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Abstract. The aim of this study is to extend the validity of the simplified Bernoulli-trials
(SBT)/dual grid algorithm, newly proposed by Stefanov [1], as a suitable alternative of the standard
collision scheme in the direct simulation Monte Carlo (DSMC) method, for solving low speed/low
Knudsen number rarefied micro/nano flows. The main advantage of the SBT algorithm is to
provide accurate calculations using much smaller number of particles per cell, i.e., <N >= 1.
Compared to the original development of SBT [1], we extend the application of the SBT scheme to
the near continuum rarefied flows, i.e., Kn = 0.005, where NTC scheme requires a relatively large
sample size. Comparing the results of the SBT/dual grid scheme with NTC, it is shown that the
SBT/dual grid scheme could successfully predict the thermal pattern and hydrodynamics field as
well as surface parameters such as velocity slip and temperature jump. Nonlinear flux-corrected
transport algorithm (FCT) is also employed as a filter to extract the smooth solution from the noisy
DSMC calculation for low-speed/low-Knudsen number DSMC calculations. The results indicate
that combination of SBT/dual grid and FTC filtering can decrease the total sample size needed to
reach smooth solution without losing significant accuracy.

1. Introduction

Heat transfer and fluid flow in Micro/Nano-electro-mechanical systems, MEMS/NEMS, is widely gained
importance due to the rapid growth of miniaturization of practical engineering and biomedical devices
such as heat exchangers and chemical reactors. It is well established that the fluid behavior in
MEMS/NEMS is different from their macroscopic counterpart [2]. However, due to their small
dimensions, it is hard to study these behaviors experimentally. Actually, the behavior of gas gradually
deviates from the thermodynamic equilibrium as the device length scale approaches the mean free path of
the gas. Therefore, the numerical modeling of such devises is also problematic because the traditional
Navier-Stocks (NS) equations, consistent with the near-equilibrium state, refuse to follow the realistic
flow features. Knudsen number (Kn), defined as the ratio of the gas mean free path (1) to the characteristic
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length scale of the flow (L), is a good measure to characterize the departure from the equilibrium. Based
on Knudsen number, the flow may appear in four different regimes [3]: continuum, slip flow, transition
and free molecular regimes. For the Kn < 0.001, i.e., continuum regime, the NS equation with traditional
no-slip boundary condition can be utilized to describe the flow behavior. In slip flow regime, 0.001< Kn <
0.1, the NS equation deviate from experimental results and should be accompanied with velocity slip and
temperature jump boundary conditions. In the transition regime, 0.1< Kn <10, flow gradually departs from
the equilibrium and the NS equations are no longer valid. Finally, flow is considered as free molecular if it
exceeds the limit of Kn > 10. Many investigations have proved the accuracy of the slip boundary
conditions in slip flow regime [4]. Some researchers have tried to extend the applicability of NS equations
to the early transition regime by means of developing various second order slip boundary conditions [5].
However, there is no indisputable proof to prefer one of these models among others. In addition, the
concept of thermodynamic equilibrium fails to work as Kn number increases and the breakdown of the NS
equations occurs [6]. Many attempts are reported to extend continuum-based equations to non-equilibrium
regimes, for example, considering higher order constitutive relations for stress and heat transfer from the
Chapman-Enskog expansion, moment methods are examples of such extension [7-9].

On the other hand, in contrast to continuum-based methods, molecular approach is a powerful tool to
study rarefied flows. In this approach, the fluid is modeled as a collection of moving molecules interacting
through collisions. DSMC method is known as one of the most successful particle-based methods in
analyzing the rarefied gaseous flows. The main feature of the DSMC method, originally proposed by Bird
[10], is simplifying the interaction between molecules by decoupling the motion into two successive
stages of free molecular movement and binary intermolecular collision within the grid cells in each time
step. It is mathematically proofed that the solution of the DSMC method converges to Boltzmann equation
solution, if adequate number of particle per cells are used [11]. Bird [12] used the DSMC method to solve
homogeneous gas relaxation problem. Celenligil and Moss [13] reported good agreements between the
DSMC method results and experimental data of wind-tunnel for hypersonic flow over a delta wing.

Many researchers have tried to modify the DSMC method to reduce its restrictions including statistical
fluctuations and computation costs. Fan and Shen [14] proposed IP method to reduce statistical
fluctuations inherent in modeling of low speed microflows. Kaplan and Oran [15] used a nonlinear flux-
corrected transport (FCT) filtering to exclude high frequency noise from the desired solution. Recently,
some correction is suggested on the modification of the collision procedure. Stefanov [1] proposed a two-
stage collision process based on the simplified Bernoulli-trials (SBT) algorithm. This method provides
reasonable results with much lower number of particles per cell.

In this work, we developed a DSMC code based on Stefanov's SBT/dual grid algorithm to solve the near
continuum flows, i.e., Kn = 0.005. Lid driven cavity flow is used as a benchmark test to check the ability
of the new collision procedure in prediction of low-Knudsen low-speed flows. Additionally, we employ
the nonlinear FCT filtering to reduce the statistical fluctuations of low Kn/low speed flows and reduce the
computational time. Our results are compared with NTC solution and performance of the new algorithm is
discussed.

2. DSMC method

DSMC is a particle method based on the kinetic theory for simulation of dilute gases. The method is
carried out by modeling the gas flow using many independent simulator particles, each one representing a
large number of real gas molecules in the flow field. In the DSMC method, the time step (At) is chosen
so small that the positional changes of particles and their collisions could be decoupled for each time step.
During DSMC implementation, flow field must be divided into computational cells which provide
geometric boundaries and volumes required to sample macroscopic properties. Thus, the size of each cell
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should be small enough that any small changes in thermodynamic properties could be captured. Cells also
organize a framework to select collision pairs. The selection of collision pairs in the standard DSMC is
based on the no time counter (NTC) method [16], in which the computational time is proportional to the
number of simulated particles. In the NTC collision procedure, the number of particle pairs (N.) that
should be checked for a collision are

1
N, = Efnule <N'> (Ug)gnax At/Vl (M

, where fym> (09)4ax and V are the ratio of number of real molecules to simulated particles, maximum
of collision cross-section multiplied by particles' relative velocity and cell volume, respectively. The
superscript [ refers to cell I. Then, each pair (i,j), 1 < i < j < N!, chosen randomly from particle subset
N, is checked for a collision with the probability
0ij9ij
Pij=7——
(0P max
, where 0;; is the effective collision cross-section of pair (i, j) and g;; is the magnitude of relative velocity
of pair (i, j). The sequence of NTC collision procedure is shown in Figure 1.

2

eDetermination of number of collision
pair (Eq. (1))

echoosing collision pair (i,j) randomly
from N/ particle in cell /.

@

¢ checking the collision probability (Eq.
if accepted (2))

<

echang the particle velocities

movment

Figure 1. The NTC collision procedure

An insufficient number of particles per cell can be sources of stochastic errors which increases the number
of undesirable repeated collisions in cells. However, adjusting enough particles in cells, the NTC scheme
is an efficient approach for modeling the intermolecular collisions. But, it is CPU intensive in
multidimensional gas flows where a huge mesh size is required for proper flow simulation. At low
Knudsen numbers, in particular, using the NTC scheme necessitates the use of large number of simulated
particles which greatly increases the computational cost. Recently, Stefanov [1] suggested a simplified
Bernoulli trials (SBT) scheme which permits simulation with far less number of particles per cell, <N > ~
1. In the SBT procedure, the particles in the I cell should be locally indexed in order to form a particle list
numbered as 1... N'. The first particle of the collision pair (i, j ), say I, is selected in sequence from the
particle list, i.e., i = 1... N'-1. The second particle, say j, is then selected randomly among k = N' -i
particles taking place in the list after particle i.

j=({+1)+int(k X rnd) 3)
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, where rnd refers to a random number between 0 and 1. Then each pair is checked for possible collision
with the probability

1
Pij =5 k frumDtoy;g:/v" 4)
It should be noted that the At should be adjusted so that p;jj rarely exceeds unity, say

prob{p;; =1} - 0 (5)

This procedure avoid the production of at least part of the eventually successively repeated collisions
which occurs in Bird's NTC scheme when it is applied with a small number of particles. The theoretical
background of this scheme is described in Ref. [1] by more details. The sequence of SBT collision
procedure is shown in Figure 2.

elocal cross-referencing of particles in cell /
to number particles from 1 to N/

echoosing first particle in sequense from
list: i=1,..,N-1

; echecking the collision probability (Eq. (4))

accepted

e * choosing the other particle from Eq. (3). ]

echang the particle velocities

movment

Figure 2. The simplified Bernoulli trials collision procedure

When we use small number of particles per cell, another strategy that improves the collision procedure is
the usage of staggered mesh [1]. In fact, the forgoing collision procedure is applied twice in two
successive half time steps, At/2, on a dual grid, i.e., in the first step it is applied on a standard grid, in the
next step it is applied on a staggered grid which is formed by shifting all cells of the primary grid in each
coordinate direction for a distance equal to half-cell size, Ax/2, Ay/2. Applying staggered grid provides the
particles the chance of collision with other particles which are in a separation distance smaller than a cell
size but at the first half time belongs to the adjacent cells. By translocating the cells, they become particles
of one cell and will be checked for a possible collision. The steps of implementation of the staggered grid
are shown in Fig. 3 where the flowchart of modified DSMC algorithm is sketched.

The results of SBT scheme are also compared with the majorant frequency scheme (MFS) [17]. MFS is an
efficient collision model in the DSMC method. In this collision model, the time between two eventual
collisions is evaluated from a Poisson distribution while the collisional pair is uniformly chosen from
N(N — 1)/2 available pairs in each cell. A majorant frequency which is defined as

v = N(N - 1) (Ug)max

(6)

is used to specify the Poisson distribution. More details of MFS scheme could be found in Ref. [18].

The molecular interaction is modeled by variable hard sphere (VHS) model. Monatomic argon,
m=6.63x102°Kg and d=4.17x10""m is considered here as the gaseous medium. In order to ensure the
satisfaction of the limits on the cell size, the cell dimensions Ax and Ay are considered to be 0.1A and are
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Figure 3.DSMC flowchart for staggered grid

much smaller than that for most cases. Each cell
contains two molecules. All walls are treated as
diffuse reflectors using the full thermal

doi:10.1088/1742-6596/362/1/012007

accommodation coefficient, oo =1. Half-range
Maxwellian distribution is used to determine
the velocity of reflected molecules. After
achieving steady flow condition, sampling of
flow properties within each cell is fulfilled
during sufficient time period to avoid statistical
scattering. All thermodynamic parameters such
as temperature, density, and pressure are then
determined from this time-averaged data. In
order to minimize the scattering in the predicted
results, particularly temperature, a nonlinear
FCT filtering post processor is utilized [15].

3. Flux-Corrected Transport (FCT) Filtering
Modeling of low speed micro/nano flows with
DSMC method encounters a serious problem of
statistical fluctuations. This occurs when the
bulk velocity of the flow is much smaller than
the most probable thermal velocity, i.e.,

Vyup = ZKT ] ™)

, where k, T and m are the Boltzmann constant,
fluid temperature and molecular mass,
respectively. For the present problem V,, =
350 m/s, while the lid velocity is Ujq =
100 m/s and the internal field velocity is much
smaller below the mid line of the cavity, say of
the order of 10 m/s. Therefore, the statistical
noises are so great that the features of the flow
may be easily lost. However, the effects of
statistical noises could be reduced by increasing
the sample size. In the current work, where just
2 particles in each cell are employed, the run
should be continued for longer time to achieve
suitable results. Additionally, following Kaplan
and Oran [15], the nonlinear FCT filtering is
used here as a post processing strategy to
reduce statistical fluctuations and CPU run time
as a result. The main feature of FCT filter, in
comparison with fully diffuse simple filters, is
that it makes the noisy flow converge to a
solution whose correctness is already proved
[15]. The FCT procedure consists of three parts:
diffusion, anti-diffusion flux and anti-diffusion
flux limiting. Considering the parameter p° as a
noisy field that should be represented in the
filtered form p!, we could write

pO N pd N pdal = p1 (8)

The steps are as follows:
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1) The initial values p° are diffused, giving p%. This is achieved by the definition of diffusive flux of
p at the midpoint i + 1/2 between p; and p; + 1, fil-if—l/z (p) as

d
fiaP®) = Vi (ples = p0) )
, where v; 4, are diffusion coefficients. Then
pit = pf + f21(0%) — £21(0°) (10)
2 2
2) To remove excess diffusion, anti-diffusion fluxes, fii‘} /2 (p), are defined which, however, can

insert nonphysical overshoots in the solution.
d
f() = w1 (plha = pf) (11)

, where 11,4/, are anti-diffusion coefficients.

3) To ensure stability and elimination of nonphysical overshoots, the anti-diffusion fluxes should be
limited before applying to the field. This guarantees that no new maxima or minima are added to the
solution. The limiter function, following Boris and Book [19] could be defined as

Fst =5 maxfomin[s- (ot = o) [£24009)].5- (ot = i)} (12
, where § = sgn(pid+1 - pfl). Then
pi = pf = pl = f13 (") + £11(07) (13)

This procedure causes the local peaks to be smoothed while keeps the value of their neighbors nearly
unchanged. Actually, the effect of FCT filter can be changed by using different values of diffusion and
anti-diffusion coefficients. If v > u then the filter reveals a diffusive manner and depending on the degree
of inequality it can smooth the peaks too fast but may do not converge to a solution. In the other side, if
v < u then it works as a high-frequency filter that removes the sharp peaks and converges to a solution
after passing the solution from the filter for multiple times. This is shown in Figure 4 where a noisy square
wave (Figure 4-a) with zero velocity is passed through the FCT filter for 1000 times (Figure 4-b) and
10000 times (Figure 4-c) for both of the forgoing cases. It is obvious that in the case of v < u, the
filtration converges to a much less-noisier wave that never changes by more passing through the filter.

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 4.The effect of FCT filter on the zero velocity noisy wave,

(a) before pass (b) 1000 passes (c) 10000 passes
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Also, in the case of v > p, although the filter results in smoother wave, it has a diffusive characteristic and
never converges to a solution. Note that when v = p, the filter performs in a slightly diffusive manner. In
this work, the diffusion and anti-diffusion coefficients are chosen asv = u = 1/8.

4. Grid independency test

The configuration of micro driven cavity considered in this study is shown in Figure 5 which is a square
with length L = 1 ym with a moving lid at the velocity of U;;; = 100 m/s and Kn=0.005. A grid
independency study was carried out using three grids composed of 100x100, 200%200 and 400x400 cells.
Figure 6 shows the vertical component of velocity vector along the horizontal axis of the cavity, Y/L =
0.5.

B U,, =100 m/s F
= c R S S N O, 100 x 100
E—— F /0NN 0200 ----- 200 x 200
01f 400 x 400
0.05 |
kel
= -
) =
—~ n
> F
-0.05
01F
0.15F
y 02F
X -
A D 0.2 04 0.6 0.8
«—— = 1x10°m—— X/L
Figure 5. Geometrical configuration of micro Figure 6. Grid independency test.
cavity.

The results are almost equivalent for 200x200 and 400x400 grids; however the mesh size of 400x400 is
selected to ensure the criterion that limits the cell size as Ax < g/l [20].

5. Results and discussions

A micro square cavity of length L =1 um with a moving lid at the velocity of Uj;;; = 100 m/s is
considered. The walls temperature is set to the reference temperature, i.e., T,, = Ty = 300 K. The aim of
the article is applying the DSMC method based on SBT/dual grid collision procedure in near continuum
flows, i.e., Kn = 0.005 and compare the results with the NTC algorithm solutions. In this regard, NTC
scheme is applied with various number of particles per cell to find the minimum value which leads to
accurate solution. The comparison of results, which is shown in Figure 7, indicates that < N > = 20
could reasonably provide the sufficient accuracy.

The ability of the SBT scheme in prediction of the cavity flow field solution is evaluated in Figures 8 and
9 where SBT results for < N > = 2 are compared with those of NTC with < N > = 20. In Figure 8§, the
dimensionless y-component of the velocity vector, V /Ug;y, is plotted along the horizontal axis of the
cavity (Y/L = 0.5). Also, the dimensionless x-component of the velocity vector, U/Ug;,, is plotted along
the vertical axis of the cavity at X/L = 0.5.The figure shows reasonably good agreement between the
SBT and NTC results in prediction of the velocity field. A better assessment of the SBT scheme could be
achieved if we plot the temperature field which is a square function of molecular velocity and is more
sensitive to the statistical fluctuations. The temperature profile along the vertical cavity axis at X/L = 0.5
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Figure 7. Effect of number of particle per cell in the accuracy of the NTC collision scheme.

is shown in Figure 9. The figure indicates that the SBT scheme with 2 particles per cell could reasonably
follow the results of the NTC scheme as well as MFS with more particles. The results of NTC scheme
with two particles in each cell is also plotted in this figure to emphasize on the inadequacy of this scheme
at low number of particles per cell, which may locally happen in a flow with notable density gradients. In
addition, although the MFS also works efficiently with small number of simulators, this figure shows that
it does not guaranty the reasonable accuracy in comparison with the SBT scheme. In fact, repeated
collisions may occur in the MFS scheme. This could be the source of slight deviations between the results
of MFS and SBT for small number of simulators.

It should be noted that although the lid velocity is 100 m/s which correspond to a Mach number of
Ma =~ 0.3 the flow can be strongly considered as low velocity field. The contours of local Mach number
calculated with SBT scheme is shown in Figure 10. The figure indicates that the most parts of the flow
field correspond to a Mach number of Ma < 0.1.

The relative computation times for the runs performed by the NTC and SBT algorithms are shown in
Table 1. For the purpose of generality, the reported times are normalized by the required solution time for

303

Kn =0.005
SBT<N>=2
NTC <N>=20

Kn =0.005

SBT<N>=2
[e] NTC <N> =20

= = = = NTC<N>=2
A MFS <N> =20

Ho.s

o

0.6 302 __ ------- MFS <N> =2
043 o |
> 301}
0.2 B
B B
0 7]
300 g -
oo lgte AR BN R B B
0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
X/L,Y/L Y/L
Figure 8. Comparison of the SBT and NTC Figure 9. Comparison of the SBT with NTC and
schemes in prediction of flow field. MEFS schemes in prediction of thermal pattern.
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Figure 10. Contours of local Mach number calculated with SBT scheme.
NTC algorithm with < N > = 20. The computational time are calculated for equal sample size, i.e.,
NioeNg = cons., where Ny, and Ny are the total number of particles in the domain and the number of

sampling, respectively.

Table 1. Relative computational time

<N> time
Algorithm SBT 2 0.91
Algorithm NTC 250 1.15
125 1.07

20 1
5 0.98
2 0.75

The data of Table 1 indicate that the SBT algorithm needs less CPU time compared to the NTC to
accumulate the same sample size. In addition, whereas the N;,; in SBT algorithm is much smaller than the
NTC algorithm, say Nio¢spr = 0.4N¢or yrc for case < N > = 20; equality of the sample size in the
comparison means that the number of sampling in SBT method is remarkably higher. Our numerical
experiences reveal that in case of equal sample size, the more time iterating the less statistical fluctuations
remain in the solution. This is consistent with the improvement of the DSMC solution in each time step
that means more correct data will be accumulated as iteration advances. For example, for the cases
mentioned in Table 1, the NTC algorithm for case < N > = 20 was iterated for about 3,400,000 times in
a mesh of 200x200 with two subcells in each direction while the SBT algorithm was iterated for about
8,500,000 times in a mesh of 400x400 without any sub-cell (actually SBT scheme needs no sub-cell) to
forms the same sample size. However, the SBT does not only take less CPU time, but also results in more
smooth solution.

Another feature which should be noted in further developments of the SBT scheme is the percentage of
the CPU time that is consumed by different steps of the DCMC algorithm. This is mentioned in Table 2
where the NTC data are presented for comparison purpose. The relative time consumption of each DSMC
step with respect to the collision is also reported to introduce a better comparison between each step as
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well as between SBT and NTC schemes. The most time consuming step in the SBT scheme is indexing,
which is due to using the staggered mesh that necessitates the indexing step to be applied three times at
each time step, see Figure 3. Therefore, any refinement of indexing process can notably improve the speed
of SBT scheme.

Table2. Percentage of CPU time usage in DSMC steps.

SBT NTC<N>=20
% relative % relative
Movement 15 0.58 21 057
Indexing 32 1.23 183 049
Collision 26 1 37 1
Sampling 22 0.85 23 0.62
Other 5 0.19 1 0.03

The contours of x-component of the velocity vector is shown in Figure 11 for both the SBT (Figure 11-a)
and NTC (Figure 11-b) approaches. This figure indicates that the results are in good agreement with each
other. In addition, the streamlines are plotted in Figure 11. The flow consists of a large primary vortex
which is followed by two small secondary vortex at corners A and D. Even though we used small number
of particles per cell in SBT, we had detected the secondary vortices as well. Secondary vortices disappear
at higher Kn numbers. The position of the main vortex is interested by researchers and usually is used as a
validity parameter. Both of the SBT and NTC algorithms predict the primary vortex center at (0.61, 0.75).

T

UUg:04 04 03 05 07 09
Figure 11.Comparison of x-velocity and stream lines for
(a) SBT scheme (b) NTC scheme < N > = 20

Until here, it is proofed that the SBT scheme could predict the thermal and hydrodynamic patterns as
accurate as the NTC scheme. But, as a result of improvement of stochastic modeling, the SBT scheme is
allowed to use significantly less particle per cell at low Kn/low velocity flows. Another feature of rarefied
flows which is usually interested by the researcher is the surface parameters such as velocity slip and

10
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temperature jump. In DSMC method, the slip/jump phenomena could be evaluated based on the sampling
of the corresponding molecular properties of all the particles that strike the wall surface. Following Ref.
[21], the formulations for velocity slip and temperature jump are:

Z(&“ uy)
Ugiip :—pm (14)
Z(Wp |)
1 2 1 2
DU, 1= (—)u,
1 [V | [V, |
T ass  'wall T _ (15)
g 3R Z(L)
|V, |

, where p stands for particle and the summation is taken over all particles striking the wall of the regarding
cell. |vp|, ||Up|| and R are the absolute values of the normal velocity, velocity magnitude, i.e.,

||Up || = /uzz, + vg + Wﬁ, and gas constant, respectively. Therefore, the slip velocity is accumulated based

on the change in particle velocity due to the collision to the surface considering that the particles collide to
wall with probability of 1/v,. From Equation (14), the temperature jump is proportional to a fraction of
total kinetic energy. The velocity slip and temperature jump along the driven lid, computed by SBT and
NTC schemes are plotted in Figure 12.

As observed in Figure 11, good conformity of results of SBT scheme with those of NTC indicates that the
SBT model is powerful in prediction of the surface parameters as well as inter-domain features.

e e e B L L N B S m s OF——T—T 7 1T T T T 1T T T T 1T T T T T T T

Kn =0.005
SBT

- Kn =0.005

SBT
8 o NTC

0.8

o NTC

;G B
o

0.2

O|||I|||I|||I|||I|||
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

XL X/L
Figure 12. Velocity slip (left) and Temperature jump (right) along the driven lid computed by SBT and

NTC schemes.

0

=

The performance of FCT filter is evaluated in Figure 13. This figure consists of three contour layers: the
flood contour shows an unfiltered intermediate solution, after filtration this solution is shown with bold
blackline contours, and the red line contour represent the filtered final solution. The filtered solution is
passed through the filter for 5000 times for both cases. From the figure, it is easily realized that the FCT

11
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filter has a key role on the removal of statistical scatters from the DSMC solution. The comparison of red
and black line contours offers that the solution could be interrupted at early times without dropping much
accuracy. Note that it takes us about 240 hours to reach the final solution from the intermediate solution.
In the other words, this huge computational cost could be removed if we suitably employ the FTC
filtering.

o, JONT PERe 5
Figure 13.Ability of FCT filtering in removing stochastic noises
Flood contours: unfiltered early solution, Black line: filtered early solution, Red line: final filtered solution

6. Conclusions

DSMC Simulation of low-speed/low-Knudsen rarefied flows at micro/nano scales remains a challenge for
researchers due to large computational requirements and noisy final solutions. Even though there are some
suggestions to replace the basic DSMC algorithm with alternative schemes, i.e., IP scheme, these
alternative schemes are not fully validated for a wide classes of problems and their derivations are case-
dependent. In this work, we suggested a combination of simplified Bernoulli trial (SBT) algorithm and
dual grid strategy, recently proposed by Stefanov, and nonlinear flux-corrected transport algorithm (FTC)
filtering, to simulate low-speed/low-Knudsen rarefied flows at micro/nano scales efficiently. The main
advantage of the proposed strategy is that it allows accurate calculations using much smaller number of
particles per cell, i.e., < N > = 2, and less computation time compared to the standard NTC scheme. We
tested cavity flow at Kn=0.005 and showed that our SBT solution for velocity and temperature fields
agrees well with standard solution with < N > = 20, while the computational time of the SBT is around
0.91 of the NTC. Additionally, the use of FTC filtering provided correct smooth solution with less
computational time compared to the basic SBT algorithm.
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