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Abstract: A general method is proposed to construct fuzzy tests for testing statistical hypotheses about an unknown
fuzzy parameter, when the data available are observations of a fuzzy random variable. The proposed method to
construct such tests is essentially based on the one-to-one correspondence between the acceptance region of any level
« test and the 1 — « level confidence interval for the same parameter. By using this equivalency in the case of fuzzy
environment, we construct the fuzzy test showing the degree of acceptability of the null and alternative hypotheses of
interest. A numerical example in the field of lifetime study is given to clarify the theoretical results.
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1 INTRODUCTION AND BACKGROUND

In the classical theory of parametric statistical inference
there is a one-to-one relationship between a subset of the pa-
rameter space for which the null hypothesis is accepted and
the structure of the confidence set for the same parameter.
Namely, the level a acceptance region for a statistical test
about the parameter of interest is equivalent to a certain con-
fidence set for that parameter on the confidence level 1 — «
[1].

For instance, consider the problem of testing hypothe-
sis Ho(6p) : 60 = 6. Let A(6p) denote the level a ac-
ceptance region of a test for testing such a hypothesis. If

S(x) = {0 :x € A(F)}, then

feSx) < xe€ A6,

and hence

Py{eSX)}>1—a, for all 4. (D)
Thus, any family of level a acceptance regions, leads to a
family of confidence sets at confidence level 1 — a. Con-
versely, given any class of confidence sets S(x) satisfying (1),
let A() = {x : 6 € S(x)}. Then, the sets A(fy) are level «
acceptance regions for testing the hypothesis Ho(6p) : 8 = 6o.

The same arguments can be applied if the set A(fy) is the
acceptance region for the hypotheses Ho(6p) : 8 < 6 or
HO(HO) 10 Z 90.

So, a confidence set can be viewed as a rule, which ex-
hibits the values for which the hypothesis is completely ac-
cepted, i.e. {6 : 6 € S(x)} (or {0 : Isx(0) = 1}, where,
I4(+) stands for the indicator function of a set A) and those
for which it is completely rejected, i.e. {6 : 8 & S(x)} (or
{0 : 1—1I5(x)(6) = 1}). Therefore, we can summarize the test
function for testing the hypothesis Ho(6p) : § = 6, against
some H; as

(x) = Is(x) (6o) 1 — Igx(6o)
v Accept Ho(6p)  Reject Ho(o) |

The above test function is just an equivalent case of the gen-
eral rule stating that the null hypothesis should be rejected
if the confidence interval does not contain the hypothesized
value of the parameter and should not be rejected if the inter-
val contains the hypothesized value.

Example 1.1 Let X,,...,X,, be i.id. from the normal dis-
tribution N(6,1) with an unknown mean 0. The usual two-
sided 1 — « confidence interval for 8 is of the form S(X) =
[X — ﬁzl_%,X + %21_%], where z, is the a—quintile
of the standard normal distribution, i.e. ®(z,) = a. Assume
that in a random sample of size n = 25, x = 0.75 is observed
and we want to test Hy : 0 = 0.5 against Hy : 6 # 0.5 at level
0.05. Since S(x) = [0.358, 1.142], therefore, the test function
is obtained as

x) = 110.358,1.1421(0-5) ' 1 — I[.358,1.142](0.5)
v | Accept Hy(0.5)"  Reject Hy(0.5)

1 0
N {Accept Ho(0.5)" Reject Hg(0.5) } '

Concerning the above discussion, the main propose of this
study is to investigate such relationship between the meth-
ods of testing statistical hypotheses and confidence intervals
in fuzzy environment. It should be mentioned that, over the
last decades, the two topics of testing hypotheses in fuzzy
environment and confidence intervals with fuzzy information
have been considered independently by some authors. Let us
briefly review some works on these topics.

Grzegorzewski [2, 3] suggested some fuzzy tests for test-
ing statistical hypotheses with vague data in parametric and
non-parametric cases. Montenegro et al. [4, 5], using a gen-
eralized metric for fuzzy numbers, proposed a method to test
about the fuzzy mean of a fuzzy random variable (FRV). Gil et
al. [6] and Gonzdlez-Rodriguez [7] introduced a bootstrap ap-
proach to the one-sample and multi-sample test of means for
imprecisely valued sample data. Wu [8] investigated a pro-
cedure to accept or reject statistical hypotheses about a fuzzy
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parameter by introducing the concepts of degrees of optimism
and pessimism, based on FRVs. Parchami et al. [9] stud-
ied a fuzzy version of some process capability indices when
specification limits are fuzzy rather than precise, and obtained
fuzzy confidence intervals for such indices. Najafi et al. [10]
introduced a likelihood ratio procedure to test statistical hy-
potheses for fuzzy data. Arefi and Taheri [11] developed an
approach to test statistical hypotheses upon fuzzy test statistic
where for rejecting or accepting the null hypothesis an evi-
dential point of view was proposed. Wu [12] and Chachi and
Taheri [13] proposed some approaches to construct fuzzy con-
fidence intervals for the unknown fuzzy mean of a FRV. Viertl
[14] investigated some methods to construct confidence inter-
vals and statistical tests for fuzzy data.

It is noticeable that, the common approaches to the prob-
lem of testing hypothesis in fuzzy environment are done in-
dependently from the problem of interval estimation. The ex-
ception is the work by Grzegorzewski [2], in which, using
the one-to-one correspondence between confidence intervals
and testing statistical hypotheses, he proposed a fuzzy test for
testing classical hypotheses about a crisp parameter. His work
was relied on a fuzzy random sample as a fuzzy perception of
the related crisp random sample.

In this paper, the problem of testing hypothesis about a
fuzzy parameter is investigated based on a fuzzy confidence
interval for the parameter of interest using fuzzy random sam-
ple. To do this, we determine the degree of membership by
which the fuzzy parameter is contained in the fuzzy confi-
dence interval. Then, the related hypothesis is accepted with
the same degree of certainty. In such a way, the obtained test,
contrary to the classical crisp test, does not lead to a binary
decision, i.e. to accept or reject the null hypothesis, but to a
fuzzy decision.

To provide the suitable procedure, the rest of this paper is
organized as follows: in the next section, some basic concepts,
that will be used in the sequel, are recalled. Section 3 provides
the proposed approach to the problem of testing hypotheses
by using fuzzy confidence intervals. A numerical example is
provided in Section 4 to clarify the proposed method. In the
final section, we make some concluding remarks.

2 PRELIMINARIES

2.1 Fuzzy arithmetic

In this paper let the real line R be the universal set. A
fuzzy set A of R is defined by its membership function A :
R — [0,1]. For each h € (0,1], the h—level set of A is
defined by A, = {z € R: A(z) > h}, and A is the closure
of the set {z € R : A(z) > 0}. The fuzzy set A is called a
fuzzy number if each Apisa nonempty closed interval for all
h € (0,1]. The h-level set of each fuzzy number A is denoted
by the interval A, = [a},a}], where a} = inf{z € R :
A(z) > h} and a} = sup{z € R: A(z) > h}. Aiscalled a
fuzzy point (crisp number) with the value m if its membership
function is A(z) = Ity (x). We denote by F(R) the class of
all fuzzy numbers on R.

A special kind of fuzzy numbers are the triangular fuzzy
numbers denoted by A= (a,ai, a,)r, where a, a;, and a,
are the center, the left and right spreads of A, respectively.
The membership function and the h—level set of the triangular

fuzzy number A are as follows

- r—a+q a+a, —x
A) = ——llaa.0)(®) + ———T[a,a4a,)(2);
a; 479
Ah = [a‘i’w aﬁ] = [a‘ - (1 - h)alva + (1 - h)aT]a

A well-known ordering on fuzzy numbers, which will be
used in the definition of hypotheses about an unknown fuzzy
parameter, is as follows [8]

1. f :(0(7;])B, if al, = (#)bl, and a} = (#)b¥ for any
€ (0,1).
2. f 5(0(41])B, if a}, < (<)bl, and a < (<)by for any
€(0,1].
3. A = (»)B, ifd}, > (>)bl, and a! > (>)b} for any
h € (0,1].

2.2 Fuzzy random variables

Let (2, A,P) be a probability space, X' : Q@ — F(R)
be a fuzzy-valued function, X be a random variable having
distribution fg with parameter § = (61,...,6,) € OF, ie.
X ~ fp, and O C RP be the parameter space, where p > 1.
Throughout this paper, we assume that all random variables
have the same probability space (Q2, A, P).

The fuzzy-valued function X : Q@ — F(R) is called a
FRV if X} : @ — R and X} : © — R be two real valued
random variables for all h € (0, 1] (where Vw € Q; X (w), =
[Xh (@), X5 (@)D [15].

FRVs X and ) are called identically distributed if X ,ll and
Y} are identically distributed, and X and Y}* are identically
distributed, for all & € (0, 1], and they are called independent
if each random variable in the set { X}, X} : h € (0,1]} is
independent of each random variable in the set {Y}!, Y* : h €
(0,1} [12]

FRV X is said to have the same distribution as X with
fuzzy parameter § = (6q,...,0,) if for all b € (0,1],
Xt~ fo and X3' ~ fgu, where 6, = (8,,... ,%h),

Oy = (6%,,...,0%), and 6;, = [6%,.6% ). =1,...,p[12].
For example, X" is normally distributed with fuzzy pa-
rameters § and &2 if and only if X! ~ N(6!,07!) and

XY~ N(8Y,02v), forall h € (0,1].

Definition 2.1 ([12]) X = (X4, -+, X}) is said to be a fuzzy
random sample of size n from a normal distribution with fuzzy
parameters 6 and 52, if X;’s are independent and identically
distributed normal FRVs with fuzzy parameters 6 and &2 for

alli = 1,...,n. In this case, we write X1,---, X, id.d.
N(8,5%).
Corollary 2.1 ([12]) Let Xy.---, X, X" N(8,6%), then

1 1 i.1.d. 1 21 i.4.d.
Xip, Xy~ N(Oy,04) and X{5, -+, X3y '~

N6y, 03") for all h € (0,1]. In the case of 6* = Ij,2y,
ie. 62 is a crisp parameter, we also see that for all h €
0,1], X!, ... Xt "&"

KM N8, 02) and XY, XY, TRE
N (6%, 0%). In this case, we write X1, ..., X, bk N(8,0?).

3 CONSTRUCTING FUZZY TESTS BASED ON
FUZZY CONFIDENCE INTERVALS

Now, we use the relationship between confidence inter-
vals and testing hypotheses in fuzzy environment, when the
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parameter of interest, data available, and confidence intervals
are fuzzy and the statistical hypotheses are statements about
the fuzzy parameter. First, let us define the different types of
statistical hypotheses about a fuzzy parameter.

Definition 3.1 Ler © = F(0) be the class of all fuzzy num-

bers on the parameter space © and 0o € © be a known fuzzy
number. Then:

1. Any hypothesis of the form “H : 6 = 6y” is called a
simple hypothesis.

2. Any hypothesis of the form “H : 0 # 6y” is called a
two-sided hypothesis.

3. Any hypothesis of the form “H : 0 > 6y”
right one-sided hypothesis.

4. Any hypothesis of the form “H : 6§ < 6y” is called a left
one-sided hypothesis.

is called a

Example 3.1 Ler © = F(R) be the fuzzy parameter space
for the fuzzy mean of a normal FRV. Then:

1. The hypothesis “H : § = (1,1,2)¢” is a simple hypoth-
esis.

2. The hypothesis “H : 0 # (1,1,2)7" is a two-sided hy-
pothesis. This hypothesis is equivalent to “H : fecO, =
{6 €06, #h, 68 #3—2h; Yh € (0,1]}”, where,
[h,3—2h] is the h—level set of the triangular fuzzy num-
ber (1,1,2)7.

3. The hypothesis “H : 0 = (1,1,2)¢” is a right one-sided
hypothesis. This hypothesis is equivalent to “H : 6 e
@1—{0€@|91 > h, 6 >3 —2h; Yh € (0,1]}".

4. The hypothesis “H : 6 < (1,1,2)¢” is a left one-sided
hypothesis. This hypothesis is equivalent to “H : 6 e
@1—{0€@|91 < h, 6} <3 —2h; Yh e (0,1]}".

The main problem: Let X = (Xj,...,A,) denotes a
fuzzy sample from the population with the distribution f; in-

cluding the fuzzy parameter 6 €O. We wish to test the fol-
lowing hypotheses about the fuzzy parameter 6 at level a

(58

using fuzzy confidence intervals, where §; € © is a known
fuzzy number.

The proposed procedure: In order to derive the grades
of acceptability of the above null and alternative hypotheses,
we consider the following procedure. We explain this proce-
dure for the case when the data available are observations from
the normal distribution N (6, o2), with unknown fuzzy mean 6

and known crisp variance o2, i.e. X7, ..., X, B0 N(8,0?).
Note that the following procedure is general and a similar
approach can be developed for testing one-sided alternative
hypotheses with any kind of FRVs.
Step 1. First, we transform the original testing problem
(2) into a set of crisp testing problems using the h-levels of
the fuzzy parameter. In the other words, we test the following

crisp hypotheses

- z ®)

Hy (6}, )'91—01 V.S
Hy(65,,) : 65 = 65, V.S

05, # 0o, (3
Hy -e;f # bon, 4

at level a, based on the samples X!, = (X%, ..., X! ) and
X, = (X1, Xpp), respectively, where 0y = [0},0%] and
on = [6L,,6%,] (see Corollary 2.1).

Step 2. We obtain the 1 — «a confidence intervals for the
crisp parameters 6 and %, for any h € (0, 1], denoted by
[L1(X4), Ly(X4)] and [U; (X}), Us (X4)], respectively.

Step 3. We test the hypotheses (3) and (4),
based on the confidence intervals [L;(X},), Lo(X})] and
[U1(X}), Ua(X})], respectively. In fact, the test functions can
be shown in the following way

Accept Hy(6),) Reject Ho (6},

Loy (xp) U2 %)
Reject Ho(6Y,

Loy (xp).0>(x3)1 (05n) 1 —
Accept Ho(60Y,)

Tty zacxty Oh) 1= Tip, 6!
oty = 4 A0 2o Con) 1= 1oy, o)) Bon)
)

(65,

)

oxi) = {

Example 3.2 Let Xy,..., X, i N(é, a?), with known
crisp variance o®. Then, from Corollary 2.1, we have
Xt xL, RN ON@L6?) and XY, .. XY, TR
N(8%,0?). The known two-sided symmetric 1 — o confidence
intervals for parameters 0 and 0} can be easily derived as
follows, respectively,

vl _ pl
ST(th) — {92 . ‘M SZI—%}
ag
- 'X,g e, X+ — zl__}, )
I vn vn
s = {op [ o )
= _Xh \/ﬁzlff,Xh + \/—21:|7 (6)

where, X} =n~! > X, fori=1,u.
So, the test functions for testing hypotheses (3) and (4) are
obtained, respectively, as

oy = { A5 Oon) 1= Isicx) (o)
h Accept Hy(6),)’ Reject Hy(6,)

IST X (0 ) IST X" ( )
P = § b
ccept Ho(04,)’ R€J€Ct Ho(65,)

Step 4. Now, we aggregate the results in Step 3, in order
to construct a fuzzy test. To do this, first, the values of h for
which the null hypotheses (3) and (4) are accepted or rejected,
need to be categorized. For simplicity, we utilize Fig. 1 to
depict those values of A in their categories. To construct this
plot, by beginning from 0 to 1, we put together each confi-
dence interval in (5) and (6) in such a way that every confi-
dence intervals receive h as its height.

Now, by considering the membership function of the fuzzy
parameter Ay and comparing it with the bounds obtained from
ordinary confidence intervals (see Fig. 1), we can determine
the values of h for which the null hypotheses in (3) and (4) are
accepted or rejected.

To do this, for the fuzzy parameter 6, we need to deter-
mine the degree of acceptability of the hypothesis HO(GO) :
6= 00, which will be described in the next step.
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Step 5. In this step, we employ the procedure introduced
by Chachi and Taheri [13] to construct a fuzzy confidence in-

terval for fuzzy parameter 6. Upon this procedure we obtain
the fuzzy set Cr = {(6,Cr(0)) : 8 € F(O)}, as a fuzzy
confidence interval for the fuzzy parameter 6.

The degree of membership of 6 in the two-sided fuzzy
confidence interval C'y is defined as Cp(f) = where

W=wW'4+Ww*, §=58"+ 5" and

Kéa = {h&ﬁe {XL_%ZI—%,XIQ-F%,Q_%]}

h:og<x,g__zla}

W
wW+S>

)

n
Cf;é;a = <Sh:0F <X} \/_21_%}
Ot = dhif > X+ Tz e
2;60;c \/ﬁ 2

u U o u
S = /u-g- |:Xh — ﬁm,% - 0h:| dh
u VU g
+. [ b (Xh § ﬁ)] a
wl = / [eg— (X,Q— " zl_gﬂ dh
” Vi
. B
+/Kl [Xh+ \/_zl__ Gh} dh
20 .
= %2175,6 (Ké;a)’
W = / [g— <Xﬁ—%zl_g>] dh

where, £(A) is the Lebesgue measure of set A (see Fig. 2)
[13].

Step 6. Finally, we use the result in Step 5 to define the
fuzzy test function for testing hypotheses (2).
Definition 3.2 The function ¢(X) : F™"(R) — F{Accept
Hy, Reject Hy} is called a fuzzy test for testing the hypothesis
Hy(00) : 0 = 6o versus Hy(6p) : 6 # 0o, at level o, if

5(X) = Cr(6o) 1 — Cr(6y)
Pl Accept Ho(éo) " Reject Ho(éo) .

— X
--  Conf. Bounds

X—V";zl,g )7(+7”;217§

Y
Xy — Zmo1g

XU+ O
Wk X() +ﬁ21,%

Fig. 1: The class of two-sided (1 — ) confidence intervals in Step 4

X
== Conf. Bounds
T b

h

Is(}” "

-\vtz,,,_u_.

1
Shi

—=

1 T, Xl4 25 —_ XU+ 22 o
Xi— oo Xo+ FHag Xy \/’41” X+ ma-g

Fig. 2: The hypothesis Ho(fo) : 6 = fq is partially accepted

Remark 3.1 7 is easy to see that the fuzzy test in Definition
3.2, contrary to the classical crisp test, does not lead to a
binary decision, i.e. to accept or to reject the null hypoth-
esis, but to a fuzzy decision. However, we may also get the
situation of binary decision for vague data and imprecise pa-
rameter. For example, suppose we want to test a hypothesis
about the fuzzy parameter 6o as shown in Fig. 3. It is clear
that for each h € [0,1), 8., € Sr(X}) and 6%, € Sr(X}).
Therefore, we should accept the crisp null hypotheses (3) and
(4) for each h € [0,1), so it is reasonable that the null hy-
pothesis Hy(6y) : 6 = 0 should be completely accepted. On
the other hand, by using the method in Step 5, we also get
C’T(OO) = 1. Similarly, for testing the fuzzy parameter 0y as
shown in Fig. 4, since for each h € [0,1], 65, & Sr(X,)
and 6%, & St(X},), we reject the crisp null hypotheses (3)
and (4) for each h € [0,1). Therefore, the null hypothesis
Hy (00) 6 = by should be completely rejected. By the way,
by using the method in Step 5, we also obtain Cr(6y) = 0.
But, for arbitrary 8y € F(O), the relations 0}, € St(X})
and 0%, € Sr(X}) may be satisfied for some values of
h € [0,1], so it is reasonable that 8y belongs to Cr partially,
ie. 0 < Cr(6) < 1 (see Fig. 2).

4 A NUMERICAL EXAMPLE IN LIFETIME
TESTING

The following practical example illustrates the application
of the study above by means of a lifetime data set.

Example 4.1 (See also [8, 13]) The marketing department
for a tire and rubber company wants to estimate the average
life of a tire that the company recently developed. Only 24
new tires were tested because the tests are destructive and take
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h

0 — X

0 -== Conf. Bounds

14 Aoom, S )
ST AN o

u o vy o .,
X§ = ok X§ + VoK

Fig. 3: The hypothesis Ho(fo) : § = ¢ is completely accepted

h

~ — X
[ -- Conf. Bounds
i - 0

B
"

Z)_a

7

|

vl _ o . vl o u_ o, u
Xo— JrA-% Xo+ VrA-% X5 Vnrl-% Xg+

Fig. 4: The hypothesis Ho(fo) : 6 = o is completely rejected

considerable time to complete. Six cars, all the same model
and brand, were used to test the tires. Since, under some un-
expected situations, we cannot measure the tire life precisely.
We can just obtain the tire life around a number. Therefore the
tire life numbers are taken to be triangular fuzzy numbers as
in Table i. It is assumed that the data are observations from
normally distributed FRVs with variance 747000 [8].

Suppose that the company wants to investigate that the
average life of the tires the company recently developed ex-
ceeds the well-known average tire life of a competitive brand,
which is known to be around 32000 miles with triangular fuzzy
number 6y = (32000,2000,2000)7. So, we wish to test the
following hypotheses

Hy : 6 = (32000,2000, 2000) 7
H; : 6 = (32000, 2000, 2000)

Using the procedure introduced in Section 3 and at level o =

TABLE I: TRIANGULAR FUZZY NUMBERS AS RECORDED DATA FOR TIRE
LIFETIME

33978, 712,911)7 (
33052,467,735)7  (
33418,612,490)7  (
33463, 368,668)7 (32466, 523, 746)
31624, 881,836)7 (33070,901,898)
33127,712,945)7  (33543,643,792) 1

(

(

(

(

(

(

( ) 32617,524,638) 1
( ) )
( ) )
( ) )
T z
(33224,537,684)r (30881, 554,564)1
( ) )
( ) )
( ) )
( ) )
( ) )

32611,891, 886)7
32455, 478, 579) 7

32597,412,589)7 (31565, 378,672)7
34036, 613, 735) 7
32584, 945, 958) 7
32290, 779, 774) 7
33844, 784, 605) 7

34053, 845, 823) 7
31838,893,901) 7
32800, 866, 645)
34157,693,817)7

32.59678 0
N 'k; ------------------------------------

0.5241

%103

0 31 3 34

31.92978 4 0.667h  33.34178 — 0.745h

Fig. 5: The membership function of fuzzy numbers in Example 4.1

0.05, for any h € (0,1] we have

X = (32887, 667, 745)7,

fon = [30000 + 2000A, 32000 — 2000A],

H} - 6 = 30000+ 2000k v.s H! : 6 > 30000+ 2000%,
HY : 6% = 32000 — 2000h vs H: 6% > 32000 — 2000

The right one-sided 0.95 confidence intervals for parame-
ters 6!, and 6% are [31929.78 + 667h, 00) and [33341.78 —
745h, 00), respectively. The membership functions of the fuzzy
parameter 8y, fuzzy mean X, and confidence bounds (ob-
tained from confidence intervals) are shown in Fig. 5.

Based on the proposed procedure, we have (for more de-
tails see [13])

l _ l — —
K%m_m, C%%_{Qm S = 1405.17,
Ky o5 =10,0.524), C¥ = (0.524,1], W =172.61.

Therefore, at level a = 0.05, the hypothesis Hy : 6 =
(32000, 2000, 2000) 1 is accepted against the hypothesis Hy :

6 > (32000, 2000, 2000) 7 with degree of acceptability
CRr(6y) = 0.109, and thus the fuzzy test function is

- 0.109 0.891
() = _ 081
Accept Ho(6o) Reject Hoy(6o)

S CONCLUSION

In the present study, we introduced a novel approach to
the problem of testing hypotheses for fuzzy parameter by in-
troducing and applying fuzzy confidence intervals. In this ap-
proach the available data are assumed to be the observations
of FRVs. We used the degree of membership of hypothesized
fuzzy parameter in the fuzzy confidence interval to make in-
ference about the hypotheses of interest.

Contrary to the classical approach, our fuzzy test leads not
to a binary decision: to reject or to accept the null hypothesis,
but to a fuzzy decision showing the grades of acceptability of
the null and the alternative hypotheses which is more flexible
than the traditional significance tests. The proposed fuzzy test
is a natural generalization of the traditional test, in the sense
that if the data and the parameter of interest are precise, then
we get a classical statistical test with a binary decision.
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