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1 Introduction

During the lust three decades, considerable cfforl has been
devoted to the control of nonlinear systems using sliding mode
cantrol (SMC) methodology [1]. It has been shown that the SMC,
because of its invariance property, is @ powerful ol in facing
structured or unstructured uncertainies, disturbances, and noises
thut always produce difficultics in the realization of designed con-
troller fr reul systems |2—4]. Note that invariance is stronger than
robustness [4], The greatest shortcoming of SMC is chattering, the
high (but finite) frequency oscillations with small amplinede that
produce heat losses in electrics) power circuils and wear mechani-
cal parts [5]. Chautering often results in the excitation of high fre-
quency unmodeled (ignored) dynamics (sensors, actuators, and
plant) [3.6,7]. Excitation of these dynamics is due 1o two causes:
high controller gain and high frequency switching of input control
signal [1].

Four design methodologics have been proposed 10 overcome
this prablem: boundary layer, adaptive boundary laver, dynamic
sliding mode control (DSMC), and higher order sliding mode
comtrol (HOSMC). Boundary layer and aduptive boundary layer
methods cannot preserve the invariance property of SMC. Never-
theless, these two methods are adopted [8]. because they can
reduce or suppress switching of inpul control signal by employ-
ing a high-gain comrol inside the houndary laver [2,9]. Use of
high-gain control causes instability inside the boundary laver
leading 1o chattering [1,7]. In DSMC an integrator (or any ather
strictly low-pass filter) is placed before the input control sigmal of
the plant. Then, switching is removed from the input control sig-
nal since the integrator fillers the high frequency switching which
is. due to the use of sliding mode conirol [10]. However, in
DSMC the augimented system is one dimension bigger than the
actual system, and then the plant model should be completely
known when one needs 1o use SMC 1o comrol the augmented sys-
tem states [6,10]. HOSMC is proposed 1w reliably prevent char-
tering [11.12]. In higher order SMC, the effect of switching is
tally eliminated by moving the swilching o the higher order
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comtroller is that it does not need an upper bound for the uncertainty and identified
model; maoreover, the switching gain increases and decreases according to the system cir-
Cumstance by enpluying an adaptive procedure. Then, chattering is removed complerely
by using the DSMC with a small switching gain. [DOL: 100111571 4004TR2]
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derivartives of desired output [3,11,12]. Many algorithms are pro-
posed for implementation of second or higher order SMC
[12,13]. However, the main drawback is that the control methods
generally require the knowledge of higher order derivative of sur-
fuce. As far, when the relative degree is 2, the ususlly nosmeasu-
rable surface derivative must be estimared by means of some
observer, for example, high-gain observer [14] or sliding differ-
entiator | 15]. Moreover, chattering cannot he suppressed only by
removing the switching. For example, it has been shown [16,17],
thut in HOSMC chattering may happen in power-fructional algo-
rithm, proposed in Ref. [18], and in super-twisting algorithm,
propased in Rel. [12]. Both of these algorithms utilize 4 conring-
ous monlinear function with infinite gain. Therefore, the other
soneepl, which should be considered for chatlering suppression,
is reducing the switching gain. One way to reduce switching gain
is to use adaprive switching gain,

In this paper, a methd is presented for implementation of
DSMC via adaptive switching gain. The proposed method, there-
fore, will alleviate the two reasons that can excite unmodeled dy-
namics. To overcome the drawback of DSMC a radial basis
funetion newral network (RBFNN) [19] is employed to identify
the plant model. To guarantee the robustness of the neural net-
work identification procedure, a new robust adaprive law is
developed,

Servomotors are used in many automatic systems, including
drives lor printers, tape records, robol manipulators, etc. Recently,
field-oriented methods have been used in the design of induction
servomotors for high performance applications [20,21]. With
these contral approaches, the dynamic behavior of the induction
mator is similar (o that of a separately excited de motor. Further-
mare, in practical applications, the control performance of the
induction motor is still influenced by the uncertainties of the plant,
such as mechanical parameter uncertainly, external load disturh-
ance, and unmodeled dynamics. These uncertainties make the
design of the controller difficult and a robust controller with a
good performance is needed [22]. The invariance property of
SMC is our motivation 10 position control of induction motors.

The remainder of this paper is organized as follows: in Sec. 2,
we provide the preliminary background about the problem. In
Sec. 3, the neural identification method is proposed. Section 4 is
devoted 1 designing DSMC methodology. In Sec. 5, an adaptive
procedure is proposed for adjusting the switching gain, Finally, in
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Sec. 6 we discuss simulation resulis to verify thearetical concepls
presenied in Sec. 5. The conclusion is given in Sec. 7.

2 Problem Formulation

SMC consist of three phases: reaching phase (the time needed
for hitting the sliding surface), sliding phase (sliding on a stable
manifold), and steady statc phase. To preserve the invariane prop-
erty during sliding and steady state phuses and guarantee reaching
the shiding surface in finite time, one should use the reaching
Jaw [4]

§ = —ysignls) {1

in which 4 is a positive large enough constant. It is known that use
of this sign function resulis in high frequency switching with am-
plitude #, called the swilching gain. Therefore, chatiering can be
suppressed by Ref. [23]:

1. removing the effect of high frequency switching of input
control signal
2, reducing the amplitude of the switching, ie., reducing the
switching gain
In this paper, a method is presented, having the above two char-
acteristics, by employing adaptive switching gain controller and
dynamic sliding mode control. Consider the class of induction ser-
vomotors in the form of n-dimensional nonlinear system

J-Tl =i v = l.?,....n -1

o
dy=fX0) -
with input  and state ¥ = [ry, xs....x,] . The goal is to have the
states of this system, ie., vector X, track the states of the follow-
ing desired linear system, ie., variables y, 11 = 1,2,...,m which
is used as a reference model

Y=y :i= L2, n=1

. . (3}
= Zdﬂ'.l + g
=

In which, o{t) : §=1.2,....n can be time varying coefficients.
Mote that the function /X, «) is unknown,

Consider the following assumptions, which are widely used
[24-26]:

Assumption 1. The desired state variables y; 1 i = 1,2, ..., nare
contimneus and bounded,

Assumption 2. X is @ measured signal.

ﬁmlmpu'uﬂ 3. F(X. ) is @ comtimeous function for all (X, )
€ frel,

Definition 1. The soluwtion of @ dynamical system [s uniformiy
ultimately bownded (UUB) if for a compact set ¢ = R and for ali
Xitg) = Xo € b, there exist an Ex >0 and a number T(Ex, Xo)
such that [|X(1)]| < Ex foralf t = o+ T [2].

3 Robust Neural Adaptive Identification
Equation {2) can be written as follows:

T=AX+Ef(X, u) )

where A and B are as follow with appropriate dimensions

00 B0 e i}
00 1 : 0
A= fE ol-B=]! 5
00 01 0
[} [ 1

061014-2 / Vol. 133, NOVEMBER 2011

or as follows:

X=AX4+{A-A)X+Bf(X, u) (6)
o'r .
X=AX+8glX v) (N
where
g, u) =fX, w)+ Zﬂ.-x. (%)
=l
and
0 | 0 a
0 0 1 = 0
LSE B % o o
L] | R 0 1
—d] —ar e —Op- —dy

Assume that a; are such that A, is stable, i.e., for any symmetric
positive definite matrix , there exist a symmetric positive defi-
nite matrix P satisfying the following Lywpunov equation:

ATP+PA, =-Q (1)

In order to cstimate the nonlinear function g(X, i), we propose a
RBFNN, described by the following equation:

g=wEX, u) (i

where W € R™ is the weight vector estimute, and &) : R
— R s a radial basis function vector [26]. Then, the neural
model of the plant can be written as follows:

X =A%+ B EX, u) 12

where X = [i1,42....5,|" is the identified model stale vector, Dus
1o the approximation capability of the RBFNNs [26], there exists
an ideal weight vector w with arbitrary large enough dimension m
such that the system (7) can be written as follows:

X =AX +Bw E(X, u) + Bex (13)

where &y is an arbitrary small reconstruction error [27]. We also
make the following 1wo assumptions:

Assumption 4. The RBFNN reconstruction error bound B, is a
constant oh @ compact set, i.e., |gx| < By

Assumption 5. The jdeal weight is bounded by a known positive
value B, such that ||w| < B,.

These assumptions are commaon in the neural networks litera-
ture [27] and are due to universal approximation property of the
RBFMNNs. Notice that by choosing more proper values for the pa-
rameters of £, the value of 8, is decreased. We also include a term
r{f) in Eq. (12) to be calculated such that the robusiness of the
dynamic model {12} is maintained. Thus, we have

=A%+ BwTEX, u) + (1) (14}

Subtracting Eq. (14) from Eqg. (13), we obtain
£ =AX + B E(X, u) + Boy = r(1) (15)
where £(1) = X{¢) — X(r) and W = w — & are the state and param-

eter estimation erors, The following theoremn gives a robust
adaptive law for the dynamic neural model.

Transactions of the ASME



Theorem 1. Given the asswmptions 4 and 5 for the system ({3)
and the estimator (14}, and nsing the following REFNN weight
itprdane Taw

W=k E(X, ) (PB)TE — 44, ||X]| & i16)
with the term given by
M) = kX1 (17

causes the estimation error JE’[:} and wir) be UUB with specific
bounds given by

duus(P] B+ kBY, 1 (Amax (P} By 1y

Bym e B W e RS
27 (@) + K imin(P) 2 \," 4k A
(18)

reapectively, where k., &, and &, are arbitrary positive scalar con-
SLnes, Aein{Q) and Aww(P) are the smallest eigenvalues of posi-
tive definite matrices @ and P, respectively. which satisfy
Lyapunov equation (100, and iy (F) is the largest eigenvalues
of P. ;s

FProof. Consider the following Lyapunov function candidate:

1. S .
Vi) ==XTPX % =—w" 19
{r 3 25:..-“ W (19
Taking the derivative of V(r) yields
Vi) =2RTPE + 2R7P R+ L (20)
=3 2 o

Substituting Eqs. (10) and (13} in the above equation follows that
. | B - - "
Vi = = XX +X PBex-XPr

+oT(Liraxmes’®) ey

since W = —w, using the tuning law (16) and the term (17) in the
above equation gives

g e o
Vi) = - sXTQ K+ XTPBox — kXTPX +4k[X]W% (22)

Considering the properties of positive definite matrixes Q and P,
and using w = w — w, the above equation yields

. 1 : o
V) < ~{S (@) + b P} [
+ {im(PYB, ~ 4k (51 = B WD} ] 23)

Using bound 83 defined in Eqg. (18) follows that
. 1 L
V0 € {3 fmn(@) + ke )} 1 (18] - B}
T o
-4 kf[_uu'-u = 5”*) %) 24)

ar

£ {I%l - B} @29

Vi< —{% Amin( Q) + ky imln(P]} |
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By taking (1) = {} Juin(Q@) + kx ZmialP)} [IX]| {[}] - B} ome
can wrle T

V< ) (26)

and integrating the above equation from zero to ¢ yields
1 I
0< J s < J wirdr + V(1) < Vo) (27}
] 0

when 1 — a¢, the above integral exist and is less than or equal to
V(0). Since V() is positive and finite, according to Barbalat's
lemima [2,28] we obtain

Jim aa(s) = lim {; () +k.11mim} [l {1 - B¢} =0
(28)

Suppose  ||¥]| > By, since {4 iuin(0) + ke imia(P)}  and
{||X||— B,g} wre greater than zero, Bgo (28) implies that,
JI_i.an?L-'" =10, which results in decreasing ||| until it becomes

less than Bg. This guarantces that X{r} is UUB with ultimae
bound #;. In addition, from Eqs. (18) and (23). it is easy to show
that if |w]| is greater than the desired ultimate bound B2 then,
|[¥]| decreases until it becomes less than B, Therefore, wi{r) is
TUB with ultimate bound B,

Remark I. As is clear from Eq. (1), the ultimate estimation
error bound B, can be made as small as desired by increasing &..
Moreover, parameter &, offers a design tradeaff berween the rela-
tive ultimate bounds urJ|x|| and [/ However, it should be noted
that it is usually desired to keep the ultimate bound ||?c'|| as small
a5 possible,

Remark 2. The first term of adaptive law given by Eq, (16) is a
continuous time version of the standard back propagation algorithm,
and the second term in Eq, (16} comesponds to the & -modification
[29] used in adapiive identification schemes to guarantee bounded
of the parameter estimates. Hence, this algorithm does not require
persistent excitation condition.

4 Controller Design
According o Egs. (8) and (11) we can write as follows:
S1% ) = W E(X ) + AAX (29
and
A=[00..0 1R (300

Ta apply the DSMC to system (2), we define the following aug-
mented system:

iyyr =FIX, )
E=Xpil=1,2, . ,0=1
Ay =gt

by =@+ ph

(31}

where &, is the neural identified of unknown variable x.; and

P, Ty i) =W+ 0T %x - ALK, 7l u) = »DT%

(32)
and conseqguently the augmented reference model will be
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"
Yusl = Zd,-}'.——rh‘g
i=1
W= ii= 1,200 (33)

n
Yt = Zdr'}'iﬂ + fiy

Now, defining the following variables:

£ = [0,y (£). da (1) conndha ()] (34)
¥ = [y ¥, e dne]” 35)
KXo = [%1 32, coor T Bt [T (36)
e=n—y:i=12..,n {37}
Bt = Ryan — ¥aai {38)

E= [t‘]-!’l‘----‘-'J-Llr =X.-¥ 39)

Then, augmented reference model can be writien as follows:

id
Yor1 = 3 diyi + g
=l

H=yirif=1,2,..,8
Forr = DY + iy

We have
[ =in+l _j-q-i-l =@+ Fi— DY — i

=+i—DF =iy +DXs —DXa+v—v+a—i
=DE +v—itg+(p+7yi—a) + (i — DX, =)

(41)
Defining the following linear state feedback:
fi=DK,+v (42}
and the variable
W= (g +7ii = it) (43)
We obtain
b1 =DE+v—tig+ W (a4}

where v is the new input control signal to be calculated via sliding
mode control and W[X, x,.0. ) is a maiched uncertainty. The
marched uncertainty can be cancelled out directly by the input
[30].

Remark 3. Variable W is considered as uncertainty due to its de-
pendency 10 unknown variable ta..

The control problem now is finding a suitable input conirol sig-
nal v{r) such that the states of system (31), X;, track the states of
systerm (33}, ¥, or equivalently the emor dynamic (44) converge o
zero in finite time. To this end, the following new proportional-
integral sliding surface will be defined:

'
5(t) = ae i) — J ([eD(z) + K(D]E(z) + vile))de  (45)
o
in which vector K(1) and signal v,{r) arc design parameters, A
method for calculating the values of these parameters will be pro-
vided, Differentiating this surface equation with respect 1o time
leads 1o

061014-4 / Vol. 133, NOVEMBER 2011

i = 0épy = DE — KE — v, (46)
and by substituting from Eg. (44) one gets

§=ov—gaig+ oW =KE —v; (47)

the scalar o can be time-varying in order to pmvidé the desired
properties for the sliding surface. Nevertheless, in this paper, we
have chosen & to be a constant

w1 (48)

f=v—ligy+t W-KE-v, (497}

The input control signal v(f} consists of two parts. The first part is
equivalent control and will act when the error trajectories are on
the sliding surface, i.e., during sliding phase. The second part con-
sists of discontinuity to remove the effect of uncertainty W during
this phase [1-4]. Therefore, the first part, v.,, will obtained from
& =0 when W = 0 as follows:

Veg = KE + g + vy (30}

By substituting v,y into Eq. (44) (and keeping W = 0), the follow-

ing dynamie equation will be obtained in the sliding mode:

bnpt =DE+ KE+ v, = [D+K)E+ v, (51)

Equation (51) shows the error dynamics during sliding phase and
vields the zero dynamics of the sliding surface; therefore, vector
K(r) and signal v,{r] should be selecied such that the linear dy-
namical system (51) is stable. Suppose, v.(r) =0, and choosing
K(r) as

K(t) =M — D) (52)
results in the following linear constant coefficient system:

€y = WE (53)

which may be made stable by the proper choice of the constant
row vector M = [s.m1y, ..., Mg |. Note that in this case conver-
gence of error to acceptable levels may be slow,

Now, letting v, (1) # 0 and considering v,(t) as the inpul control
signal for Eq. (51), it can be calculated such that wo force the error
signal to converge o zero in finite time as terminal SMC [18.31].
Consider the error dynamics (51), i.e., when £ 2 fr (4 is the reach-
ing time o sliding surface) and the system is on the sliding surface
(45), the error trajectory converges o zero in finite time f + &
with

T 11
= IC1EO) -

provided we choose
Wit} = = ((D + K)E + [1,CT1E + n signi[€7, 1JE) — &) (55)

with 7, > 0, and C = [ey, €2, ... ] such that s, = [C7, 1]E, ie.,
the following polynomial is siable:

S¢ = Ent] + Catn + oo+ C282 + C18) (56)

In this case, K may have any value, even zero. Dilferentiating s,
and using Eq. (51) yields
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b= (D+KE+ v+ Cobupi + o+ 263+ a0 (57)

and substitution from Eg. (35)

S = =, sign{s,) (58)
MNow, consider the following Lyapunov function:
Vie) = 3% (59)
Taking derivative of V{r) with respect to time leads to
V= sede = 15| (60)

This is negative-definite. Integrating of Eq. (60} leads to Eq. (54)
{see proof of Theorem 33,

The second part of input contrel signal v{r) consists of a discon-
tinuity 1o force, the system states toward the sliding surfoce and
overcome the matched uncertainty W and also preserve the invari-
ance property in the sliding mode in the presence of the uncer-
tainty W. This part of input control signal consists of a sign
function. Therefore, the follawing adaptive input control signal is
proposed, which consists of equivalent control part plus discontin-
usus control parn

v(t) = KE + diy + v, — (qq + 1) signis) {6l
where (g + 1) is a switching gain, g; = 0 is a constant design
parameter, and (1) is an adaptive term such that

Bley = 0w (62)
Here, we propose an adaptive method for calculating #{1). In the
sequel, we make the following assumption:

Assumption & We assume that WX, xo. .0, ) is bounded by a
demenwen funcrion SUX, w8, Le.

WXy, 0 )] < CHEL 00,0) < 00 (63)
In general, inegquality (63) is not resirictive [1-3,12,32,33].

Remark 4. Considering other existing approach of handling
uncertainty [1-15], the proposed approach requires enly thar a
bound exists, but the magnitude of this bound £ need not to be
known (see remark 6).

Remark 5. Mote that the sign function affects vit} (see Eq.
{61}, and by considering Eq. (42), input control signal, a(r), will
be continuous and free of switching,

5 Adaptive Approach
A method for selection of f{r] is as follows:

f=0+qls, PO)=F Q0)=20

where g2 >0 is a constant design parameter and [, and
£y = D(X(0). w(0).4{0)) are the constant initial values of § and
0, respectively. Note that we can.select i, arbitrarily. Despite the
fact that this equation shows that the switching gain is increased
unitil the error trajectory is driven inio sliding mode, this approach
has three severe practical disadvaniages.

1. In case of a large initial distance from the sliding surface,
the switching gain will increase quickly due 10 this error and
not because of perturbation. This may result in a switching
gain, which is significantly larger than necessary.

2, Moise on the measurements will prevent |s| to ever become
exuctly zero, so the adeptive gain will continue (o increase.
This cause instability of the closed loop system. The rate of
increase depends on the value of 2.

(64)
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3. The adaptation law can only increase the gain but never
decrease it. Thus, if the circumstances change such that a
smaller switching gain is permitied, the adaptation law is not
able to adapt 1o these new circumstances.

Therefore, we propose a method, which can decrease or
increase the switching gain according to the circumstances such
that does not have these problems. In the proposed approach, (1)
is defined as follows:

f=0+qils| = ¢(@)), FO)=F, Q0)=1 (63

and

W) =3 (sign(f — Q= ta) +1) 20 (66}

Constants g2 > 0, & = 0, and g > 0 arc design parameters and
f and £k = DX (0], w(0), (0]} are the bounded initial values of
[ and €1, respectively, Note that we can select fi; arbitrary. Inte-
grating Eq. (65) leads 10

B0 =00+ - Qa+ae [ ({0 —de (6D
Lemma 1. [f the following condision is satisfied:
Bo— > (68)
Then, Eqs. (65) and (66) guarantee that
Qa0 (69)

Proof. Letting § = f — 12, results in 8(0) = 8y = fi; — £, From
Eqs. (66) and (67) we can write

#ir) = 0o + gz J; 2 e — % L [sign(fl — ) + Defz  (T0)

The right hand side of the above equation is the sum of continuous
functions. Therefore, 8(i) is o continuous function such that
fly = & (assumption (68)). Before A{r) becomes smaller than &, it
must passes & at a time £ such that

Bir) = g2 V1€ (Oy1) {71}
where
0= M (72
fan
and at £ = #), we have { = g, i.e.
w=to+ g [ ftolds - g @
Now suppose that there is a time (> such that
8N < m:vre (n.n) (74)
Then
B{t) = thy + qa J |s(z)ld + qa J- Is(7)|de = gzmty (75)
n n

Using Eq. (73), we can write
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=

H]

N 3

F

B

3)

4

#
8(1) = 2 + g2 ] Is{e)lde 76)

It means that
Bt} = &0 : ¥ € (1, 12) T
und this contradict with assumption (T4), i.e.
e) = &= (78)
Theorem 2. Consider the erver dynamic (44) with the adaptive
input control signal af Egs. (61), (65), and (66). Then, the error
trafectory converges to the sliding surface of Eg. (43) if condition

(68 i satigfied,
Proof, Consider the following Lyapunov function:

1 1 ¢
Vi =5 (s + @@ p7) (19)
Taking derivative of V(r) with respect 1o time leads 1o

Vo s+ g™ (2 - B0 - f)
=siv—iig+W=KE—v,)+q ' (Q-H(2-H 0

By substitution from Eqgs. (61) and (63) into Eg, (80)

V= s(W = (g1 + 1) signis)) + ™" (2 — B)(~g2(ls| — b))

{81
or
V = Qls| = (g + Ufls| — (22— F)(Is] — ) (82)
Then
Vz—qfls| +4(Q-§) {83)
and by Lemma 1
V< =quflsl (4}

By taking (1) = g, f|s(r]|, one can write
Ve —mi=0 (85)

and integrating the above equation from zero (o ¢ viclds
P P
0< [ wiar <] was+vin vy 80
o _ 0

when t — oo, the above integral exist and is less than or equal 1o
V{0). Since V(0) is positive and finite, according to Barbalat's
lernma [2,28], we obtain

lim w(t) = lim g, fls(c)] = 0 (87

Since g, and f(¢) are greater than zero, Eg. {87) implies that,
lim s = @ proving the theorem,
=G

Theorem 2 guarantees convergence (o sliding surface asymp-
totically; however, in SMC finite time convergence is necessary
so that the invariance property is retnined after finite time. The
next theorem shows the finite tlime convergence to sliding
surface.

061014-6 / Vol 133, NOVEMBER 2011

Theorem 3. Cansider the error dynamic of Eq. (44) with the
adaptive impur comral signal of Eg. (61, (G5), and (66). The ervor
trajectory converges o the sliding surface (45) in finise time i, if
By i selected such that inequality (68) is satisfied. Mareover

tr < |'£.r|+| (U) ; Ykl ':U” (B8)

Proof. Consider the Lyapunov function (79), Taking derivative
of V(1) with respect to time leads to

V=sitg Q- B0 = f) =s+q " (2= B =gz(ls] = ¥))
= si— (8- f)ls| + ¥R - ) (89)
From Eg. (83) we have
ad = (2= )l + 92— ) < —qflsl +$(Q-F) 60
Thus

si— (-5l £ —qufilsl 91

585 —(f - D+ qflsl = —(f - Qs (92)
From Lemma 1, we can write
—(p—0Q) < —e (93)
Substituting Eq. (93} into Eq. (92) vields
55 = —eals 94)
where
e >0 (95)
Suppose f is the reaching time, Le., s{ty) = 0 and consider two
Easr:r:ﬁ cage: 5 > (), from Eg. (94)
FE—gy (96)

Integrating Eq. (96) between i = 0 and 7 = 1y leads 1o

—5(0) £ —auts ©7)
Therefore
= ﬂ (98)
o

Second case: 5 < 0, from Eq. (94)
iz (59)
Integrating Eq. (99) between = 0 and ¢ = iy leads to
= 5(0) = enfy {100}
Therefore
—{0)

5 <

{101y
In general, from Eqs. (98) and (101), we can write
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< % (102)

From Eqs. (45) and (48), we have
5{0) = gepni(0) = By (0) = ¥ (0) (103}

Hence, proof is complete,

Remark 6. Using a conservative value of the bound £ may lead
o an unsuifable control effort. Therefore, from an engineering
point of view, a controller that can be auio-adjusted seems inter-
csting, If £ is set 1o a large positive constant then, £ = 0 and we
will have

fi = qalls| =) {104)
and

Vil = %{.\'fgfr[ﬁ —e)+1)20 (105)

In this case, the variable § = [ — £) can be considered as an esti-
mator  for the uncmmnty bound €1, which leads 1o
J=f—0=f=g(ls| — ). Integrating Eq. (104) leads 1o
By =fa+aq: J-U (|#(z)| — ¥)dr. Moreover, to satisfy (62) we
should choose i, = g > 0. In this case, Q is only used to prove
Theorems 2 and 3 and does not appear in the controller and Eqgs.
(104) and (105) are as an estimator of the bound (. Then, pro-
posed approach will be applicable to practical systems where, this
bound may not be known
This method has the following advaniages:

I. In the case of a large initial distance from the sliding surface,
the switching gain will increase quickly resulting in the dis-
tance to shrink, Once this distance is smaller than &, the
swilching gain will decrease again.

2, Moise on the measurements does not disturb the adaptation
procedure if the constant & is nol chosen very small,

3, The adaptation law can increase f(r) again according to
Lemma 1 () will not converge to zero.

The following two remarks are true in the global sense of this

paper.

Remark 7. In the proposed method the singular case, as dis-
cussed in Ref. [34], will not occur.

Remark 8. To preserve the invariance property during the
reaching phase and to prevenl peaking phenomena [33.36], one
can use the following sliding surface (peaking phenomena can
lead o instability of closed loop system [35], as the input signal
of actuators are limited)

5lr) = deqpalt) — _I;([ﬂ){z] + K(T)E(t) + w(2)ide = h{1)
{106
where hi1) = ge,. (0) e and 2 >> 0. Notice that 5{0) = 0. It

is easy to prove that if this surface is zero then the error vector
converges o zero.

6 Simulation Results

In this section, we apply the proposed controller to a model of
induction servomotors in the form of Eq. (2), Consider a three-
phase Y-connected, two-pole, 800 W, 60 Hz, and 120 V/5.4 A
induction servomotor with the fellowing model [20-22]:

JE+BELT =T, (107)

where Jf; is the moment of inertia, B, is the damping coefficient, §
is the rotor position, T represents the external load disturbance,
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and T, denotes the electric torque. With the implementation of
field-oriented control [21] and defining v, = @ and 1y = 0, we can
write system (107) in the form of servomotors

i =Xz
{ig = az; + bult) + cdlt) (108)

where w{t) = T, /K, is the tarque current command (control input),
a= =B/l b=K/F.c=~1[],d{i) = T;, and K, is the torque
constant, K; = {3np,l’2}l:£.zm,|'£r_:li;-i. with s, being the number of
pole pairs, Ly, is the magnetizing inductance per phase, L, is the
rotor inductance per phase, amd iy is the fux curreni command.
From Eq. (31). one can write

dy = flxy, 02, 1)

AL =2 C(109)
=i
Iy=gp+yu
where
xy = fixy,xm, u) = axz + bu(r} + cd(r) (1100

and iy is the neural identified of unknown variable x:. We choose
a RBFNN with three inputs (x;,xz, ). nine RBF neurons in the
hidden layer as follows, which is depicted in Fig. 1

&y, X ) =e:p(—(\uq’ +a3+ul = (5= J'])/S) o

=130 (1

The REFNN output is £(x;. v2, u). The neural network tuning pa-
ramelers are chosen as K, = 5, K, = 70, and K, = 30. Other pa-
rameters are chosen as

400 300 0 1
P= 400 :suu]' A,-[_g _s] (112)

The initial cnndmuns of the weight vector are chosen as
w0} = [0,0,...,0]". Notice that these initial conditions can be
chosen urh'mary The objective is 1o make the states of system
{108) track the states of the following linear system

¥ 1

un-=5'9+33+5 m3y

2.5 T T T T T

ampliude

Fig.1 Functions &(t) = exp( - (VB - (5-1))/5) :1=1.2,....9

NOVEMBER 2011, Vol. 133 / DE1014-7




Ll B

Ll

4]

aam

B

time(second}
(C)=> w-norm

15, ,
1

amplitude

0

I T

1

{ 1

| 1 1

Wh----gmmm=q====-r===-

1 1 1

i 1 ]

1 ] 1

i [} 1

151 ﬂ———q———-d——ﬂ——k————

] I
' 1

P

Q 5

0 15 20
time(second)

time(second)
[d)—= REFMNN outputs
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Fig. 2 (a) f and its estimation f {output of RBFMN); (b) error between the f and its
actual value f; (£) the norm of the welght vector; (d) the outputs of the each neuron in

Then, we can write

{J—'L =¥
o= =3 =3+

or in the form of an augmented system

(11

4)

]

%ﬂ e s s s
* S I

0 5 10 15 20
time({second)

Ya==3n—
W=
fa=¥
¥3 = =3¥ —

3y 4 g
(115)
Iyy iy

We assume £} to be a large positive constant, i.e., £ = 0. More-

aver, iy is 8 perindic step signal and

i)
1h, r - l
Rt ]
R T
="
K-} i Ty
V] ] 10 15 20
time(second)
{d}-> ud
I
- |
%ns R i et
5
| |
0 5 10 15 20

time{second)

Fig. 3 Reference signal tracking of augmented system: (&) first state; (k) second
state; (c) third state; (d) input control signal of reference system
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(&)= sliding mode sudface
5 R T T

amplitude
o
L]
L -

time(secand)
(€)== v

5 10 5 20
time{second)

(B}-= switching gain

{d}-—>u

i
5 10 15
time(second)

Fig. 4 (a) Sliding surface; (b} switching gain; (c) Inpul control signal of state feed-

back; (d) input eontrol signal of system

vw=10 {11a)
Since we have D = [0,—5,-3], matrix M is chosen as
M = [-3,-5,-3] and, therefore, K = [~3,0,0]. According to
Eq. (53)

é3 = ME (17
We use the following parameter values:
K, = 4851 x 107" N.m/A
Jy=4.78 x 107 N.m/s* (118)

B, = 5.34  107* N.m.s/rad

Nate that these parameters are used in the SysIem simulation not in
the controller. Becanse we have assumed £ 1o be a large positive
constand, estimates of &, f,. and B, ure not neaded, ie., the controdler
is model free. The initial values of the system states are assumed to be
2and 1, respectively, i, X(0) = [x; (0}, (0)]" = [2,1)7, We simu-
late the proposed adaptive approach with he following parameters:

BO) =005, ¢ =130, =05 g=015 g =009

(11%)

The simulations are done by MaTLAB with sample time of 0.001.
The procedure for caleulating u is as follows:

. define and caleulate E(X,u)as Eq. (L11)

- calculate weight vector w from Eq. (16}

. culeulate f(X, 1) from Eq. (29)

- caleulate of K and v, via Egs. (32) and (55), respectively (we
can set v, =0)

- calculale sliding surface using Eq. (45)

- calculate f using Egs. (63) and (66) or Eqs. (104) and (105)

calculate v via Eq. (61)

. caleulate i using Eq, (42)

. calculate u by numerical integrating of

Fl b

¥ B0~ S Ln

Journal of Dynamic Systems, Measurement, and Control

Figures (2}-4) show the simulation results. From Fig. 4(h),
we can see that the switching gain increases at first to force the
error trajectories toward the sliding surface, but it decreases
when the trajectories reach io the surface, while the input control
of system is withour switching (Fig. 4id)). In simulation, we
applied an external load disturbance d(f) = 0,5 Nam at ¢ 2> 1(F.
From Fig. 4ib), we can sce that at 1= 10° the switching gain
increases (o overcome on this disturbance and then starts to
decreases again.

7  Conclusion

In this paper, a new method for designing dynamic sliding
mode controller based on variable structure control technigue is
proposed for nonlinear systems. In the proposed method, use of an
upper bound for unceriainty is not necessary for designing con-
troller (sce remark &) but, if it is used the performance of the con-
troller will be better. The proposed method also preserves all the
main properiies of SMC such as invariance and simplicity in
implementation. The proposed method is applicd o position con-
trol of induction servomotors. Simulation results show the effec-
tiveness of this method. E
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