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GRAPHICAL ABSTRACT

A new approach has been introduced for separation of oil-in-water emulsion by using ultrasound
standing wavefield. A neural networks model was used to simulate changes in the size of droplet
during treatment. Model outputs were then validated and generalization capability was evaluated.
For each network, the optimum values of isotropic spread were obtained by minimizing the root
mean square error and maximizing the corresponding coefficient. It was found that the predicted
values were in good agreements with experimental results. Also, increasing voice speed was
demonstrated to predict size of emulsion particles more efficiently and accurately.

Keywords Neural networks, o=w emulsion, RBF, separation, ultrasound

1. INTRODUCTION

The amount of oily wastewater produced by different
industries such as petrochemical, metallurgical, pharmaceu-
tical, and food have been increasing every year causing
environmental pollutions. Therefore, it is of necessary to
employ a high efficient method in order to demulsified the
mixture and to separate as much entrapped oil as possible.

Conventional technologies for breaking emulsion are
centrifuge, chemical[1] and gravitational.[2,3] But demulsifi-

cation of very stable emulsions formed in industries
containing fine droplets usually lead to achieve requiring
energy and time. So other methods were used for emulsion
separation such as thermal, electrical,[4,5] flotation and
membrane.[6,7] But most of these conventional methods
cannot efficiently remove micron or submicron sized oil
droplets.[8–12] Hempoonsert used thermal demulsification
of crude oil emulsion in water but this method could not
be a proper technique for all emulsions as its thermal degra-
dation effects and hard temperature control.[8] For chemical
demulsification, demulsifier agent and its fraction must be
known but it was depended on lots of parameters such as
oil phase and its concentration in emulsion. Centrifuge
separation was applied for small volume and as last step
in separation process due to high consumption energy.[9]

Received 29 January 2012; accepted 5 March 2012.
Address correspondence to M. T. Hamed Mosavian, Depart-

ment of Chemical Engineering, Faculty of Engineering, Ferdowsi
University of Mashhad, Mashhad, Iran. E-mail: hmosavian@
gmail.com or mosavian@um.ac.ir

Journal of Dispersion Science and Technology, 34:490–495, 2013

Copyright # Taylor & Francis Group, LLC

ISSN: 0193-2691 print=1532-2351 online

DOI: 10.1080/01932691.2012.681997

490

D
ow

nl
oa

de
d 

by
 [

M
. T

. H
am

ed
 M

os
av

ia
n]

 a
t 0

2:
04

 0
9 

A
pr

il 
20

13
 



Diaminger utilized membrane technology to break oil=
water dispersions with several hydrophobic membranes
and different modules, but separation efficiency was
strongly proven to membrane fouling and initial oil concen-
tration.[10] El-Kayar et al. developed an air flotation system
in which chemical agents were used for further demul-
sification but the maximum amount of oil they could be
removed was less than 50%.[11]

During the past few decades, the ability of low intensity
ultrasonic standing wavefields to separate small particles
from liquid suspensions has been widely used for different
papers.[13,14] But only a few works have been reported oil=
water emulsion separations.[15–17]

High intensity ultrasonic waves are usually used to pre-
pare stable emulsions[18,19] or to measure emulsion cream-
ing rate[20] but to author’s best knowledge no attempt has
been yet made to emulsion separation to its initial phases
using high intensity ultrasonic standing wavefields.

This work was aimed at to investigate the feasibility and
practicality of high intensity ultrasonic standing wavefield
for breaking oil-in-water emulsion and separating the
demulsified droplets. Another goal of this study was to
use neural networks model to simulate changes in the size
of droplets and check the effectiveness of the model and
its generalization capability.

2. EXPERIMENTAL

2.1. Sample Preparation

Oil=water emulsions was prepared by homogenizing 5%
sunflower oil in distilled water containing 2% Tween 80 as
emulsifier using a rotor stator homogenizer (T 25 digitalUltra-
Turrax, manufactured by IKA Laboratory) operating at
9000 rpm for 3 minute. The coarse emulsion was further
homogenized using a high intensity ultrasonic processor
(VCX 750 Sonics) at a frequently of 20kHz for 3 minutes at
themaximumamplitude available. A titaniumprobewith face
diameter of 19mm, which was immersed 1 cm below the sur-
face of sample was used for sonification. The temperature was
kept constant at 25�C throughout by circulating cold water
around the chamber. This procedure typically produced an
emulsionwith average droplet size ranging from 0.5 to 0.6mm.

2.2. Experimental Setup

The experiments were carried out in a rectangular open
head chamber as shown in Figure 1.

It was (a double-walled) jacketed water bath with a depth
of 9 cm. The ultrasound probe was screwed on one side of
the chamber with the sample vessel immersed in water at
different position relation to it. The distance between ultra-
sound source and reflector (left horizontal wall of chamber)
was 48.5 cm.

The sample vessel was plexy glass with a dimension of
6� 2� 2 cm. The sample cell with 40 cc of prepared emul-

sion was immersed into the chamber at different distances
from sound source. These positions were: 7k=4, 9k=4,
11k=4, 13k=4, 15k=4, 17k=4, 19k=4, 21k=4, and 23k=4 in
which k are wave length in pure water at 20�C. For every
point, samples were irradiated for the period of 15, 30 and
45 minutes with the frequency of 20 kHz and input power
(intensity) equal to 150w. During irradiation time, tempera-
ture was kept constant in 20�C.

2.3. Measurements

Every experiment was carried out with three replications
and results were averaged. At last, the experiments were
characterized in terms of Souter diameter (d32) of treated
emulsions using a Laser Particle Analyzer (Fritsch Analy-
sette 22, Germany). This device calculated d32 from
Lorenz-Mie model and Fraunhfer theory by relating scat-
tering and breaking of laser light to droplet diameter. Emul-
sion samples were shaken before particle size measuring to
have a uniform mixture of flocculated phase and water. The
results are reported in Table 1.

3. STRUCTURE OF NEURAL NETWORK AND
MODELING METHODS

3.1. Theory

The model proposed in this work is based on a radial
basis function (RBF) network. Since the late-1980s, RBF
networks have been a subject of study and have been
employed with success in numerous fields,[21] their main
applications being time series forecasting and function
approximation. In general, it can be said that a RBF net-
work is a feed forward network that consists of three layers:
the input layer, the hidden layer and the output layer, as it is
shown in Figure 2.

The hidden layer is composed of a determined number of
nodes or basis functions. These basis functions, also called
kernel, which can be selected among several types of func-
tions, but for most applications they are chosen to be
Gaussian functions. These types of functions have the

FIG. 1. Schematic of the acoustic chamber: 1) water bath; 2) chamber

full with water; 3) water outlet; 4) water inlet; 5) transducer; 6) sound

horn; 7) sonicator; 8) sample cell.
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property of being local functions, which means that only
they function with their centers close to the input patterns
will give a response. So, the hidden layer is composed of a
variable quantity of nodes, distributed over all the input
space. Each node is a Gaussian function, characterized by
a centre c and a width r that produces a nonlinear output.
Let’s assume that the inputs of the network are given
in a vector of d components, x¼fx1,.,xdg, The activation
function, gj(x), is of the form:

gjðxÞ ¼ exp �ðx� cjÞ2

r2j

 !
; j ¼ 1; 2; . . . ;m ½1�

where cj is the center of the activation function and rj its
width.

In this research, the centers are set using the well known
K-means algorithm.[22] The parameter m corresponds to the
number of nodes in the hidden layer. The design and train-
ing of RBF networks consist of the number of hidden nodes
and their structure which must be determined, that is, the
centers and widths of the basis functions, and the weights
of the output layer. There are several methods for con-
structing and training a RBF network,[23,24] and optimizing
the design parameters,[25] but the most common case is that
the number of basis functions has to be given by complex
specifications or by means of a trial and error process. In
this case, an own algorithm is implemented to select
the structure and number of the basis functions using the
optimization routines from Matlab.[26]

3.2. Neural Network Design

This step consists of designing the radial basis layer (num-
ber of neurons, centers, and bias) as well as the calculus of
the output layer weights. In order to do in theoretical part,
many randomly selected patterns of each training test data
(N 9 particle size) were used to design the net, constituting
what it is called the training data set. The patterns corre-
sponding to: maximum, minimum, and median values of
input and output variables of each training test (N 21 par-
ticle size) employed to measure the net model accuracy, con-
stituting what it is called the checking data set. The reason
for limiting the training data in design of the neural network
is, on one hand, to limit the time consumed in setting up the
model and, on the other hand, to avoid unnecessary infor-
mation that can cause over fitting. If all the data are included
in a single neural network model, it is very difficult to obtain
a converged result. Hence, the data set for device has been
used in different models. The architecture of nets is different
but the number of data is general for training and testing
model.

Normalization of inputs leads to avoidance of numerical
overflows due to very large or very small weights.[27] There-
fore, data were normalized between the upper limit 0þDL

and the lower limit 1�DU, where DL and DU are small
margins used to give the network some extrapolation capa-
bility. The values for DL and DU used were 0.05.[28] Data
were normalized using the linear normalization method
as follows:

Vn ¼ 1� DU � DLð Þ V � Vmin

Vmax � Vmin
þ DL ½2�

where Vn is the normalized value of V. The Vmax and Vmin

are the minimum and maximum values of V, respectively,
(1�DU�DL) and DL are positive constants. The magni-
tudes of (1�DU�DL) and DL should be in range of:
DL� (1�DU�DL)� 1 and(1�DU)� 1.

The performance of the neural network model evaluated
using the root mean square error (RMSE). The determi-
nation coefficient (R2) of the modeled output and the mea-
sured training data can be related as follows:

R2 ¼ 1�
P

P ðyobs � yestÞ
2P

P ðypred � �yyobsÞ
2

½3�

TABLE 1
Experiment results

Distance from source (xk=4) 0 7 9 11 13 15 17 19 21 23

d32(mm) 15min 0.52 0.96 1.02 0.96 1.02 0.89 0.94 0.92 0.59 0.5
30min 0.52 1.1 1.31 1.32 1.18 1.08 1.12 0.98 0.85 1.15
45min 0.52 0.89 1.04 1.12 1.25 1.03 1.11 1.09 1.1 0.93

FIG. 2. RBF network structure.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
P ðyobs � yestÞ

2

N

s
½4�

yobs, yest are experimental and estimated values, respect-
ively, and N is the number of data.

When the RMSE is at its minimum value and R2 is high,
�0.8, a model can be judged as very good.[29,30]

After this, the algorithm designs a group of neural
networks using different spread values for the activation
function in a wide range, from 0.01 to 100. Each of these
neural networks, associated with a fixed spread, is designed
with the training data set using the K-means algorithm
increasing the number of neurons until the marginal pre-
diction error is insignificant. The RMSE computed with
the resulting neural network, nets, using the checking data
is fixed as the goal for the next neural network design. The
final stage of the algorithm consists of selecting the neural
network as the one with minimum RMSE computed using
the checking data set.

4. RESULTS AND DISCUSSIONS

The output values of the model are classified into two
groups. The first group shows the predicted values when
using input patterns belonging to train the network, that is,
near the training data set. These results allow checking the
effectiveness of the model closer to the data set used for mod-
eling. The second group represents the predicted values that
do not belong to the training data set. These values will allow
to validate the model. Figure 3 illustrates the best recall
performances of RBF networks. As can be seen, all plots
generated by RBF networks fit training data points.

For each network, the optimum values of isotropic
spread were obtained by minimizing the root mean square
error (RMSE) and maximizing determination coefficient
(R2). Table 2 shows the RMSE and R2 results calculated,
where different models with various spreads were used.

It can be concluded that there would be an optimum
model based on the test data. Since it provides the minimum
degrees of freedom sustained by testing data points.

The corresponding generalization performance of these
networks was small but unrealistic oscillations as shown
in Figure 4.

Also in Figure 4, the results for experimental set up
show a significant error compared to the other data. These
fluctuations could be due to the noise content of the train-
ing data and might possibly be alleviated if the learning
algorithm was equipped with some proper noise filtering
facility (as in RBF networks).

Figure 4 presents a comparison between the experi-
mental and predicted values for the set up used at optimum
spread of RBF model. It can be seen that the predicted
values for both groups, in term of minimum RMSE calcu-
lated from experimental data, are in a very good agreement
with experimental data.

Examination of changes in the physical appearance of
emulsion treated zones in relation to the ultrasound probe
were revealed that some samples showed complete oiling
off while in others signs of instability were observed. In last
group; depending on range of changes; maximum three
separate phase could be seen:

FIG. 3. Comparison between values of desired and the best RBF

networks for all rotors with training data.

TABLE 2
Root mean square error (RSME) and correlation coef-

ficient (R2) for testing data in modeling with RBF network

Particle size (mm)

Spread RMSE R2

0.01 0.001821 0.3635
0.9 0.002274 0.9906
1 0.01054 0.9974

1.2 0.02274 0.9906
5 0.0278 0.9931
10 0.01855 0.9913
100 0.01448 0.6444

FIG. 4. Generalization performances of the best RBF networks for

experimental data (set up) with testing data (S.D.¼ 0.0151).
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1. bottom layer containing most of continues phase and
some stable oil droplet;

2. middle layer or cream which was lighter than the bot-
tom one containing a compact amount of flocculated
droplets; and

3. upper layer or oil phase.

But in most of samples only bottom and middle layers
were formed depending on emulsion position in acoustic
chamber. At 11k=4 away from sound source, in addition
to cream an oil layer also formed at the top. Oiling off was
the last step in separation of oil from o=w emulsion. In that
case system reached its maximum thermodynamic stability
because oil-water interface descend to its minimum value.

Also as can be seen in Figure 4, over-fits in some points
further increased by going away from the ultrasonic source.
Ultrasound experimental system is depended on several
factors such as sound intensity, cavitations forming, sound
propagation, standing wave forming and position in
ultrasound field that each one determined the state of
experiment results.

Multiple scattering can occur by the bubbles cloud
formed at the vicinity of the probe face with in the cavita-
tions field. So; there is not a proper standing wave in that
region due to formation of cavitation bubbles and the
model can not foresee good value for such points.

Oil droplets must be pushed to antinode zone in a ultra-
sonic standing wavefield but in mentioned region no stand-
ing wave was formed.[15] The second reason for difference
between experimental data and RBF analysis is due to low
acoustic pressure in far area from sound source. In that case,
energy level of sound wave is small, so the ability of ultra-
sound wave to bring oil droplets close together in emulsion
decreases. The random nature of cavitational events could
be another possible reason for the uncertainty observed.

The unregularized network clearly overfits the data at
some data points and requires large oscillations to fit
through (as shown in Figure 4). It can be seen that the pre-
dicted values are in good agreements with experimental
results. Also, increasing voice speed led to the particle size
improvement. For experimental set up, the maximum and
minimum changes in the size of particles happened at
acoustic source distance of 11k=4 and 23k=4, respectively.

Therefore, an excellent agreement between experimental
data and predicted values can be achieved by artificial
neural networks and RBF model using the best isotropic
spread.

4. CONCLUSION

A novel method for separation of oil from oil=water
emulsion has been developed. Separation efficiency due
to coalescence and flocculation of droplets could be
described by measuring changes in particle size.

In this research, the ability of neural network model was
investigated for simulating the particle size of experimental
set up in order to check the effectiveness of the model and its
generalization capability under different parameters. For
experimental set up, the maximum amount of droplet size
happen at distance of 11k=4 while sonicating at a distance
of 23k=4 lead to almost no changes in the size of droplets.
Also it can be concluded that there is an optimum modeling
using experimental data. Since it provides the minimum
degrees of freedom sustained by testing data points. Also;
corresponding generalization performance of these net-
works was small but unrealistic oscillations (Figure 4) and
that the predicted values RBF model for both groups were
in very good agreement with experimental data.
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