relative to dominance effect decreased the precision of
QTL location. Presence of QTL on the marker
positively affects the precision.

Bias, MSE and precision of estimated QTL additive
effect

The bias of an effect was negative in all scenarios, and
except for one scenario the biases were smaller than 1.
Therefore, MSE was very low for estimates of
additive effects. In all scenarios precision of additive
effect had better precise. The effects of PS, MS and
SDQ on the precision of estimated additive effect are
presented in Table 5. In all scenarios, except for one,
additive effect was underestimated compared with the
actual amount, but the difference was small. The
additive effect estimates were very precise in all
combinations of parameters.

Bias, MSE and precision of estimated QTL dominance
effect

The bias of estimated dominance effect in most
scenarios was positive and in all cases was less than
1. Therefore, MSE of the estimates was very small.
Precision of the estimates was not improved com-
pared with the precision of estimated additive effect.
There were some interactions between different levels
of parameters for the precision. Tables 6 and 7 show
the effect of PS, SDQ and MS combinations and
SDQ, Rad and rpQ combinations on precision of
estimated dominance effects. The best precision was
obtained for the combination of PS�900, MS�5
and SDQ�0.5. Precision of dominance QTL effect
improved with increase of PS, SDQ and decrease of
MS, but precision of additive effect compared with
the dominance was better in all scenarios. In precision
of dominance effect, PS had a stronger effect than the
other parameters. Increase of portion of additive
effect decreased the precision of estimated dominance
effect.

Efficiency prediction using ANN

The other aim of this study was to design an ANN
model with minimum dimensions and minimum
errors in training and testing. The best combination
of the network parameters was used to predict the
power of QTL detection and precision of QTL
position and effects for large-scale combinations of
simulated parameters. Adequacy parameters of the
ANN and their standard deviation of the obtained
best ANN model for every HK efficiency parameters
are presented in Table 8. The ANN model structure
had the following layers: the input, first hidden layer,
second hidden layer and the output. Based on the
RMSE of the training examples, it was clear that the
5-10-6-4 structure had the lowest RMSEs among all
the ANN model structures for power of QTL
detection and precision of QTL position and effects.

Haley�Knott (HK) results obtained from ANN
model for power of detection and precision of QTL
parameters were the same as the ones resulted from
actual analysis. The effects of population size and
marker space on the mean of considered results of
HK method are presented in Plots 1�4. At the

Table 3. Average precision of QTL position (in CM) in combination of PS, SDQ and MS.

PS �300 PS �600 PS �900

SDQ�0.2 SDQ �0.5 SDQ �0.8 SDQ�0.2 SDQ �0.5 SDQ �0.8 SDQ �0.2 SDQ �0.5 SDQ �0.8

MS � MS � MS � MS � MS � MS � MS � MS � MS �

5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10
9.43 14.70 3.45 4.14 1.30 1.84 6.74 8.99 1.56 1.92 0.91 1.13 6.11 7.28 1.03 1.49 0.74 0.95

Journal of Applied Animal Research 5
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Table 4. Average precision of estimated QTL position (in CM) in the context of SDQ, Rad and rpQ.

SDQ�0.2 SDQ �0.5 SDQ �0.8

rpQ Rad �0.25 Rad �0.5 Rad �0.75 Rad �0.25 Rad�0.5 Rad�0.75 Rad �0.25 Rad �0.5 Rad �0.75

0 7.252 8.295 9.074 1.185 2.475 2.390 0.737 0.861 0.970
0.25 7.670 9.805 10.760 1.895 2.436 2.666 1.152 1.386 1.508
0.5 7.829 9.485 9.719 1.879 2.522 2.936 1.085 1.360 1.428

Table 5. Effects of PS, MS and SDQ on precision of estimated additive effect.

PS �300 PS �600 PS �900

MS SDQ�0.2 SDQ �0.5 SDQ �0.8 SDQ �0.2 SDQ �0.5 SDQ �0.8 SDQ �0.2 SDQ�0.5 SDQ �0.8

5 0.0834 0.0866 0.0828 0.0593 0.0577 0.0584 0.0479 0.0477 0.0480
10 0.0894 0.0890 0.0847 0.0580 0.0633 0.0593 0.0485 0.0490 0.0478

Table 6. Average precision of combined different levels of PS, SDQ and MS on estimated dominance effect.

PS �300 PS �600 PS �900

MS SDQ�0.2 SDQ �0.5 SDQ �0.8 SDQ �0.2 SDQ �0.5 SDQ �0.8 SDQ �0.2 SDQ�0.5 SDQ �0.8

5 0.1349 0.1248 0.1242 0.0912 0.0802 0.0872 0.0716 0.0689 0.0704
10 0.1566 0.1289 0.1227 0.0888 0.0853 0.0888 0.0726 0.0762 0.0708

Table 7. Average precision of estimated dominance effect of different SDQ, Rad and rpQ levels combination.

SDQ�0.2 SDQ �0.5 SDQ �0.8

rpQ Rad �0.25 Rad �0.5 Rad �0.75 Rad �0.25 Rad�0.5 Rad�0.75 Rad �0.25 Rad �0.5 Rad �0.75

0 0.0835 0.0993 0.1150 0.0901 0.0928 0.0917 0.0955 0.0884 0.0992
0.25 0.0757 0.1147 0.1270 0.0877 0.0962 0.0980 0.0970 0.0934 0.0989
0.5 0.0862 0.1014 0.1214 0.1013 0.0889 0.0995 0.0953 0.0922 0.1006

Table 8. Adequacy parameters of the best ANN model and
their standard deviations for every HK efficiency para-
meters.

R2 T RMSE train RMSE test

Powera

Mean 0.96243 0.958991 0.04825 0.047323
SD 0.020912 0.019571 0.00224 0.014315

QPPb

Mean 0.926694 0.916424 0.04825 0.058877
SD 0.019578 0.020838 0.00224 0.007371

QAPc

Mean 0.830139 0.813477 0.04825 0.093546
SD 0.035477 0.038894 0.00224 0.010656

QDPd

Mean 0.862731 0.844178 0.04825 0.072032
SD 0.045061 0.043949 0.00224 0.009603

aPower of QTL detection.
bPrecision of QTL position.
cPrecision of QTL additive effect.
dPrecision of QTL dominance effect.

Plot 1. Effect of population size and marker space on mean
of precision of QTL position (PQP).
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demanding level of population size (300) and marker

spacing (10 cm) effect of SDQ and Rad on mean of

power of QTL detection and precision of dominance

effect were presented in Plots 5 and 6, respectively.

Table 9 shows different combinations of simulated

parameters that resulted in the highest and lowest

for different efficiency parameters of HK method

at demanding level of PS�300 and MS�10.

According to the results in Table 9, efficiency

parameters of HK method were differently affected

by simulated parameters; thus, the highest power of

detection obtained in combination with the highest

SDQ and lowest Rad when QTL was located on the

marker in contrast to the precise QTL position

obtained at the same level of SDQ and Rat but

when QTL located 0.3 of the sixth marker. This result

implies that the designed ANN was able to properly

learn the relationship between the input and output

Plot 2. Effect of population size and marker space on power
of QTL detection mean.

Plot 3. Effect of population size and marker space on mean
of precision of QTL additive effect (PQA).

Plot 4. Effect of population size and marker space on mean
of precision of QTL dominance effect (PQD).

Plot 5. Effect of SDQ and Rad on mean of power of QTL
detection given PS300 MS10.
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parameters for predicting the result of HK method

for power and precisions using assumed QTL

parameters. According to Table 8, the power of

QTL detection and precision of QTL position were

relatively predicted to be more accurate with efficient

adequacy parameters and low SD of their adequacy

parameters compared with the other parameters. This

study showed that it is possible to powerfully predict

the results of HK method given the simulated

parameters by using a well-trained ANN model.

Conclusion

The results of this study show that the ANN

modelling could be employed for the simulation study

of considered parameters to predict results for more

combinations of the parameters.
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