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Abstract. The aim of this study is to extend the validity of the simplified Bernoulli-trials 
(SBT)/dual grid algorithm, newly proposed by Stefanov [1], as a suitable alternative of the standard 
collision scheme in the direct simulation Monte Carlo (DSMC) method, for solving low speed/low 
Knudsen number rarefied micro/nano flows. The main advantage of the SBT algorithm is to 
provide accurate calculations using much smaller number of particles per cell, i.e.,  < N > ≈ 1. 
Compared to the original development of SBT [1], we extend the application of the SBT scheme to 
the near continuum rarefied flows, i.e., Kn = 0.005, where NTC scheme requires a relatively large 
sample size. Comparing the results of the SBT/dual grid scheme with NTC, it is shown that the 
SBT/dual grid scheme could successfully predict the thermal pattern and hydrodynamics field as 
well as surface parameters such as velocity slip and temperature jump. Nonlinear flux-corrected 
transport algorithm (FCT) is also employed as a filter to extract the smooth solution from the noisy 
DSMC calculation for low-speed/low-Knudsen number DSMC calculations. The results indicate 
that combination of SBT/dual grid and FTC filtering can decrease the total sample size needed to 
reach smooth solution without losing significant accuracy. 

1. Introduction 
Heat transfer and fluid flow in Micro/Nano-electro-mechanical systems, MEMS/NEMS, is widely gained 
importance due to the rapid growth of miniaturization of practical engineering and biomedical devices 
such as heat exchangers and chemical reactors. It is well established that the fluid behavior in 
MEMS/NEMS is different from their macroscopic counterpart [2]. However, due to their small 
dimensions, it is hard to study these behaviors experimentally. Actually, the behavior of gas gradually 
deviates from the thermodynamic equilibrium as the device length scale approaches the mean free path of 
the gas. Therefore, the numerical modeling of such devises is also problematic because the traditional 
Navier-Stocks (NS) equations, consistent with the near-equilibrium state, refuse to follow the realistic 
flow features. Knudsen number (Kn), defined as the ratio of the gas mean free path () to the characteristic 
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length scale of the flow (L), is a good measure to characterize the departure from the equilibrium. Based 
on Knudsen number, the flow may appear in four different regimes [3]: continuum, slip flow, transition 
and free molecular regimes. For the Kn < 0.001, i.e., continuum regime, the NS equation with traditional 
no-slip boundary condition can be utilized to describe the flow behavior. In slip flow regime, 0.001< Kn < 
0.1, the NS equation deviate from experimental results and should be accompanied with velocity slip and 
temperature jump boundary conditions. In the transition regime, 0.1< Kn <10, flow gradually departs from 
the equilibrium and the NS equations are no longer valid. Finally, flow is considered as free molecular if it 
exceeds the limit of Kn > 10. Many investigations have proved the accuracy of the slip boundary 
conditions in slip flow regime [4]. Some researchers have tried to extend the applicability of NS equations 
to the early transition regime by means of developing various second order slip boundary conditions [5]. 
However, there is no indisputable proof to prefer one of these models among others. In addition, the 
concept of thermodynamic equilibrium fails to work as Kn number increases and the breakdown of the NS 
equations occurs [6]. Many attempts are reported to extend continuum-based equations to non-equilibrium 
regimes, for example, considering higher order constitutive relations for stress and heat transfer from the 
Chapman-Enskog expansion, moment methods are examples of such extension [7-9]. 
On the other hand, in contrast to continuum-based methods, molecular approach is a powerful tool to 
study rarefied flows. In this approach, the fluid is modeled as a collection of moving molecules interacting 
through collisions. DSMC method is known as one of the most successful particle-based methods in 
analyzing the rarefied gaseous flows. The main feature of the DSMC method, originally proposed by Bird 
[10], is simplifying the interaction between molecules by decoupling the motion into two successive 
stages of free molecular movement and binary intermolecular collision within the grid cells in each time 
step. It is mathematically proofed that the solution of the DSMC method converges to Boltzmann equation 
solution, if adequate number of particle per cells are used [11]. Bird [12] used the DSMC method to solve 
homogeneous gas relaxation problem. Celenligil and Moss [13] reported good agreements between the 
DSMC method results and experimental data of wind-tunnel for hypersonic flow over a delta wing. 
Many researchers have tried to modify the DSMC method to reduce its restrictions including statistical 
fluctuations and computation costs. Fan and Shen [14] proposed IP method to reduce statistical 
fluctuations inherent in modeling of low speed microflows. Kaplan and Oran [15] used a nonlinear flux-
corrected transport (FCT) filtering to exclude high frequency noise from the desired solution. Recently, 
some correction is suggested on the modification of the collision procedure. Stefanov [1] proposed a two-
stage collision process based on the simplified Bernoulli-trials (SBT) algorithm. This method provides 
reasonable results with much lower number of particles per cell. 
In this work, we developed a DSMC code based on Stefanov's SBT/dual grid algorithm to solve the near 
continuum flows, i.e., Kn = 0.005. Lid driven cavity flow is used as a benchmark test to check the ability 
of the new collision procedure in prediction of low-Knudsen low-speed flows. Additionally, we employ 
the nonlinear FCT filtering to reduce the statistical fluctuations of low Kn/low speed flows and reduce the 
computational time. Our results are compared with NTC solution and performance of the new algorithm is 
discussed.   
 

2. DSMC method 
DSMC is a particle method based on the kinetic theory for simulation of dilute gases. The method is 
carried out by modeling the gas flow using many independent simulator particles, each one representing a 
large number of real gas molecules in the flow field. In the DSMC method, the time step  ሺ∆ݐሻ is chosen 
so small that the positional changes of particles and their collisions could be decoupled for each time step. 
During DSMC implementation, flow field must be divided into computational cells which provide 
geometric boundaries and volumes required to sample macroscopic properties. Thus, the size of each cell 
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Figure 3.DSMC flowchart for staggered grid 

much smaller than that for most cases. Each cell 
contains two molecules. All walls are treated as 
diffuse reflectors using the full thermal 

accommodation coefficient,  =1. Half-range 
Maxwellian distribution is used to determine 
the velocity of reflected molecules. After 
achieving steady flow condition, sampling of 
flow properties within each cell is fulfilled 
during sufficient time period to avoid statistical 
scattering. All thermodynamic parameters such 
as temperature, density, and pressure are then 
determined from this time-averaged data. In 
order to minimize the scattering in the predicted 
results, particularly temperature, a nonlinear 
FCT filtering post processor is utilized [15]. 

3. Flux-Corrected Transport (FCT) Filtering 
Modeling of low speed micro/nano flows with 
DSMC method encounters a serious problem of 
statistical fluctuations. This occurs when the 
bulk velocity of the flow is much smaller than 
the most probable thermal velocity, i.e., 

௠ܸ௣ ൌ ඥ2݇ܶ/݉ (7)

, where k, T and m are the Boltzmann constant, 
fluid temperature and molecular mass, 
respectively. For the present problem ௠ܸ௣ ؆
while the lid velocity is ௟ܷ௜ௗ ,ݏ/݉ 350 ൌ
 and the internal field velocity is much ݏ/݉ 100
smaller below the mid line of the cavity, say of 
the order of 10 ݉/ݏ. Therefore, the statistical 
noises are so great that the features of the flow 
may be easily lost. However, the effects of 
statistical noises could be reduced by increasing 
the sample size. In the current work, where just 
2 particles in each cell are employed, the run 
should be continued for longer time to achieve 
suitable results. Additionally, following Kaplan 
and Oran [15], the nonlinear FCT filtering is 
used here as a post processing strategy to 
reduce statistical fluctuations and CPU run time 
as a result. The main feature of FCT filter, in 
comparison with fully diffuse simple filters, is 
that it makes the noisy flow converge to a 
solution whose correctness is already proved 
[15]. The FCT procedure consists of three parts: 
diffusion, anti-diffusion flux and anti-diffusion 
flux limiting. Considering the parameter ߩ଴ as a 
noisy field that should be represented in the 
filtered form ߩଵ, we could write 

ρ଴ ՜ ρୢ ՜ ρୢୟ୪ ؠ ρଵ (8)

The steps are as follows: 

Read Data, Set 
Constants 

Move Molecule, Compute 
interaction with boundaries 

Reset Molecule Indexing 
compatible with standard grid  

Compute Collision 

Sample Flow Properties 

Start 

Initialize Molecules and 
Boundaries, ∆ݐ௥௘௙ ൌ  ݐ∆ 

ܰ  ൐ ௜ܰ௧௘௥௔௧௜௢௡ 

Yes 

STOP 

No 

Print Results 

ݐ∆ ൌ  2/ݐ∆

Compute Collision 

 Sample Flow Properties 

 Reset Molecule Indexing 
compatible with shifted cells  

 Reset Molecule Indexing 
compatible with standard grid  

ݐ∆ ൌ  ௥௘௙ݐ∆
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1) The initial values ߩ଴ are diffused, giving ߩௗ . This is achieved by the definition of diffusive flux of 
݅ at the midpoint ߩ ൅ 1/2  between ߩ௜ and ߩ௜ ൅ 1, ௜݂ାଵ/ଶ

ௗ ሺߩሻ as 

௜݂ା
భ
మ

ௗ ሺߩ଴ሻ ൌ ௜ାభߥ
మ
൫ߩ௜ାଵ

଴ െ ௜ߩ
଴൯ (9)

, where ߥ௜ାଵ/ଶ are diffusion coefficients. Then 

௜ߩ
ௗ ൌ ௜ߩ

଴ ൅
௜݂ା

భ
మ

ௗ ሺߩ଴ሻ െ
௜݂ି

భ
మ

ௗ ሺߩ଴ሻ (10)

2) To remove excess diffusion, anti-diffusion fluxes, ௜݂ାଵ/ଶ
ௗ௔ ሺߩሻ, are defined which, however, can 

insert nonphysical overshoots in the solution. 

௜݂ା
భ
మ

ௗ௔൫ߩௗ൯ ൌ ௜ାభߤ
మ
൫ߩ௜ାଵ

ௗ െ ௜ߩ
ௗ൯ (11)

, where ߤ௜ାଵ/ଶ are anti-diffusion coefficients. 
3) To ensure stability and elimination of nonphysical overshoots, the anti-diffusion fluxes should be 
limited before applying to the field. This guarantees that no new maxima or minima are added to the 
solution. The limiter function, following Boris and Book [19] could be defined as 

௜݂ା
భ
మ

ௗ௔௟ ൌ ܵ · ݔܽ݉ ൜0,݉݅݊ ൤ܵ · ൫ߩ௜ାଶ
ௗ െ ௜ାଵߩ

ௗ ൯, ฬ
௜݂ା

భ
మ

ௗ௔൫ߩௗ൯ฬ , ܵ · ൫ߩ௜
ௗ െ ௜ିଵߩ

ௗ ൯൨ൠ (12)

, where ܵ ൌ ௜ାଵߩ൫݊݃ݏ
ௗ െ ௜ߩ

ௗ൯. Then 

௜ߩ
ଵ ؠ ௜ߩ

ௗ௔௟ ൌ ௜ߩ
ௗ െ

௜݂ା
భ
మ

ௗ௔௟൫ߩௗ൯ ൅
௜݂ି

భ
మ

ௗ௔௟൫ߩௗ൯ (13)

This procedure causes the local peaks to be smoothed while keeps the value of their neighbors nearly 
unchanged. Actually, the effect of FCT filter can be changed by using different values of diffusion and 
anti-diffusion coefficients. If ߥ ൐  then the filter reveals a diffusive manner and depending on the degree ߤ
of inequality it can smooth the peaks too fast but may do not converge to a solution. In the other side, if 
ߥ ൏  then it works as a high-frequency filter that removes the sharp peaks and converges to a solution ߤ
after passing the solution from the filter for multiple times. This is shown in Figure 4 where a noisy square 
wave (Figure 4-a) with zero velocity is passed through the FCT filter for 1000 times (Figure 4-b) and 
10000 times (Figure 4-c) for both of the forgoing cases. It is obvious that in the case of ߥ ൏  the ,ߤ
filtration converges to a much less-noisier wave that never changes by more passing through the filter.  
  

 

Figure 4.The effect of FCT filter on the zero velocity noisy wave, 

(a) before pass  (b) 1000 passes  (c) 10000 passes 
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Also, in the case of ߥ ൐  although the filter results in smoother wave, it has a diffusive characteristic and ,ߤ
never converges to a solution. Note that when ߥ ൎ  the filter performs in a slightly diffusive manner. In ,ߤ
this work, the diffusion and anti-diffusion coefficients are chosen as ߥ ൌ ߤ ൌ 1/8. 

4. Grid independency test 
The configuration of micro driven cavity considered in this study is shown in Figure 5 which is a square 
with length ܮ ൌ with a moving lid at the velocity of ௟ܷ௜ௗ ݉ߤ 1 ൌ  and Kn=0.005. A grid ݏ/݉ 100
independency study was carried out using three grids composed of 100×100, 200×200 and 400×400 cells. 
Figure 6 shows the vertical component of velocity vector along the horizontal axis of the cavity, ܻ/ܮ ൌ
0.5. 

 

Figure 5. Geometrical configuration of micro 
cavity. 

 
Figure 6. Grid independency test. 

 

The results are almost equivalent for 200×200 and 400×400 grids; however the mesh size of 400×400 is 

selected to ensure the criterion that limits the cell size as ∆ݔ ൑
ଵ

ଷ
 .[20] ߣ

5. Results and discussions 
A micro square cavity of length ܮ ൌ with a moving lid at the velocity of ௟ܷ௜ௗ ݉ߤ 1 ൌ  is ݏ/݉ 100
considered. The walls temperature is set to the reference temperature, i.e., ௪ܶ ൌ ଴ܶ ൌ  The aim of .ܭ 300
the article is applying the DSMC method based on SBT/dual grid collision procedure in near continuum 
flows, i.e., Kn = 0.005 and compare the results with the NTC algorithm solutions. In this regard, NTC 
scheme is applied with various number of particles per cell to find the minimum value which leads to 
accurate solution. The comparison of results, which is shown in Figure 7, indicates that ൏ ܰ ൐ ൌ 20 
could reasonably provide the sufficient accuracy. 
The ability of the SBT scheme in prediction of the cavity flow field solution is evaluated in Figures 8 and 
9 where SBT results for ൏ ܰ ൐ ൌ 2 are compared with those of NTC with ൏ ܰ ൐ ൌ 20. In Figure 8, the 
dimensionless y-component of the velocity vector, ܸ/ ௦ܷ௟௜௣, is plotted along the horizontal axis of the 
cavity ሺܻ/ܮ  ൌ 0.5ሻ. Also, the dimensionless x-component of the velocity vector, ܷ/ ௦ܷ௟௜௣, is plotted along 
the vertical axis of the cavity at ܺ/ܮ  ൌ 0.5.The figure shows reasonably good agreement between the 
SBT and NTC results in prediction of the velocity field. A better assessment of the SBT scheme could be 
achieved if we plot the temperature field which is a square function of molecular velocity and is more 
sensitive to the statistical fluctuations. The temperature profile along the vertical cavity axis at ܺ/ܮ  ൌ 0.5  
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Figure 7. Effect of number of particle per cell in the accuracy of the NTC collision scheme. 

 
is shown in Figure 9. The figure indicates that the SBT scheme with 2 particles per cell could reasonably 
follow the results of the NTC scheme as well as MFS with more particles. The results of NTC scheme 
with two particles in each cell is also plotted in this figure to emphasize on the inadequacy of this scheme 
at low number of particles per cell, which may locally happen in a flow with notable density gradients. In 
addition, although the MFS also works efficiently with small number of simulators, this figure shows that 
it does not guaranty the reasonable accuracy in comparison with the SBT scheme. In fact, repeated 
collisions may occur in the MFS scheme. This could be the source of slight deviations between the results 
of MFS and SBT for small number of simulators. 
It should be noted that although the lid velocity is 100 m/s which correspond to a Mach number of 
ܽܯ ൎ 0.3 the flow can be strongly considered as low velocity field. The contours of local Mach number 
calculated with SBT scheme is shown in Figure 10. The figure indicates that the most parts of the flow 
field correspond to a Mach number of ܽܯ ൑ 0.1.  
The relative computation times for the runs performed by the NTC and SBT algorithms are shown in 
Table 1. For the purpose of generality, the reported times are normalized by the required solution time for  
     
 

 

Figure 8. Comparison of the SBT and NTC 
schemes in prediction of flow field. 

 Figure 9. Comparison of the SBT with NTC and 
MFS schemes in prediction of thermal pattern.  
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temperature jump. In DSMC method, the slip/jump phenomena could be evaluated based on the sampling 
of the corresponding molecular properties of all the particles that strike the wall surface. Following Ref. 
[21], the formulations for velocity slip and temperature jump are: 
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, where ݌ stands for particle and the summation is taken over all particles striking the wall of the regarding 
cell. หݒ௣ห, ฮܷ௣ฮ and R are the absolute values of the normal velocity, velocity magnitude, i.e., 

ฮܷ௣ฮ ൌ ටݑ௣ଶ ൅ ௣ଶݒ ൅  ௣ଶ, and gas constant, respectively. Therefore, the slip velocity is accumulated basedݓ

on the change in particle velocity due to the collision to the surface considering that the particles collide to 
wall with probability of 1/ݒ௣. From Equation (14), the temperature jump is proportional to a fraction of 
total kinetic energy. The velocity slip and temperature jump along the driven lid, computed by SBT and 
NTC schemes are plotted in Figure 12. 
 As observed in Figure 11, good conformity of results of SBT scheme with those of NTC indicates that the 
SBT model is powerful in prediction of the surface parameters as well as inter-domain features. 
 

 

Figure 12. Velocity slip (left) and Temperature jump (right) along the driven lid computed by SBT and 
NTC schemes. 

 
The performance of FCT filter is evaluated in Figure 13. This figure consists of three contour layers: the 
flood contour shows an unfiltered intermediate solution, after filtration this solution is shown with bold 
blackline contours, and the red line contour represent the filtered final solution. The filtered solution is 
passed through the filter for 5000 times for both cases. From the figure, it is easily realized that the FCT 
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