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Abstract

An approach to test the crisp statistical hypotheses upon the fuzzy test statistic is de-
veloped. The proposed approach is investigated for two cases: the case without nuisance
parameter, and the case with a nuisance parameter. For rejecting or accepting the null
hypothesis of interest, an evidential point of view is proposed, based on a concept called
degree of consistency of observations with the hypothesis. The approach is applied to test
the parameters of the normal, Bernoulli, Poisson, and exponential distributions, as well as
to test the difference of means and the ratio of variances of two normal distributions.

Keywords: Evidential inference; Fuzzy test statistic; Degree of consistency (DC); Degree
of inconsistency (DI); Testing hypothesis

1 Introduction

In classical statistics as well as in traditional probability all parameters of the underlying model,
possible observations, and decision rules, should be well defined. Very often, such assumptions
appear too rigid for real problems. To relax this rigidity, fuzzy methods are incorporated into
probability and statistics. This paper regards the problem of testing statistical hypotheses using
a fuzzy-based approach.

The problem of testing hypotheses in fuzzy environment has been studied by some authors.
Here, there is a brief review of literatures in this topic. Casals and Gil (1989), Son et al. (1992),
Taheri and Behboodian (1999), and Torabi et al. (2006) considered the Neyman-Pearson type
testing hypotheses when the available data and/or the hypotheses are fuzzy rather than crisp.
Arnold (1996) proposed the fuzzification of usual statistical hypotheses and considered the hy-
potheses test under fuzzy constraints on the type I and IT errors. Korner (2000) presented an
asymptotic test for expectation of random fuzzy variables. Montenegro et al. (2001) consid-
ered some two-sample hypothesis tests for means concerning a fuzzy random variable in two
populations. Taheri and Behboodian (2001, 2006), using a Bayesian approach, considered and
analyzed the problem of testing fuzzy hypotheses, with crisp and also with fuzzy data, on the
basis of a Bayesian approach. Kahraman et al. (2004) present some algorithms for testing
fuzzy parametric and nonparametric test. Filzmoser and Viertl (2004), and Parchami et al.
(2010,2011) investigated some p-value-based approach to the problem of testing hypothesis in
the fuzzy environments. Wu (2007) investigated a class of fuzzy statistical decision process in
which testing hypothesis can be formulated in terms of interval-valued statistics. Torabi and
Behboodian (2007) studied the likelihood ratio method for testing fuzzy hypotheses, and Najafi
et al. (2010) investigated such method for testing crisp hypotheses based on fuzzy data. Niwit-
pong et al. (2008) investigated a method of testing hypotheses with interval data. Taheri and
Arefi (2009) studied a new approach for testing fuzzy hypotheses based on fuzzy test statistic.
A bootstrap approach for testing fuzzy hypotheses based on fuzzy data is introduced by Akbari
and Rezaei (2010). Recently, Arefi and Taheri (2011) introduced a procedure to test the fuzzy
hypotheses based on a fuzzy test statistic when the available data are fuzzy. For more studies
about fuzzy statistics and non-precise (fuzzy) data see Taheri (2003) and Viertl (1996, 2008).
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In this paper, we extend, and in some sense we modify, the method proposed by Buckley
(2004) for testing statistical hypotheses. To do this, we put ourselves in the framework of
the pivotal approach to construct a fuzzy test statistic. In this context, we provide a triplet
procedure for testing hypotheses of interest.

It should be mentioned that, concerning the works by Buckley (2004), Taheri and Arefi
(2009), and Arefi and Taheri (2011), the present work has some advantages as follows:

I) The Buckley’s method is improved and simplified by removing the fuzzy critical region from
the procedure of testing, to achieve a more simply procedure.

IT) The cases of existence the nuisance parameter are considered in the present work.

IIT) The method of evaluating the hypotheses of interest are performed based on the evidential
statistics (see Royall (1997,2000)), by introducing a new concept called degree of consis-
tency (DC).

The paper is organized as follows: In Section 2, we recall some preliminary concepts about
fuzzy numbers and interval arithmetic. In Section 3, a general method for testing parametric
hypotheses based on fuzzy test statistic, when the underlying model has no any nuisance param-
eter, is investigated. In this section, we apply the proposed method to test the parameter of a
normal distribution (mean and variance), the parameter of a Bernoulli distribution, the mean of
a Poisson distribution, the mean of an exponential distribution, as well as to test the difference
of means of two normal distributions (known variances), and finally to test the ratio of variances
of two normal distributions. In Section 4, we focus on the case in which there exists a nuisance
parameter in the underlying model. In this section, we apply the proposed method, to test the
mean of a normal distribution with unknown variance and also to test the difference between
means of two normal distributions with unknown (but equal) variances. Finally, in Section 5 a
brief conclusion is provided.

2 Preliminary Concepts

In this section, we provide some preliminary concepts and some notations about fuzzy numbers
and interval arithmetic. For details, the reader is referred to standard texts, e.g. Klir and Yuan
(1995) and Buckley (2005).

We place a ”tilde” over a symbol to denote a fuzzy set. So, A: X > [0, 1] represents the
membership function of the fuzzy set A. An a-cut of A, written Ao] = A, is defined as

Ala] = {z]A(z) > a}, for 0 < o < 1. A fuzzy number N is a fuzzy subset of the real numbers
satisfying:

i) N(z) =1 for some z,
ii) N[a] is a closed bounded interval for 0 < a < 1.
A triangular fuzzy number T, denoted by T = (a1/a2/a3), is defined as

t—a g <t < ay,

az—aq
T(t) = a4y <t <ag,
0 otherwise.

Let I = [a,b] and J = [¢,d] be two closed intervals. Then, based on the interval arithmetic, we
have
I+J=a+cb+d,
I-J=[a—db—],
I.J =1, P1], a1 =min{ac,ad,be,bd}, (1 = max{ac,ad,be,bd},

aabd a abd
I+J:[a27/62]7 CYQ—IIIIH{ ,d’ ’d} 62 ma’X{E 0

where zero does not belong to J = [¢, d] in the last case.



3 Testing hypotheses based on fuzzy test statistic (one param-
eter case)

3.1 Statement of the method

Let X1, X9, ..., X, be a random sample of size n, from a probability density function (or proba-
bility mass function) f(x;0), with observed values x1, z9, ..., T, where the parameter of interest
# is unknown. We want to test the following hypotheses

{Hg:@z@o, "

Hy: 60> 0,

Let 6* = u(x1,x2, ..., z,) be a point estimation for the parameter f. Suppose that the function
Q(0,6%) of parameter # and 6* is a pivotal quantity. The usual decision rule for testing the
above hypotheses, at the significance level 3, is

QU > Ql_g = RHU (Reject Hg),
Qo < Qi—g = AH, (Accept Hy),

where, Qg is the crisp test statistic (under Hp), and Q;_g is the (1 — §)-quantile of the Q.

Now, we state a modification of Buckley’s approach for testing the above hypotheses in which
we emphasize on the role of the pivotal quantity (see also, Falsafain and Taheri (2011) for an
improved method for the fuzzy estimation of parameters on Buckley’s approach).

i) First, we find a confidence interval for €, at the confidence level 1 — «, based on pivotal
quantity Q(0,6%), for all 0.01 < « < 1. This confidence interval is considered to be the
a-cuts of a triangular shaped fuzzy number, X [a] (so called as the fuzzy estimation of
parameter of interest).

ii) By substituting the bounds of confidence interval X [a] instead of 6* in the crisp test statistic
(Qo) and using the interval arithmetic, we obtain the a-cuts of the so-called fuzzy test
statistic Z.

Now, we introduce an approach for evaluating the statistical hypotheses (1), based on fuzzy test
statistic and the following triplet procedure (see Fig. 1)

a) We calculate the total area under the graph of A , denoted by Ar.

b) We obtain the area under the graph of 7, but to the right of the vertical line through Q_g,
denoted by Ag.

c¢) Finally, the hypotheses of interest are evaluated by two indices: degree of consistency
DC = f‘—g that measure the consistency of data with the hypothesis Hy, and degree
of inconsistency DI =1 — ‘3—’; =1 — DC that measure the inconsistency of data with the

hypothesis Hy (the consistency of data with the hypothesis Hy).

Figure 1. The fuzzy test statistic and Ag in testing hypotheses (1).
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Remark 1 We can apply the above procedure for testing Hy : 0 = 0y versus Hy : 0 < 0y (see
Fig. 2), and for testing Hy : 6 = 0y versus Hy : 0 # 0y (see Fig. 3) in a similar way.
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Figure 2. Hy : 0 < 6. Figure 3. Hy : 0 # 6y (Agr = Ag, + AR,).

3.2 Testing hypothesis for the mean of a normal distribution with known
variance

Based on a random sample of size n from N (6, 0?) (62 known), we want to test the hypotheses

1), at the significance level 5. Under Hy, the crisp test statistic Zy = X0 i distributed by the
o/v/n
z—0g

standard normal distribution, with the observed value zp = ~ T The usual confidence interval

for 6, at the confidence level 1 — «, is

ol =T — 21—a/o—F—=T + Zi—aq/2o—F—| -

1—a/2 \/ﬁ’ 1—a/2 \/’E

By substituting the bounds of the confidence interval instead of Z in zp, and using the interval
arithmetic, the a-cuts of the fuzzy test statistic are obtained as

~ T —21_q20/Vn—00 T+ 21_qp0/\/n—0
Z[a] = - U//Z\//ﬁ 0, - U//Z\//ﬁ 0] = [ZO_Zl—a/ZaZO+Zl—a/2]'

Now, using the above fuzzy test statistic, we can apply the triplet procedure for evaluating the
hypotheses (1).

Example 1 Suppose that, based on a random sample of size n = 100 from N(0,0% = 4), we
obtain T = 1.08. Now, we want to test the following statistical hypotheses, at the significance
level B = 0.05,
Hg 10 = 1,
{H1 10> 1.

Here, zy = 0.40, so that we can calculate Ag and At in the following way

ZO+2’17Q/2 2.975
Ap = / & (x)de = / & (x)dz = 0.1023,
2 1.645

ZO+Z1,Q/2 2975

Ar = 2/ O(z)dr =2 O (z)dr = 1.5958,
20 0.400

where ®(z) = 2(1 — Fz(x — 20)) and Fyz is CDF of the standard normal distribution, (we use

MATLAB software for calculations). Hence, the degree of consistency of data with the hypothesis

Hy is equal to DC = 4% = 0.0641 (see Fig. 4).
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Figure 4. The fuzzy test statistic and Ar in Example 1.

3.3 Testing hypothesis for variance of a normal distribution

Suppose that, we have taken a random sample of size n from N(u,0), and we want to test
the hypotheses (1), at the significance level 8. The pivotal quantity based on the estimator

—1)82 . o (=S . e

S§? = Ly (z —2)? is %. Under Hy, the crisp test statistic % is distributed
_ * _ 2 .

according to y2_, with Qo = " gi)e = gi)s as its observed value. The related confidence

interval for @, at the confidence level 1 — «, is

Tlo] = l (n—1)0* (n— 1)9*] .

2 12
Xn—1,1—a/2 Xn-1,a/2

Substituting the bounds of X[a] instead of #* in Qp, and using the interval arithmetic, the
a-cuts of the fuzzy test statistic are calculated as

(n—1)Qo (n— 1)Q0] .

2 )
Xn—-11-a/2 Xn—1,a/2

to

Now, based on the above fuzzy test statistic, we can evaluate the hypotheses (1) by the proposed
triplet procedure.

Example 2 Suppose that, based on a random sample of size n =75 from N(u,0), we observe
52 = 2.2635. We want to test the following hypotheses, at the significance level B = 0.05,

{H0:9:2,
Hi:0>2.

In this case, we can calculate Ar and Ar in the following way (Qo = 83.7495)

{n=1)Qq 133.5172
Ap = [ *n-ta/2 ®*(z)dz = / ®*(z)dr = 5.2559,
X2 118 95.0812
(n-1)Qq (n-1)Qg
Ap = / LN B(z)dw + [0 e B (x)da = 9.7842 + 12.9166 = 22.7008,
X_1,0.995 Xn_1,0.5

where ®*(z) = 2(1 — FX(%)), O(z) = 2FX(%) and Fx is the CDF of Chi-square
distribution with n — 1 degree of freedom. Hence, the degree of consistency of data with the
hypothesis Hy is equal to DC = 3—? = 0.2315, (also, the degree of inconsistency is DI =

1—DC =0.7685) (see Fig. 5).
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Figure 5. The fuzzy test statistic and Ar in Example 2.

3.4 Testing hypothesis for the proportion of a Bernoulli distribution

Assume that, based on a random sample of size n from Bernoulli(f), we want to test the
hypotheses (1). The usual point estimation for 6 is 6 = Z. Under Hy, for large n, the crisp test
X 6o

00(1—6’0)/1’1,
the confidence level 1 — a, is

Xla] = {é— 2 app\ (L — 0) /1.8 + 21 ayp/0(1 — B)/n] .

Substituting the bounds of X[a] instead of 0 in 7z = %, and using the interval arith-
o(l—=bo)/n

metic, we derive the a-cuts of the fuzzy test statistic as

statistic is distributed approximately as N(0,1). The confidence interval for 6, at

)
== (20 — 2] _a/o\| _
Bl —00)/n | ° "\ 6p(1— )

Now, we can test the hypotheses (1) by the proposed triplet procedure.

Example 3 Suppose that, based on a random sample of size n = 100 from Bernoulli(f), we
obtain @ =T = 0.54. We want to test the following hypotheses, at the significance level § = 0.05,

{H0:0:0.5,
Hy:0>0.5.

Here, Ar and At are obtained as (zp = 0.80)

/z0+z1am/% o(a)d /3.368
z)dr =
1

Ap = ®(2)dz = 0.2202,
21— .645
[ 8(1-9)
20+21—-a/2\ (128 3.368
Ap = 2/ FOEV T 6y = 2 O (z)da = 1.5906,
20 0.800

where ®(z) = 2(1— Fz((z — 20) %)) and Fz is the CDF of standard normal distribution.

Since 3—? = 0.1384, the degree of consistency of data with Hy is DC = 0.1384 (see Fig. 6).
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Figure 6. The fuzzy test statistic and Ar in Example 3.

3.5 Testing hypothesis for mean of a Poisson distribution

Assume that, based on a random sample of size n from Poisson(f), we want to test the hy-

potheses (1). The usual point estimation for 6 is § = Z. Under Hy, for sufficiently large n, the
X —6o

\Vbo/n
equation (T — 6)? = %z%_ o/2 0 terms of 0, the Score confidence interval (see Brown et al. 2003)
for 6, at the confidence level 1 — «, is obtained as

S =, Al-q/2 _ ., Pl—a/2 —
Xa] = {x+ ™ (zl_a/g—,/ zi_ a/2+4nx) z+ ™ (z1 a/2+,/ T a/2+4nx)].

Substituting the bounds of X[a] instead of 0 in 7z = \%9—/0, and using the interval arithmetic,
o/n

the a-cuts of the fuzzy test statistic are obtained as follows, by which we can test the hypotheses

of interest
Zl—a/2 B A 21—a/2 B -
+2\/_ (zl_a/Q—,/zl_a/2+ nx) z0+2m (21—a/2+«/21_a/2+ nm)

Example 4 Suppose that, we have taken a random sample of size n = 100 from Poisson(6),
and we obtain T = 2.03, Now, we want to test the following hypotheses, at the significance level

B = 0.05,
{H0:9:2,
Hi:0>2.

In this case, the upper bound of the related Z[a] is (zo = 0.2121)

Z1—a/2 — Z1—-a/2
x:z0+2\/_ (z1 o2 + /72 /2+4m)_02121+ 20\6}5 (z1 o2 + /72 /2+812).

But, we can not analytically solve the above equation, in terms of . Using a numerical method,
e.g. the trapezoidal rule (Finney and Thomas 1994), we obtain Ap = 1.6097 and Ar = 0.0919.
Hence, the degree of consistency of data with the hypothesis Hy is DC = ﬂ = 0.0571, and the
degree of inconsistency is DI = 0.9429 (see Fig. 7).

crisp test statistic Zy = is distributed approximately as N (0, 1). By solving the quadratic

Zla] =




& ~
o |
i
T >
2 0 Z1-g 4

Figure 7. The fuzzy test statistic and Ar in Example 4.

3.6 Testing hypothesis for mean of an exponential distribution

Suppose that, based on a random sample of size n from Exp(#) with the following density

1
f(x;0) = 56_:”/9, >0, 6>0,
we want to test the hypotheses (1). The usual point estimation for 6 is * = 7. Under Hy, the

crisp test statistic % is distributed as x3,. The confidence interval for @, at the confidence

level 1 — «, is

X[o] =

2no* 2no* ]
2 ) :
Xon,1-a/2 Xon,a/2

Substituting the bounds of X[a] instead of #* in Qo = %, and using the interval arithmetic,
the a-cuts of the fuzzy test statistic are calculated as

2nQy  2nQ ]

2 ' 2
Xon,—a/2 Xon,a/2

Zla] = 2n4;([;[a] _

Now, based on the above fuzzy test statistic, we can evaluate the hypotheses of interest by the
proposed triplet procedure.

Example 5 Suppose that, based on a random sample of size n = 50 from Exp(0), we obtain
T = 2.33. We want to test the following hypotheses, at the significance level B = 0.05,
{Hg 10 = 2,
Hi:0>2.

Here, Qo = 116.5, so that we can calculate A and Ar in the following way

5 Qo 173.0346
Ap = /in,o.oos O (z)dr = / ®(x)dz = 9.0576,
X 1

Ini_g 24.3421
22nQQ 227'LQ
Ap = / 2005 §(g)dp + [ 20005 & (z)dz = 11.8697 + 15.0628 = 29.9385,
2nQq 2nQq
X%n,0.995 X%n,O.B

where ®(z) = 2(1—FX(@)), O*(x) = 2FX(2nf°), and Fx is the CDF of Chi-square distribu-
tion with 2n degree of freedom. Hence, the degree of consistency of data with the null hypothesis
is DC = % = 0.3025, and the degree of inconsistency of data with Hy is DI = 1—DC = 0.6975

(see Flig. 8:5.
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Figure 8. The fuzzy test statistic and Ar in Example 5.

3.7 Testing hypothesis for difference between means of two normal distribu-
tions with known variances

Let X1,..X,, and Y7,...,Y,, be two independent random samples of sizes n; and ny from
N(p1,0?) and N(uo,03), respectively (with o? and o2 known). Now, we want to test the
following hypotheses
{Ho t 1 — po = 0,
Hy oy — pg > 6.
The usual point estimation for 8 = u; — po is 0* =7 —y. Under Hg, the crisp test statistic is
distributed as

X-Y)-90
. €5 s

of | o3

ni " ng

The confidence interval for 8, at the confidence level 1 — «, is

~ N 02 02 . 02 02
X[Cl{]: {9 _zlfa/ZHn_i"‘n—z,o +Zla/2ﬂn—1+n—z} .

"% _ and using the interval arithmetic,
e

the a-cuts of the fuzzy test statistic are obtained as follows, by which we can evaluate the

hypotheses of interest

Substituting the bounds of X[a] instead of #* in zy =

- X[a] -0

Za] = L = [20 — 21-a/2,%0 + 217(1/2]-
94 %
ni no

Example 6 Suppose that based on two independent random samples from N(u1,0? = 9) and
N(ua, 02 = 4), we obtain the following results

Sample size Mean
np =121 T ="7.27
ng = 100 7 =4.76

Now, assume that we wish to test the following hypotheses, at the significance level 8 = 0.05,

{Hoful—lw:?,
Hy:pg —po > 2.

9



The Ar and Ar are obtained as follows (zy = 1.508)

ZO+217Q/2 4.084
AR::/) @Cﬂdx:i/ ®(x)dz = 0.6685,

21-8 1.645
20+21 /2 4.084
AT:2/ ®(z)dz = 2 ®(2)dz = 1.5958,
20 1.508

where ®(z) = 2(1 — Fz(z — 20)) and Fyz is the CDF of standard normal distribution. Hence,
the degree of consistency of data with Hy is DC = AR = 0.4189, and the degree of inconsistency
of data with Hy is DI =1 — DC = 0.5811 (see Fzg 9)
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Figure 9. The fuzzy test statistic and Ar in Example 6.

3.8 Testing hypothesis for Z—i of two normal distributions
2

Let X1, ..., X;,, and Y7, ..., ¥y, be two independent random samples from N (u11,0%) and N (u2,03),
respectively. Now, we want to test the following hypotheses
Hy: = =6y,

H1:

wqw|»~qw qu|»~qw

> 0.

1 nl( _7)2

w1 2im1 (%77 . Under Hy, the crisp test

- 1 ny
=T 2o Wi=Y)?

The usual point estimation for 8 = is 0" =

q|

VNN
@ | ®»
SIS YN

statistic is distributed as
S/} _ 3ot o
ST M

The related confidence interval for 6, at the confidence level 1 — q, is

X[CM] = [H*an—l,nl—l,a/% H*an—l,nl—l,l—a/Z]-

Substituting the bounds of X [a] instead of 6* in Qy = 3—9, and using the interval arithmetic, we
derive the a-cuts of the fuzzy test statistic as

7l = to Qo Qo

7 ' = [QUFnl—l,ng—l,a/QaQUFnl—l,nz—l,l—aﬂ]-
X|[a] na—1ni—1,1-a/2 Fno—1,n-1,0/2

Now, based on the above fuzzy test statistic, we can evaluate the hypotheses of interest by the
proposed triplet procedure.

10



Example 7 Assume that based on two independent random samples from N (u1,02) and N (p2,03),
we obtain the following results

Sample size Mean Variance
ny = 121 Z=6.19 52 = 89.47
ny = 101 7 = 5.07 53 =23.02
We want to test the following hypotheses, at the significance level 5 = 0.05,
o2
HO : U—% = 2,
0.2
H : (r_% > 2.

Here, Qo = 0.51 and so
QoFry; —1ny—1,1—a/2 = 0.51F120,100,0.995 = 0.8423 < 1.3685 = F100,120,0.95 = Fny—1,n,-1,1-5-

We obtain Ar = 0, which is indicated that the data are completely inconsistent with Hy (and
are completely consistent with Hy) (see Fig. 10).

F | 2

1.0

Ap =0
J ’_A_ -
74 T T T =
05 10 F100,120,0.95)

Figure 10. The fuzzy test statistic and Ag in Example 7.

4 Testing hypotheses based on fuzzy test statistic in models
with nuisance parameter

4.1 Statement of the method

Let X1, Xo,..., X;, be a random sample of size n, from a population with the probability density
function (or probability mass function) f(z;61,602), with observed values 1, 22, ..., Z,,, where 6;
is a unknown original parameter and 6- is a unknown nuisance parameter. Now, consider the
null hypothesis as follows

H() H 91 = 0{,

where, 0] is a known constant. Let 0: and > be the point estimations for 1 and 6s, respectively.
Suppose that the functions ()1 and ()2 are two pivotal quantities for parameters 6, and 6.

An approach to test the above hypotheses based on the fuzzy-based approach is introduced in
the following way:

i) First, we find the confidence intervals, at the confidence level 1—q, based on pivotal quantities
@1 and @9 for 81 and 6y with 0.01 < a < 1. These conﬁdencejntervals are considered to
be the a-cuts of two triangular shaped fuzzy numbers X and ¥.

11



ii) By substituting the bounds of the confidence intervals X[a] and [a] instead of 6; and 6,
respectively, in the crisp test statistic ()o and using the interval arithmetic, we obtain the
a-cuts of the so-called fuzzy test statistic Z.

Now, based on fuzzy test statistic, the statistical hypothesis Hj is evaluated by the following
triplet procedure.

a) We calculate the total area under the graph of Z, denoted by Ar.

b) For the alternative Hj : 1 > 07, we obtain the area under the graph of Z, but to the right of
the vertical line through @1_3, denoted by Agr. For the alternative H; : 6; < 07, we obtain
the area under the graph of Z, but to the left of the vertical line through @3, denoted by
Apg. For the alternative H; : 6, # 07, We obtain the area under the graph of Z, but to the
right of the vertical line through @Q;_g/; and to the left of the vertical line through Qg/2,
denoted by Ag..

c¢) Finally, the hypotheses of interest are evaluated by two indices: degree of consistency
DC = f‘—g that measure the consistency of data with the hypothesis Hy, and degree
of inconsistency DI =1 — ‘3—’; =1 — DC that measure the inconsistency of data with the

hypothesis Hy (the consistency of data with the hypothesis Hy).
4.2 Testing hypothesis for mean of a normal distribution with unknown vari-
ance

Suppose that, based on a random sample of size n from N(u,0?) (62 unknown), we want to test
the following hypotheses, at the significance level g

{Ho:uzuo,
Hy : p # po.

The usual point estimations for x and o2 are ji = T and 02 = 5% = ﬁ S (% — T)?, respec-

tively. The pivotal quantities for  and o? are Q = z\_/% and Qo = ("‘0712)52 Under Hy, the
crisp test statistic is distributed as o
X—po
~ln-1-
S/\/n

The confidence intervals for 1 and o2, at the confidence level 1 — o, are

o Xla] = [T - tn—1,1—a/2ﬁ@ + tn—1,1—a/2ﬁ ;

(n—1)s2 (‘nfl)s2

22
Xn—l,l—a/2 Xn—l,a/?

o2 Sa] =

By substituting the bounds of X[a] and X[a] instead of i = T and o2 = s2in ty = f/_—“\/%, and
using the interval arithmetic, the a-cuts of the fuzzy test statistic is obtained as

5 Xa] - Ho
Zlod = XL 111y — 1) Tt + 1))
VElal/n
. Xi—l,am . XfL—l,l—a/? .
where II; = \/ ——=7~= and Il = {/ —=+5*~. Now, we can employ the proposed triplet proce-

dure for testing the hypotheses of interest.

Example 8 Suppose that based on a random sample of size n = 101 from N(u,0?), we obtain
T = 3.94 and s> = 1.47. We want to test the following hypotheses, at the significance level

B = 0.10,
{H():/J,:4,
Hy:p>4.

12



In this case, we can’t solve the equation x = Tla(ty + tn,l’l,aﬂ) in terms of «, analytically
(here to = —0.4973). But, using the trapezoidal rule (Finney and Thomas 1994), we obtain
A7 =1.5492 and Ap = Ag, + Ar, = 0.0639+0.0272 = 0.0911. Hence, the degree of consistency
of data with Hy is DC = 3—? = 0.0588, and the degree of inconsistency of data with Hy is
DI =1—-DC =0.9412 (see Fig. 11).

~ A
Z 1,
AR1 A Ro
${100,0.05) o 1(100,0.95) 4

Figure 11. The fuzzy test statistic and Agr = AR, + AR, in Example 8.

4.3 Testing hypothesis for difference between means of two normal distribu-
tions with equal (but unknown) variances

Let X1, ..., X,,, and Y1, ..., Y;,, be two independent random samples from N (111, 02) and N (u2,0?),
respectively (where 111, po and o2 are unknown). We want to test the following hypotheses, at
the significance level
{Ho D p1 — p2 = 0o,
Hy :py — po > do.

The usual point estimations for 8, = pu; — pe and 0y = o? are 51 = Z — 7y and é\2 = 312, =
(n1—1)s2+(na—1)s2 . . " (X-Y)-0,
3> respectively. The pivotal quantities for 01 and 6y are Q1 = — and
e/ iy Ty

—-2)S2 . . e e qe
Q2 = Wf#)p, respectively. Under Hy, the crisp test statistic is distributed as

(X-Y) -

0
1
Sp\/ s

(=9

~ lny4ny—2-

3l

The related confidence interval for #; and 65, at the confidence level 1 — «, are as follows

6,: Xa] = [(f ~9) ~turtns21-a/25\ 75 T g0 @ =) F byins 21025\ 55 T 0y ] ;

& (n14+n2—2)s2  (n1+n2—2)s2
0y : Y[a] = [ 5 L = 2,
Xn1+n272,17a/2 Xn1+n272,a/2

By substituting the bounds of X[a] and $[o] instead of 6; and o2 in g = Agl%, and using
o /L

the interval arithmetic, the a-cuts of the fuzzy test statistic are obtained as

X[O[] - 50

o] (7 + 75)

ny

Z[a] = = [Hl (tO - tn1+n272,17a/2)a Iy (tO + tn1+n272,1704/2)]a

13



IX2 e o IX2 o 21ara .
where II; = % and Iy = % Finally, the hypotheses of interest could

be evaluated by the triplet procedure.

Example 9 Based on two independent random samples from N(ui,0%) and N(ua,02), the
following results are obtained

Sample size Mean Variance
ny = 81 T =2.84 s7 = 3.87
ny = 101 7 =0.17 53 =5.07

Suppose that, we want to test the following hypotheses, at the significance level 5 = 0.05,

{Hoim — p2 = 2.5,
Hl:,ul — g > 2.5-

Here, ty = 0.54, and using the trapezoidal rule (Finney and Thomas 1994), we obtain Ap =
1.6464 and Ar = 0.1895. Hence, the degree of consistency of data with Hy is DC = ﬁ—g = 0.1151,
and also, the degree of inconsistency of data with Hy is DI =1 — DC = 0.8849 (see Fig. 12).

“2

B
I T Ll

2 0 t(180,0.95) 4

Figure 12. The fuzzy test statistic and Ag in Example 9.

5 Conclusion

The problem of testing crisp statistical hypotheses was investigated, using a fuzzy-based ap-
proach. The proposed approach has some advantages regards to more simplicity (with respect
to some other approaches) and because of considering the case with nuisance parameter. An-
other performance of the introduced approach is that it proposed an evidential inference for
evaluating the hypotheses of interest. Contrary to the classical approach (in which the deci-
sion to accept or reject a null hypothesis depends just on the significance level), the proposed
procedure is based on two criteria: a significance level and a degree of consistency.

Further research may be concerned with extending the results to test the fuzzy hypotheses
based on fuzzy data. In addition, employing the proposed approach in a Bayesian framework
may be a suitable topic for more research.
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