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1 Introduction

Three dimensional massive gravity is an interesting subject in studying gravity. Topological

Massive Gravity (TMG) is obtained by adding a gravitational Chern-Simons term to pure

gravity [1]. New Massive gravity (NMG) on the other hand is constructed by adding higher

order curvature terms to the Einstein-Hilbert term [2]. A combination of both theories,

known as General Massive Gravity (GMG), is also studied in [3, 4].

The mentioned theories have different properties. For example TMG theory, due to

the presence of a Chern-Simons term, is a parity-violating gravitational model while NMG

theory is constructed out of parity-preserving terms.

Several solutions such as the BTZ black holes, Warped-AdS background, logarithmic

and polynomial solutions have been found for these gravitational theories [5]–[14]. To

obtain charged solutions for these theories, one may add gauge fields through the Maxwell

term. This leads to TMGE, which has been studied in [15] and NMGE [16].

Since massive gravity theories in three dimensions have different sectors, for example

they contain solutions which are asymptotically AdS3 or asymptotically warped-AdS3, it

will be very interesting to study the AdS3/CFT2 correspondence in this context (see [17]).

For example several attempts have been done by studying isometery groups and computing

the central charges of asymptotic algebras [18]–[20]. In this paper we try to find different

solutions for different combinations of massive gravities. We will choose two directions to

extend massive gravity theories. In one direction we add gauge fields and in other direction

we consider higher order curvature terms. These extensions enable us to get more possible

solutions to study the AdS3/CFT2 correspondence. We use the following approach for

these extensions of massive gravities.

NMG contains curvature square terms. To extend this theory in order to have higher

order curvature terms, several attempts have been done. One of the recent developments

is Born-Infeld extension of new massive gravity [21, 22]

S =
2m2

κ

∫

d3x

[
√

−det
(

gµν +
σ

m2
Gµν

)

−
(

1 +
Λ

2m2

)

√

−detgµν

]

, (1.1)

where gµν is metric and Gµν = Rµν − 1
2Rgµν is Einstein tensor. The parameter m is a

mass parameter and κ = 8πG3 is the three dimensional gravitational constant. To have

a positive coefficient for scalar curvature we choose σ = −1. This condition guaranties

unitarity of the theory [23, 24].

Gauge field strength and Chern-Simons term have been added in [25] in order to study

charged solutions

S =
2m2

κ

∫

d3x

[
√

−det
(

gµν +
σ

m2
Gµν + aFµν

)

−
(

1 +
Λ

2m2

)

√

−detgµν

]

+
µ

2

∫

d3x ǫµνρAµ∂νAρ , (1.2)

where a and µ are two constants and Fµν = ∂µAν − ∂νAµ is the field strength of a U(1)

gauge field. In [25] we have studied warped-AdS solution for this theory. In this paper
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we try to find other possible solutions. We also extend this action and add topological

gravitational Chern-Simons term.

If we insert a = µ = 0 and only consider expansion up to second order of curvature,

one will find the new massive gravity action [2]. Expansion to next leading order terms,

gives deformation of NMG obtained by AdS/CFT correspondence consideration [26–28].

Uncharged AdS black hole solutions for this action have been found in [29, 30].

This paper is organized as follows: In section 2 we will see how one can find solutions

for equations of motion. First we expand Lagrangian (1.2) up to cubic curvature terms

and then we introduce the dimensional reduction procedure. We discuss mass and angular

momentum of solutions. We show how to find some useful thermodynamical quantities

such as entropy and Hawking temperature. In section 3 we obtain new charged solutions

and compute their mass, angular momentum and entropy. In section 4 we add gravita-

tional Chern-Simons term to the Lagrangian and find different extremal and non-extremal

solutions. In section 5 we calculate central charges of two dimensional conformal field

theories dual to the black hole solutions, by using the Cardy’s formula. Sections 6 and 7

contain attempts to find central charges by computing the conserved charges associated to

asymptotic symmetry transformations. In last section we summarize our results.

2 How to find solutions and their physical quantities?

2.1 The Lagrangian

In this paper we are interested in physical properties of the solutions corresponding to the

expansion of Lagrangian (1.2). Expansion of (1.2) up to second, forth and sixth orders of

derivatives gives the following Lagrangians at different orders

LO(2) =
2m2

κ

√−g

[

1

4m2
R− 1

4
a2 Tr(F 2)

]

−√−g
Λ

κ
,

LO(4) =
2m2

κ

√−g

[

− 1

4m4

(

Tr(R2)− 3

8
R2

)

− a2

2m2

(

Tr(RF 2)− 3

8
RTr(F 2)

)

−1

8
a4
(

Tr(F 4)− 1

4
(Tr(F 2))2

)]

,

LO(6) =
2m2

κ

√−g

[

− 1

6m6

(

Tr(R3)− 9

8
RTr(R2) +

17

64
R3

)

− a2

m4

(

3

4
Tr(R2F 2)− 5

8
RTr(RF 2) +

19

128
R2 Tr(F 2)− 1

16
Tr(R2)Tr(F 2)

)

+
a4

2m2

(

Tr(RF 4)− 7

16
RTr(F 4) +

7

64
R(Tr(F 2))2 − 1

4
Tr(RF 2)Tr(F 2)

)

−a6

12

(

Tr(F 6)− 3

8
Tr(F 2)Tr(F 4) +

1

32
(Tr(F 2))3

)]

, (2.1)

where Tr(AB) = AµνB
νµ. We also add Maxwell-Chern-Simons term

LCS =
µ

2
ǫµνρAµ∂νAρ . (2.2)
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It is obvious that if we insert a = µ = 0 then we will find extended NMG La-

grangian [21, 22, 26–28]. We also consider gravitational Chern-Simons Lagrangian

LGCS =
1

4κµG

√−g ǫλµν Γδ
λσ

(

∂µΓ
σ
δν +

2

3
Γσ
µτ Γ

τ
νδ

)

. (2.3)

To write Maxwell Lagrangian in its canonical form from now on we consider a2 = − κ
2m2 .

2.2 Ansatz

In this paper we would like to find stationary rotationally symmetric solutions. To do

this, the best way is to use the dimensional reduction procedure introduced by [8, 15]. In

this procedure, one considers a three dimensional metric which has symmetry group of the

SL(2, R) transformations and gauge field has a SL(2, R) doublet representation. Therefore

we can write the metric and gauge field as follows

ds2 = λab(ρ) dx
adxb + ζ−2(ρ)R−2(ρ) dρ2 , A = Aa(ρ) dx

a , (2.4)

where (a, b = 0, 1) and (x0 = t, x1 = ϕ). The components of λ can be expressed by a

2× 2 matrix

λ =

(

T +X Y

Y T −X

)

. (2.5)

To obtain a solution we first insert the above ansatz into the Lagrangian and then we find

equations of motion by the variation of Lagrangian with respect to Aa, ζ, T,X and Y .

To find the physical quantities of solutions such as temperature or angular velocity, it

would be better to write the ansatz (2.4) in its ADM form [31] i.e.

ds2 = −N(r)2 dt2 + K(r)2
(

dφ+Nφ dt
)2

+
r2dr2

K(r)2N(r)2
, (2.6)

where we have used the following definitions

N2 =
R2

T −X
, Nφ =

Y

T −X
, K2 = T −X , r2 = 2 ρ , ζ(ρ) = 1 , (2.7)

and R2 = −T 2 +X2 + Y 2.

2.3 Mass and angular momentum

To compute mass and angular momentum of a black hole we use the Clement’s approach

presented in [8]. In this approach there is a conserved current called super-angular momen-

tum vector J . Angular momentum and mass are related to super-angular momentum via

J = 2π (δJT − δJX) , M = 2π (δJY +∆) , (2.8)

where δ denotes the difference between values of super-angular momentum for solution

and background. The background usually is a massless static solution. We will show that

either ∆ = 0 or ∆ = δJY .
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Since we have considered gauge fields, we need to extend the Clement’s approach.

This has been already done in [25]. The Lagrangian we are dealing with has a SL(2, R)

symmetry and super-angular momentum is its conserved current so under infinitesimal

SL(2, R) transformations we find the following field transformations

∆T = ǫ1Y − ǫ2X , ∆X = ǫ0Y − ǫ2T , ∆Y = −ǫ0X + ǫ1T ,

∆A0 =
1

2
(ǫ0 + ǫ1)A1 −

1

2
ǫ2A0 , ∆A1 =

1

2
(−ǫ0 + ǫ1)A0 +

1

2
ǫ2A1 , ∆A2 = 0 . (2.9)

The conserved super-angular momentum current has two parts. For the gravity part we find

JGr =

[

+

(

∂L

∂X ′Y − ∂L

∂Y ′X

)

−
((

∂L

∂X ′′

)′
Y −

(

∂L

∂Y ′′

)′
X

)

+

(

∂L

∂X ′′Y
′ − ∂L

∂Y ′′X
′
)

,

+

(

∂L

∂T ′Y +
∂L

∂Y ′T

)

−
((

∂L

∂T ′′

)′
Y +

(

∂L

∂Y ′′

)′
T

)

+

(

∂L

∂T ′′Y
′ +

∂L

∂Y ′′T
′
)

,

−
(

∂L

∂T ′X +
∂L

∂X ′T

)

+

((

∂L

∂T ′′

)′
X +

(

∂L

∂X ′′

)′
T

)

−
(

∂L

∂T ′′X
′ +

∂L

∂X ′′T
′
)]

, (2.10)

where primes denote derivatives with respect to ρ. The above vector is equivalent to the

vector current which has been found in [8]. For electromagnetic part one finds [25]

JEM =
1

2

[(

∂L

∂A′
0

A1 −
∂L

∂A′
1

A0

)

,

(

∂L

∂A′
0

A1 +
∂L

∂A′
1

A0

)

,−
(

∂L

∂A′
0

A0 −
∂L

∂A′
1

A1

)]

. (2.11)

The total super-angular momentum is the sum of these two parts, i.e. J = JGr + JEM .

2.4 Thermodynamics

In addition to mass, angular momentum or charge one can find thermodynamical properties

of black holes. The most important parameter is entropy and its value is given by using

the Wald’s formula [32]

SW = 4πAh

(

δL
δR0202

(g00g22)−1

)

h

, (2.12)

where Ah is the horizon’s area. By adding the TMG Lagrangian we must also consider

its contribution to entropy [15]. So the total value of entropy in presence of the TMG

Lagrangian will be

S = SW − 2π2

κµG
r3h (N

ϕ)′ , (2.13)

where rh is the location of horizon and it can be found from ADM form of the metric.

To check the first law of thermodynamics for black holes we need to find more physical

quantities. According to definitions in (2.7) one can read Hawking’s temperature, angular

velocity and area of horizon from ADM form of metric. These are

TH =
1

4π

[

R2
]′

√
T −X

∣

∣

∣

ρh
, Ωh = − Y

T −X

∣

∣

∣

ρh
, Ah = 2π

√
T −X

∣

∣

∣

ρh
, (2.14)
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where prime is derivative with respect to ρ. Since we have a gauge field, we can also find

the value of electric potential Φ at horizon

Φh = −
(

At +ΩhAφ

)

. (2.15)

We will check that black hole solutions satisfy the first law of thermodynamics i.e,

dM = Th dS +Ωh dJ + 2πΦhdQ , (2.16)

where Q is the electric charge for each charged solution.

There is another approach to find mass of each black hole from the integrated form of

the first law or the Smarr-like formula [33]. Depending on each solution we find one of the

following relations

M = THS + 2ΩhJ +
1

2
ΦhQ̄ , M =

1

2
THS +ΩhJ + ΦhQ̄ , (2.17)

where Q̄ = 2πQ .

3 Solutions of extended NMG

In this section we consider Lagrangian (2.1) together with Chern-Simons term (2.2). We

use O(2),O(4) and O(6) notations for order of expansion of Born-Infeld Lagrangian and

use O(∞) for Born-Infeld Lagrangian.

3.1 MCS-charged solution

To start, let’s add Maxwell-Chern-Simons Lagrangian (2.2) to O(2),O(4), O(6) and O(∞)

Lagrangians. We call the corresponding solutions, MCS-charged black holes. We consider

the following ansatz for metric and gauge field, which is a self-dual MCS solution found

in [34, 35]

X = αCρν + β ρ+ γC0 , A = Qρ
ν
2
(

dt− ldφ
)

, (3.1)

where Q is the electric (magnetic) charge of U(1) gauge field. The constant parameters

C,C0, ν and l can be computed from equations of motion. In this ansatz α, β and γ

are vectors which determine the frame of solutions. Equations of motion for T,X and Y

restrict α and β vectors to α2 = α.β = 0 and γ||α. So we choose the following frame for

self-dual solutions

α = γ =
(

l2 + 1 ,−l2 + 1 ,−2l
)

, β =

(

l2 − 1

l2
,− l2 + 1

l2
, 0

)

. (3.2)

Inserting this frame into (3.1) and using Euler-Lagrange equations of motion for T,X or Y

we can find C as a function, C = C(Q, ν,m, l). One can easily find C as in the first column

of table 2. In next step we insert the above ansatz into equations of motion for gauge field.

These equations give two values for ν. Either ν is a function as ν = −µlH(m, l) or ν = 0.

Let us first start with nonzero value of ν. Solving equations of motion give values of

H in the last column of table 2. The remaining equation of motion is for ζ. This equation

gives the value of cosmological constant (see table 1).

– 6 –
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Λ

O(2) − 1
l2

O(4) − 1
l2

(

1 + 1
4ξ2

)

O(6) − 1
l2

(

1 + 1
4ξ2

+ 1
8ξ4

)

O(∞) −2ξ2

l2

(

1−
(

1− 1
ξ2

) 1
2

)

Table 1. The value of cosmological constant Λ in each order of Lagrangian (ξ = ml).

C C ′ H

O(2) − κQ2ν
4(ν−1) 1 1

O(4) − κQ2ν
4(ν−1)

2ξ2+1+4ν(ν−1)
2ξ2−1−8ν(ν−1)

(

1− 1
2ξ2

) (

1 + 1
2ξ2

)−1

O(6) − κQ2ν
4(ν−1)

8ξ4+4ξ2+3+(16ξ2+24)ν(ν−1)
8ξ4−4ξ2−1−(32ξ2+16)ν(ν−1)

(

1− 1
2ξ2

− 1
8ξ4

)

(1 + 1
2ξ2

+ 3
8ξ4

)−1

O(∞) − κQ2ν
4(ν−1)

ξ2−1+2ν(ν−1)
ξ2−(2ν−1)2

(1− 1
ξ2
)−1

(

1− 1
ξ2

) 1
2

(

1− 1
ξ2

) 1
2

Table 2. The coefficients C,C ′ and H in each order of expansion (ξ = ml, ν = −µlH).

If we write ADM metric then we will have the following functions according to rela-

tion (2.4)

T +X = 2(C ρν + C0)−
2ρ

l2
, T −X = 2l2(C ρν + C0) + 2ρ ,

Y = −2l(C ρν + C0) , R2 = −T 2 +X2 + Y 2 =
4ρ2

l2
. (3.3)

Note that the value of C0 can not be fixed by equations of motion and it is a free parameter

of solutions. Using the above values we are able to compute the super-angular momentum.

By (2.10) and (2.11) we can find super-angular momentum as

J =
C0

κl
C ′
(

l2 + 1 ,−l2 + 1 , 2l
)

, (3.4)

where C ′ is given in the second column of table 2 which depends on the order of expansion

of Lagrangian. From super-angular momentum and using relations in (2.8) we can read

angular momentum and mass.

To do this we need to know the background solution and the value of ∆. The back-

ground solution can be found by inserting C0 = 0, so the value of super-angular momentum

would be zero. On the other hand we suppose that ∆ = 0 so we find

J =
4πlC0

κ
C ′ , M =

4πC0

κ
C ′ . (3.5)
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But we need to show that the choice of ∆ = 0 is consistent with the first law of thermody-

namics for black holes. There is an alternative way to find the same value for mass. What

we need is to check a consistency between the first law of thermodynamics and Smarr-like

formula M = 1
2 THS +ΩhJ + 1

2 ΦhQ̄.

As we noted, the only free parameters of solutions are Q and C0. By differentiating

Smarr-like formula with respect to these parameters we expect to find the first law. This

fixes constant coefficients of Smarr-like formula and also gives the value of mass. But to use

Smarr-like formula we need to find temperature, angular velocity and the value of electric

potential at horizon, we also need the entropy of black hole.

Horizon is a circle and it is parametrized by φ. Location of this horizon is given by

N2 = R2

K2 = 0. Since the radius of horizon is given by K, we assume K > 0. So the only

value for the location of horizon will be ρ = 0 if we have ν > 0. Using (2.14) and (2.15)

we find the following quantities at horizon

Ωh=
l(Cρν + C0)

l2(Cρν+C0) + ρ

∣

∣

∣

∣

ρ→0

=
1

l
, Th=

2ρ

πl2
√

2
(

l2(Cρν+C0) + ρ
)

∣

∣

∣

∣

ρ→0

=0 , Φh=0 . (3.6)

As we see the above quantities are independent of the order of expansion. The zero value of

temperature indicates that we are dealing with an extremal black hole. The above values

immediately give a relation between mass and angular momentum from Smarr-like formula,

which is M = Jl and it shows that ∆ = 0 is a correct assumption.

Finally entropy can be found by using Wald formula (2.12)

S =
2π Ah

κ
C ′ , Ah = 2π

√

2
(

l2(Cρν + C0) + ρ
)

∣

∣

∣

∣

ρ→0

= 2π
√

2l2C0 . (3.7)

As we told before, there is another solution when ν = 0. This is the well known

BTZ solution in presence of a constant gauge field and has the same angular velocity,

temperature, mass and entropy as nonzero solution.

3.2 Logarithmic MCS-charged solution

In addition to the self-dual solution of the previous subsection we can consider another

ansatz which is also a solution of equations of motion. We call it logarithmic MCS-charged

solution [9, 12]

X = αDρν ln ρ+ β ρ+ γD0 , A = Qρ
ν
2
(

dt− ldφ
)

. (3.8)

Again Q corresponds to the electric (magnetic) charge of solution. The equations of motion

for T,X or Y restrict us to the following frame

α = γ =
(

1 + l2, 1− l2,−2l
)

, β =

(

l2 − 1

l2
,− l2 + 1

l2
, 0

)

. (3.9)

Imposing the above frame in equations of motion for T,X or Y , one finds the following

relation for every level of expansion of Lagrangian

c1ρ
ν + c2ρ

ν ln ρ = 0 , (3.10)

– 8 –



J
H
E
P
0
6
(
2
0
1
2
)
1
3
1

µ D D′

O(2) −1
l −κQ2

4 1

O(4) −1
l

(

1 + 1
2ξ2

)

−κQ2

4
2ξ2+1
2ξ2−1

(

1− 1
2ξ2

)

O(6) −1
l

(

1 + 1
2ξ2

+ 3
8ξ4

)

−κQ2

4
8ξ4+4ξ2+3
8ξ4−4ξ2−1

(

1− 1
2ξ2

− 1
8ξ4

)

O(∞) −1
l

(

1− 1
ξ2

)− 1
2 −κQ2

4

(

1− 1
ξ2

)−1 (

1− 1
ξ2

) 1
2

Table 3. Constant parameters µ, D and D′ for logarithmic MCS black holes, (ξ = ml).

where values of ν and D can be found by solving equations c1 = c2 = 0. When order

of expansion is greater than two then there will be two solutions for these equations, one

solution is always ν = 1 and the other one can be written as a function, ν = ν(m, l).

Values of parameter D at each level of expansion are given in table 3 by solving

equations of motion for X, Y or T . Equations of motion for gauge field components A1

or A2 give a relation which restricts the coupling constant of Maxwell-Chern-Simons (µ).

The values of µ as a function of m and l are given in table 3.

Again equation of motion for ζ gives values of cosmological constant. These values at

each level are the same as previous ones and are given in table 1.

By inserting the frame in (3.9) into solution (3.8), metric in its ADM form can be

read as

T +X = 2Dρν ln ρ+ 2D0 −
2ρ

l2
, T −X = 2l2Dρν ln ρ+ 2l2D0 + 2ρ ,

Y = −2l(Dρν ln ρ+D0) , R2 = −T 2 +X2 + Y 2 =
4ρ2

l2
. (3.11)

In this solution D0 is a free parameter and cannot be fixed by equations of motion.

For future proposes we need to read angular velocity, temperature and electric potential

at horizon. We also need to know horizon’s area. By the same argument as in previous

ansatz, horizon will be located at ρ = 0 if ν has a positive value. Using equations (2.14)

and (2.15) and by knowing the location of horizon, we find the following values

Ωh =
l(Dρν ln ρ+D0)

l2(Dρν ln ρ+D0) + ρ

∣

∣

∣

∣

ρ→0

=
1

l
, Th =

2ρ

πl2
√

2
(

l2(Dρν ln ρ+D0) + ρ
)

∣

∣

∣

∣

ρ→0

= 0 ,

Φh = 0 , Ah = 2π

√

2
(

l2(Dρν ln ρ+D0) + ρ
)

∣

∣

∣

∣

ρ→0

= 2π
√

2l2D0 . (3.12)

3.2.1 ν = 1

In this case values of µ and D are given in the first and in the second column of table 3. To

find physical quantities of this black hole let us first compute super-angular momentum.

Using relations in equations (2.10) and (2.11) one finds

J =
D0

κl
D′
(

l2 + 1,−l2 + 1, 2l
)

, (3.13)
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E
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2
0
1
2
)
1
3
1

ν µ D

O(4) 1
2 ± 1

4∆4
2±∆4
4l

(

1 + 1
2ξ2

)

± (6ξ2+1)(2ξ2+3∓2∆4)
8(2ξ2−1)∆4

O(6) 1
2 ± 1

4

(

∆6
2ξ2+1

) (8ξ4+4ξ2+3)(2(2ξ2+1)±∆6)
32lξ4(2ξ2+1)

±3(16ξ6+16ξ4+2ξ2+1)(8ξ4+12ξ2+7∓4∆6)
16(16ξ6−6ξ2−1)∆6

O(∞) 1
2 ± ξ

2 ± 1
2l

ξ(ξ± 1)√
ξ2−1

±3
8

ξ(ξ∓ 1)
ξ± 1

Table 4. Constant parameters ν, µ and D for logarithmic MCS black holes, (ξ = ml). ∆4 =
√

2 + 4ξ2 and ∆6 =
√

16ξ6 + 16ξ4 + 10ξ2 + 3.

where D′ is a constant and its values are given in the last column of table 3. Similar to

the previous case here we can read angular momentum and mass of the black holes from

super-angular momentum. The background solution can be found by imposing D0 = 0.

Inserting ∆ = 0 in (2.8) one finds the following values for angular momentum and mass

J =
4πlD0

κ
D′ , M =

4πD0

κ
D′ . (3.14)

To check that ∆ = 0 is a correct choice, we use Smarr-like formula M = 1
2 THS + ΩhJ +

1
2 ΦhQ̄. In this case the only free parameters are Q and D0. By differentiating Smarr-like

formula with respect to these parameters we can find the first law of thermodynamics for

black holes. Since we have an extremal black hole with vanishing temperature and since

the value of electric potential at horizon is zero we find again M = Jl and so ∆ = 0.

Using the Wald formula (2.12) for entropy, we have

S =
2π Ah

κ
D′ , Ah = 2π

√

2
(

l2(Dρν ln ρ+D0) + ρ
)∣

∣

∣

ρ→0
= 2π

√

2l2D0 . (3.15)

3.2.2 ν = ν(m, l)

As noted before there is another solution for ν as a function of m and l. This new value

does not exist in O(2) but appears at higher orders. The values of ν are given in the first

column of table 4. Similar to the previous case we can find values of µ and D, which are

given in table 4.

Super-angular momentum and therefore values of angular momentum and mass can be

found by using equations (3.13) and (3.14). In fact the values of D′ in this case are exactly

equal to values for ν = 1. So these solutions have the same angular momentum and mass.

On the other hand by computing entropy from Wald formula we find that these solutions

have the same entropy (3.15), with similar values of D′ (table 3). These similarities come

from similarity of asymptotic and near horizon geometries of the two solutions, although

the geometries between these two limits are different.

Note that existence of horizon at ρ = 0, restricts ν to ν > 0. This restricts the values

of ξ = ml in the first column of table 4.
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B B′

O(2) 1 1

O(4) 2ξ2+1
2ξ2−1

4ξ4−24ξ2−5
2ξ2(2ξ2−1)

O(6) 8ξ4+4ξ2+3
8ξ4−2ξ2−1

64ξ8−384ξ6−384ξ4−64ξ2−27
8ξ4(8ξ4−4ξ2−1)

O(∞) ξ2

ξ2−1
ξ(ξ2−7)

(ξ2−1)
3
2

Table 5. Coefficients B and B′ in each order of the expansion (ξ = ml).

3.3 M-charged solution

Now let us turn off Chern-Simons term by inserting µ = 0. We call this solution Maxwell-

charged or M-charged solution. We suppose the following ansatz

X = αB ρν ln

(

ρ

ρ0

)

+ β ρ , A = Q ln

(

ρ

ρ0

)

(

dt− ωdφ
)

, (3.16)

where Q again is electric (magnetic) charge and B and ρ0 are some constants. To solve

equations of motion we consider the following frame which is more general than the previ-

ous frames

α =
(

ω2 + 1 ,−ω2 + 1 , −2ω
)

, β =

(

l2 − 1

l2
,− l2 + 1

l2
, 0

)

. (3.17)

If we choose ω = l then we will obtain self-dual M-charged solutions with E = Ftρ = Fρφ =

B. Similar self-dual solutions have been studied in [34–36] and [37].

Using the above frame and ansatz and by inserting these into T,X or Y equations of

motion we end up with the following equation

c1ρ
ν log

(

ρ

ρ0

)

+ c2ρ
ν + c3 = 0 , (3.18)

where c1, c2 and c3 are functions of ν,m and l and according to the order of expansion

they have different values. The only consistent solution of this equation, independent of

the order of expansion, will be the case ν = 0. With this value, c1 = 0 and the value of B

can be found from c2 + c3 = 0. One can see values of B in the second column of table 5 in

each order of expansion.

There are two other equations of motion for A1 and A2. These equations satisfy by

choosing a proper ansatz for gauge field. Equation of motion for ζ gives the values of

cosmological constant Λ which are exactly equal to previous results in table 1.

Considering all above values, the corresponding ADM metric contains the following

functions

T+X = 2κBQ2 ln

(

ρ

ρ0

)

− 2ρ

l2
, T−X=2κω2BQ2 ln

(

ρ

ρ0

)

+ 2ρ , (3.19)

Y =−2κBQ2ω ln

(

ρ

ρ0

)

, R2=−T 2+X2+Y 2=−4ρ

l2

(

BκQ2(l2−ω2) ln

(

ρ

ρ0

)

− ρ

)

.
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Using this solution we can compute super-angular momentum. From (2.10) and (2.11)

we find

J =
Q2

l
B′
(

ω2 + 1 ,−ω2 + 1 , 2ω
)

, (3.20)

where B′ is given in the second column of table 5. From super-angular momentum (3.20)

and using (2.8) we can read angular momentum and mass as follows

J =
4πQ2ω2

l
B′ , M =

4πQ2ω

l
B′ . (3.21)

In this case similar to previous ones we choose ∆ = 0 in (2.8).

As we mentioned before, horizons are roots of equation N2 = R2

K2 = 0. So according

to metric (3.19) there are two horizons at ρ = ρ+ and ρ = ρ− which are outer and inner

horizons respectively (ρ+ > ρ−). But K2 changes sign for a certain value of ρ = ρc such

that for ρ < ρc we encounter closed time-like curves [34, 35].

In the extremal solution when we go to self-dual limit |ω| → ±l, from (3.19) we can

see that the location of horizon goes to ρ = 0, which is not consistent with ρ > ρc. In

fact this is a naked singularity which is located at infinite geodesic distance [34, 35]. Note

that the extremal black holes such as those we described in previous subsections have a

horizon at infinite proper distance [34, 35]. Therefore we can not compute thermodynamical

parameters of this self-dual solution because this is a horizon-less solution.

3.4 Geodesic completeness

In previous sections we found two types of black holes, the polynomial solution (3.3) and the

logarithmic solution (3.11), where their horizon were located at ρ = 0. At ρ = 0 curvature

scalars such as R,RµνRµν , R
µνρσRµνρσ, . . . are finite. In addition each point outside the

horizon is located at an infinite radial distance from the horizon due to extremality of black

holes. We now find a condition that time-like geodesics approach to horizon in an infinite

amount of time or in other words solutions become geodesically complete.

The black hole solutions (3.3) and (3.11) have two Killing vectors ∂t and ∂φ correspond-

ing to two manifest symmetries of their metric. We define these two Killing vectors as

Kµ = (∂t)
µ = (1, 0, 0), Lµ = (∂φ)

µ = (0, 0, 1) . (3.22)

Constants of motion for a geodesic can be expressed as

Et = −Kµ
dxµ

dτ
, Eφ = Lµ

dxµ

dτ
, (3.23)

where τ is an affine parameter. In addition, we have another constant of motion. Geodesic

equation implies that the following quantity is constant along the path

ε = −gµν
dxµ

dτ

dxν

dτ
, (3.24)

where ε = −1, 0 or 1 for time-like, null or space-like geodesics respectively. Using constants

in (3.23) and multiplying gρρ on both sides of (3.24), the geodesic equation for metric (3.3)
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and (3.11) becomes

(

dρ

dτ

)2

− 2
(

C ρν + C0

)

(l Et + Eφ)−
2ρ

l2
(l2E2

t − E2
φ) +

4ρ2

l2
ε = 0 ,

(

dρ

dτ

)2

− 2
(

Dρν ln ρ+D0

)

(l Et + Eφ)−
2ρ

l2
(l2E2

t − E2
φ) +

4ρ2

l2
ε = 0. (3.25)

When ρ → 0 geodesics will be regular if Eφ = −l Et (see for example [34, 35] for a similar

argument). Solving each equation in (3.25) for time-like geodesics (ε = −1) together with

Eφ = −l Et shows that, it takes an infinite amount of time to reach the horizon at ρ = 0.

4 Born-Infeld-TMG solutions

In this section we extend our work and consider gravitational Chern-Simons action. We add

topological Lagrangian (2.3) to Born-Infeld Lagrangian (1.2). Since gravitational Chern-

Simons action has third order of derivative terms we just consider O(2), O(4) and O(∞)

in our computations. We divide solutions into extremal and non-extremal black holes.

4.1 Extremal black holes

In section 3 we found a number of self-dual solutions in presence of the Maxwell-Chern-

Simons term. Now we add gravitational Chern-Simons term to the Lagrangian. Since our

ansatz in section 3 also works here and all steps are similar, we just write final results in

their corresponding tables.

4.1.1 Polynomial charged solution

A self-dual extremal charged black hole in presence of gravitational CS term (we call it

polynomial charged solution) is given by the following ansatz

X = αCρν + βρ+ γC0 , A = Qρ
ν
2 (dt− ldφ) . (4.1)

Angular momentum, mass and entropy of this black hole are as follows

J =
4πC0l

κ
C ′ , M =

4πC0

κ
C ′ , S =

2πAh

κ
C ′ . (4.2)

Together with the following physical quantities at horizon (ρh = 0)

Ah = 2π
√

2l2C0 , Ωh =
1

l
, Th = 0 , Φh = 0 . (4.3)

All values of constant parameters ν, C and C ′ are listed in table 6.

4.1.2 Logarithmic charged solutions

Another self-dual extremal charged black hole is logarithmic charged black hole. Solving

equations of motion leads to

X = αDρν ln(ρ) + β ρ+ γD0 , A = Qρ
ν
2
(

dt− ldφ
)

. (4.4)
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ν C C ′

O(2) −µ l −κQ2 νη
4(ν−1)

1
(2ν−1+η) 1− 1

η

O(4) −µ l
(

1 + 1
2ξ2

)−1 −κQ2 νη
4(ν−1)

ξ2+ 1
2
+2ν(ν−1)

ξ2(2ν−1)+η(ξ2− 1
2
−4ν(ν−1))

1− 1
2ξ2

− 1
η

O(∞) −µ l
√

1− 1
ξ2

−κQ2 νη
4(ν−1)

ξ2−1+2ν(ν−1)

[ξ2−(2ν−1)2]η−(2ν−1)ξ
√

ξ2−1

(

1− 1
ξ2

)−1
√

1− 1
ξ2

− 1
η

Table 6. ξ = ml, µGl = η.

ν = 1 µ D D′

O(2) −ν
l −κQ2

4
1

(

1− 1
η

) 1− 1
η

O(4) −ν
l

(

1 + 1
2ξ2

)

−κQ2

4

1+ 1
2ξ2

1− 1
2ξ2

− 1
η

1− 1
2ξ2

− 1
η

O(∞) −ν
l

(

1− 1
ξ2

)− 1
2 −κQ2

4

[

1− 1
ξ2

− 1
η

√

1− 1
ξ2

]−1
√

1− 1
ξ2

− 1
η

Table 7. ξ = ml, µGl = η.

ν D

O(2) −η−1
2 −κQ2 ν2η

4
1

(2ν−1)η+6ν(ν−1)+1

O(4) 1
2+

1
4η

(

ξ2±
√

4η2
(

ξ2+ 1
2

)

+ξ4
)

−κQ2 ν2η
4

ξ2+ 1

2
+2ν(ν−1)

(2ν−1)[2ξ2−1−16ν(ν−1)]η+(6ν(ν−1)+1) ξ2

O(∞) 1
2 +

ξ
√

ξ2−1

4η

[

1±
√

1 + 4η2

ξ2−1

]

−κQ2 ν2η
4

(ξ2−1+2ν(ν−1))

(2ν−1)[ξ2−1−8ν(ν−1)]η+(6ν(ν−1)+1)ξ
√

ξ2−1

(

1− 1
ξ2

)

−1

Table 8. ξ = ml, µGl = η.

Angular momentum, mass and entropy of this black hole are as follows

J =
4πlD0

κ
D′ , M =

4πD0

κ
D′ , S =

2πAh

κ
D′ . (4.5)

Together with the following values at horizon

Ah = 2π
√

2l2D0 , Th = 0 , Ωh =
1

l
, Φh = 0 . (4.6)

We have two sets of solutions in this case. The first case is ν = 1, see table 7, and the

second case is ν = ν(m, l, µG), see table 8. In both cases µ is given in the first column of

table 7 and D′ in the last column of this table. The values of cosmological constant do not

change and are given in table 1.
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Q2 z Λ

O(2) 3−2µG

2κµG
−

1
4
+ 2µG−1

2µG
z

O(4)
( 3

2
+(µ−2)µG)m2+2µG

κµG(µm2+1)

2(µm2+1)((µ−1)m2
−

1

8
)µG

((µ+2)µG−

3

2
)m2

(48κ2Q4
−128κQ2+64)z2+(96−(64m2+56)κQ2)z−1−16m2

64m2 + z
µG

O(∞) 4(3µ−2µG)m2
−3µ+18µG

2κµ2µG(4m2+3)

−2(m2+ 3

4
)((µ2

−1)m2
−

1

4
µ2)µG

3m2(µ−2µG)
−

µ

3
+ 2

3
(2µ−1)(µ−1)

µ

Table 9. Parameters given by equations of motion for warped AdS3 solution.

4.2 Non-extremal black holes

There are non-extremal black hole solutions for equations of motion. We have already

found non-extremal warped AdS3 black holes without the TMG term in [25]. Similar to it

we suppose the following ansatz

X = αρ2 + βρ+ γ , A = Q
(

2zdt− (ρ+ 2ωz)dφ
)

. (4.7)

To find a non-extremal warped solution to satisfy equations of motion for T,X and Y we

need to choose the following frame

α =

(

1

2
,−1

2
, 0

)

, β =
(

ω,−ω,−1
)

, γ =

(

β2ρ20
4z

+(1+ω2)z,−β2ρ20
4z

+(1−ω2)z,−2zω

)

,

(4.8)

where β2 = 1 − 2z. To have a solution free of closed time-like curves we must restrict

ourselves to 0 < β2 < 1, [8]. One can obtain warped AdS metric in ADM form

ds2 = −β2 ρ
2 − ρ20
r2

dt2 + r2
(

dφ− ρ+ (1− β2)ω

r2
dt

)2

+
1

β2ζ2
dρ2

ρ2 − ρ20
, (4.9)

where r2 = ρ2 + 2ωρ+ ω2(1− β2) +
β2ρ20
1−β2 .

After frame fixing each T,X or Y equations of motion equivalently give the same

value for charge Q. The equations of motion for gauge field components also give another

relation. At O(2) gauge field equations restrict µ = 1. But for other orders these equations

give a relation between z,m, µ and µG. Final results for charge Q and value of z are written

in first two columns of table 9.

The equation of motion for ζ gives cosmological constant in terms of other parameters

of theory (see the last column of the table 9).

From equations (2.10) and (2.11) we find the following value for super-angular mo-

mentum

J = Ξ1ρ
2
0

(

− 1, 1, 0
)

+ Ξ2

(

ω2 + 1,−ω2 + 1, 2ω
)

, (4.10)

where coefficients are given in table 10, (note that the value of z at each row must be read

from second column of table 9).

To find angular momentum and mass we must subtract the values of background.

Background is given by inserting ρ0 = ω = 0. Using equation (2.8) we can read angular

momentum and mass. For non-extremal black holes we consider M = 4π(δJY ) which

– 15 –



J
H
E
P
0
6
(
2
0
1
2
)
1
3
1

Ξ1 Ξ2

O(2)
(z− 1

2)
8κ z µG

(4z − 2µG − 1) − z(z− 1
2)

2κµG
(2µG − 1)

O(4)
(z− 1

2)
8κ z µG

(4z − 2µG(2− µ)− 1) − z(z− 1
2)

2κµG
(2µG(2− µ)− 1)

O(∞)
(z− 1

2)
8κ z µµG

((4z − 1)µ− 2µG) − z(z− 1
2)

2κµµG
(2µG − µ)

Table 10. Coefficients corresponding to super-angular momentum for warped AdS3 solution.

we show to be consistent with the first law of thermodynamics for black holes. After

subtraction we find

J = 4π(−Ξ1ρ
2
0 + Ξ2ω

2) , M = 8πΞ2ω . (4.11)

The location of the horizon is given by ρ = ρ0 or equivalently rh = ρ0+2ωz√
2z

. Quantities

such as area of horizon, Hawking temperature, angular velocity and electric potential at

horizon can be found by using relations in (2.14) and (2.15)

Ah = 2πrh =
2π√
2z

(ρ0 + 2ω z) , TH =
(1− 2z) ρ0

Ah
, Ωh =

2π
√
2z

Ah
, Φh = 0 . (4.12)

Again entropy can be found by adding Wald entropy and contribution from Chern-Simons

term (2.13)

S =
16π2

(1− 2z)
√
2z

(2zΞ1ρ0 + Ξ2ω) . (4.13)

Using Smarr-like formula M = THS +2ΩhJ + 1
2 ΦhQ̄ we can check that thermodynamical

quantities satisfy the first law of black hole thermodynamics, dM = THdS + ΩhdJ . To

do this we consider M = M(ρ0, ω), S = S(ρ0, ω) and J = J(ρ0, ω) then differentiate

with respect to ρ0 and ω. The value of mass from Smarr-like formula agrees exactly with

M = 4π(δJY ). This value of mass is exactly equal to the ADT mass of the black hole.

5 Central charges of dual CFTs, Cardy’s formula approach

According to AdS/CFT conjecture [39] one may expect that for some sectors of three di-

mensional gravities which are either asymptotically AdS3 or AdS3-like, there exists a two

dimensional dual conformal field theory. In this work we found such sectors for differ-

ent types of massive gravities which were asymptotically AdS3 (extremal black holes) or

AdS3-like (non-extremal warped-AdS3 black holes), so it will be interesting to find some

properties of these two dimensional dual conformal field theories.

AdS3 metric in Poincarè coordinates is given by

ds2 = l2
dx+ dx− + dy2

y2
, (5.1)

where l is the length of AdS3 and boundary is located at y = 0. The global symmetry of

AdS3 is SO(2, 2). The SO(2, 2) algebra, gets enhanced to asymptotic isometery algebra,

which coincides with two copies of the Witt algebra.
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The algebra of asymptotical conserved charges associated to asymptotic Killing vectors

satisfy two copies of Virasoro algebra. This algebra has equal left and right central charges

cL = cR = 3l
2G [18], where G is the three dimensional gravitational constant. It is believed

that these are central charges of a two dimensional conformal field theory living on the

boundary of AdS3.

In this paper we consider gravities which have been shown to be unitary in bulk and

boundary [40]. This property allows us to use Cardy’s formula to read the central charges

of the dual CFT theories in terms of black hole entropies, i.e.

S =
π2

3

(

cL TL + cR TR

)

, (5.2)

where TL and TR are left and right temperatures. Alternatively one may use the following

relation

S = 2π

(
√

cLEL

6
+

√

cR ER

6

)

, (5.3)

where EL and ER are the left and right energies and depending on each solution they have

different values.

In [41] it has been shown that for asymptotic AdS3 sector of pure gravity we can find

a CFT dual with a central function c = l
2G gµν

∂L3
∂Rµν

. In the following we will show that

this relation only works for those sectors which are asymptotically AdS3 and does not give

a correct result for asymptotically warped-AdS3 sectors.

5.1 Asymptotic AdS3 sectors

In previous sections we found two sets of extremal solutions, logarithmic solution and

polynomial solution with(without) presence of gravitational Chern-Simons term. These

solutions have the following metrics

ds2log =

(

2Dρν ln ρ+ 2D0 −
2ρ

l2

)

dt2 + (2l2Dρν ln ρ+ 2l2D0 + 2ρ)dφ2

−4l(Dρν ln ρ+D0)dtdφ+
l2dρ2

4ρ2
, (5.4)

ds2poly =

(

2Cρν + 2C0 −
2ρ

l2

)

dt2+(2l2Cρν + 2l2C0 + 2ρ)dφ2− 4l(Cρν+C0)dtdφ+
l2dρ2

4ρ2
.

In both cases Hawking temperature is zero and we have extremality condition J = Ml. As

we told before, the existence of a horizon is possible if ν > 0. Asymptotic behavior can be

found by sending ρ to infinity. This requires ν < 1 to have an asymptotically AdS3 solution.

Since both these solutions have the same asymptotic symmetry and belong to the

asymptotic AdS3 sector of three dimensional massive gravites, we expect that both have

the same two dimensional dual CFTs. The central charges of these dual CFTs can be

obtained from (5.3) by defining left and right energies as a linear combination of mass and

angular momentum. We define

EL ≡ Ml + J

2
, ER ≡ Ml − J

2
. (5.5)
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cL cR

O(2) 3l
2G

(

1− 1
η

)

3l
2G

(

1 + 1
η

)

O(4) 3l
2G

(

1− 1
2ξ2

− 1
η

)

3l
2G

(

1− 1
2ξ2

+ 1
η

)

O(6) 3l
2G

(

1− 1
2ξ2

− 1
8ξ4

− 1
η

)

3l
2G

(

1− 1
2ξ2

− 1
8ξ4

+ 1
η

)

O(∞) 3l
2G

(

(

1− 1
ξ2

) 1
2 − 1

η

)

3l
2G

(

(

1− 1
ξ2

) 1
2 + 1

η

)

Table 11. Central charges of dual CFTs.

By knowing entropy we can read the left central charge of the dual CFT. We have done

this and all results for cL are listed in table 11. As we see these central charges include

corrections to 3l
2G found in [18]. These corrections are coming from higher curvature terms

and gravitational Chern-Simons term.

Let us review the most important results:

1. Because of definition of left and right energies (5.5) we can find just the left central

charge of the dual CFT.

2. Since both logarithmic or polynomially solutions are asymptotically similar and only

have different fluctuations around the AdS3 space-time we expect to find the same

central charges at each level of expansion.

3. The central charges without considering the gravitational Chern-Simons term can be

obtained by sending the parameter η = µGl → ∞.

4. The value of the left central charge at each level of expansion can be found by

expanding the O(∞) result with respect to ξ = ml.

5.2 Asymptotic warped-AdS3 sectors

In non-extremal warped-AdS solution the SL(2, R)L×SL(2, R)R symmetry breaks into the

isometery group of SL(2, R) × U(1) [19]. So this solution belongs to a different sector of

three dimensional massive gravities and we expect different values for central charges of

dual CFTs. In this case we find both left and right central charges by using Cardy’s formula.

We can either use the Cardy’s formula in (5.2), where left and right temperatures TL/R

can be defined as

TL ≡ 1− 2z

2π
√
2z

ρ0 , TR ≡ 1− 2z

2π
√
2z

2ωz . (5.6)

or we can use (5.3) with the following left and right energies1

EL =
1

2
ωM − J = 4πΞ1ρ

2
0 , ER =

1

2
ωM = 4πΞ2ω

2 . (5.7)

1We can also use EL = π2

6
cLT

2
L and ER = π2

6
cRT

2
R.
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Both ways give the following values for left and right central charges

cL = 3.26π
z

(1− 2z)2
Ξ1 , cR = 3.24π

1

z(1− 2z)2
Ξ2 , (5.8)

where values for Ξ1 and Ξ2 are given in table 10 and values for z are listed in table 9.

Using the above values for left and right central charges we can find holographic grav-

itational anomaly. Using parameters in table 11 we see that the value of anomaly is

independent of order of expansion

cL − cR =
3.24π

(1− 2z)2

(

4zΞ1 −
1

z
Ξ2

)

=
3

GµG
. (5.9)

This value for anomaly agrees with the value in [42] exactly .

There are important points to note:

1. The difference between values of left and right central charges only depends on grav-

itational Chern-Simons coupling.

2. Unlike the asymptotic AdS sector here central charges of dual CFTs are independent

and can not be obtained from expansion of the O(∞) result.

Although in this section we found various results of central charges for dual CFTs we

must check them from a more accurate approach. We will show that computing the asymp-

totic conserved charges allows us to find central charges and confirms our computations in

this section.

6 Asymptotic conserved charges for extremal solutions

As we saw in the previous section, Cardy’s formula just gives left central charges of CFTs

dual to asymptotically AdS3 sectors. In this section we try to use another approach to

find central charges by using asymptotic properties of solutions. We will show that this

approach gives both left and right central charges and confirms results of Cardy’s formula.

To compute conserved charges such as mass and angular momentum associated to

Killing vectors of a typical background, we must linearize equations of motion around this

background. According to Abbott-Deser (AD) formalism [43] these conserved charges are

expressed as

Qµ(ξ̄) =
1

8πG

∫

M
dD−1x

√−ḡ ξ̄ν δT
µν , (6.1)

where δTµν is the linearized energy-momentum tensor and ξ̄ν is a background Killing vector.

The value of ξ̄νδT
µν generates a conserved current whose spatial integral for different

components gives conserved charges. Computations of conserved charges in presence of

higher curvature gravity theories has been done firstly for AdS background in [44]. For an

arbitrary background, calculations have been discussed in [45].

The Killing vectors ξ̄ν are generators of isometeries of background metric, but we also

have asymptotic Killing vectors ζµ which are defined as generators of non-trivial charges

δζhµν = ∇µζν +∇νζµ. (6.2)
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Existence of such asymptotic Killing vectors is due to the fact that killing equations do

not fall-off fast enough near boundary. For any consistent set of boundary conditions one

can find an associated asymptotic symmetry group (ASG), which is defined as a set of

symmetry transformations modulo the set of trivial symmetry transformations [46].

6.1 Linearization of equation of motion and conserved currents

Curvature terms. To find conserved charges, AD formalism suggests linearization of

equations of motion. Let us start with pure gravity terms in Lagrangian up to cubic terms

of curvature (2.1)

L3 =
√−g

{

R− 2Λ + κ1R
2 + κ2RµνR

µν + κ3R
µ
νR

νρRρµ + κ4RRµνR
µν + κ5R

3
}

,

κ1 =
3

8m2
, κ2 = − 1

m2
, κ3 = − 2

3m4
, κ4 =

3

4m4
, κ5 = − 17

96m4
. (6.3)

Equations of motion for Lagrangian (6.3) are given by

Tµν =Rµν −
1

2
gµνR+ Λgµν + 2κ1R

(

Rµν −
1

4
gµνR

)

+ (2κ1 + κ2)(gµν�−∇µ∇ν)R

+κ2�

(

Rµν −
1

2
gµνR

)

+ 2κ2

(

Rµρνσ − 1

4
gµνRρσ

)

Rρσ

+κ3

(

3RµαR
αβRβν +

3

2

[

gµν∇α∇βR
αρRβ

ρ +�Rα
µRαν − 2∇α∇(µR

β
ν)R

α
β

]

−1

2
gµνR

α
βR

βρRρα

)

+κ4

(

RµνRαβR
αβ + 2RRα

µRαν + gµν∇α∇βR
αβR+�RRµν − 2∇α∇(µR

α
ν)R

−[∇µ∇ν − gµν�](RαβR
αβ)− 1

2
gµνRRαβR

αβ

)

+κ5

(

3RµνR
2 + 3[gµν�−∇µ∇ν ]R

2 − 1

2
gµνR

3

)

. (6.4)

For AdS background in D dimensions we have the following relations

Rµανβ =
2Λ0

(D − 1)(D − 2)
(gµνgαβ − gµβgνα) , Rµν =

2Λ0

(D − 2)
gµν , R =

2Λ0D

(D − 2)
, (6.5)

where Λ0 is a proper cosmological constant. If we insert background (6.5) into equations

of motion (6.4) then we will find a critical value for Λ in terms of Λ0

Λ = Λ0 + 2Λ2
0(Dκ1 + κ2)

D − 4

(D − 2)2
+ 4Λ3

0(κ3 +Dκ4 +D2κ5)
D − 6

(D − 2)3
. (6.6)

We now suppose small fluctuations around asymptotic background metric (AdS space) as

gµν = ḡµν + hµν and use it to linearize equations of motion. Defining

Gµν ≡ Rµν −
1

2
gµνR+ Λgµν , (6.7)
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one finds the following linearized parts (h ≡ ḡµν hµν)

δGµν = δRµν −
1

2
ḡµνδR− 2Λ0

D − 2
hµν ,

δRµν =
1

2
(∇̄λ∇̄µhλν + ∇̄λ∇̄νhλµ − �̄hµν − ∇̄µ∇̄νh) ,

δR = (∇̄λ∇̄ρhλρ − �̄h )− 2Λ0

D − 2
h . (6.8)

Linearization of equation of motion (6.4) is lengthy so we have summarized details of

calculations in appendix A. Using relations in (A.3) and (A.4) we find (Υ ≡ 2Λ0
D−2)

δTµν =
(

1 + 2(Dκ1+κ2)Υ+(9κ3+5Dκ4+3D2κ5)Υ
2
)

δGµν + κ2

(

�̄δGµν −
D−2

D−1
ΥḡµνδR

)

+
(

2κ1 + κ1 +
(

3κ3 + (D + 4)κ4 + 6Dκ5
)

Υ
)(

ḡµν�̄− ∇̄µ∇̄ν +Υḡµν

)

δR

+
(

3κ3 +Dκ4

)

Υ
(

�̄δGµν − 2∇̄α∇̄(µδGν)α + ḡµν∇̄α∇̄βδGαβ

)

(6.9)

+

(

Λ− (D − 2)

2
Υ− (D − 4)

2
Υ2(Dκ1 + κ2)−

(D − 6)

2
Υ3(κ3 +Dκ4 +D2κ5)

)

hµν .

The last line vanishes by (6.6). We can also use relation ∇̄βδGαβ = 0 to simplify the

above equation.

Asymptotic conserved charges are given by the following integration

Q(ξ̄) =
1

8πG

∫

M
dD−1x

√−ḡK0 , (6.10)

where Kµ = ξ̄νT
µν and M is a spatial D − 1 dimensional manifold. To find conserved

charges we should use Killing equations for asymptotic Killing vectors ξ̄µ which satisfy

Killing vector equation ∇̄µ ξ̄ν + ∇̄ν ξ̄µ = O(h). Since we have already linearized equations

to O(h) we can ignore O(h) due to this Killing equation and put it to zero. We also use

the following relations to simplify our results

∇̄α∇̄β ξ̄ν = R̄µ
ναβ ξ̄µ , �̄ξ̄µ = −Υξ̄µ , ξ̄ν ∇̄α∇̄µGαν =

Υ

D − 1
(Dξ̄νδGµν − ξ̄µδGα

α) ,

δGα
α = −Λ

Υ
δR . (6.11)

Finally one finds the following conserved current

Kµ =
(

1 + 2(Dκ1 + κ2)Υ + 3 (κ3 +Dκ4 +D2κ5)Υ
2
)

ξ̄νδGµν (6.12)

+
(

2κ1 + κ2 +
(

3κ3 + (D + 4)κ4 + 6Dκ5
)

Υ
)

∇̄α

{

ξ̄µ ∇̄αδR− ξ̄α∇̄µδR+ δR∇̄µξ̄α
}

+
(

κ2 + (3κ3 +Dκ4)Υ
)

∇̄α

{

ξ̄ν∇̄αδGµν − ξ̄ν∇̄µδGαν − δGµν∇̄αξ̄ν + δGαν∇̄µξ̄ν
}

.
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In first term, ξ̄ν δGµν can be written as a total derivative term, so the above expression will

be a total derivative

Kµ = ∇̄ν

{(

1 + 2(Dκ1 + κ2)Υ + 3 (κ3 +Dκ4 +D2κ5)Υ
2
)

Fµν
1

+
(

2κ1 + κ2 +
(

3κ3 + (D + 4)κ4 + 6Dκ5
)

Υ
)

Fµν
2 +

(

κ2 + (3κ3 +Dκ4)Υ
)

Fµν
3

}

,

Fµν
1 =

1

2

(

ξρ∇̄µhνρ + ξµ∇̄νh+ hµρ∇̄νξρ + ξν∇̄ρh
µρ +

1

2
h∇̄µξν

)

− (µ ↔ ν),

Fµν
2 = ξ̄µ ∇̄νδR− ξ̄ν ∇̄µδR+ δR∇̄µξ̄ν

Fµν
3 = ξ̄α∇̄νδGµα − ξ̄α∇̄µδGνα − δGµα∇̄ν ξ̄α + δGνα∇̄µξ̄α . (6.13)

Gravitational Chern-Simons term. Equation of motion for gravitational Chern-

Simons Lagrangian (2.3) is

Tµν =
1

µG
Cµν =

1

µG
ε αβ
µ ∇α

(

Rβν −
1

4
gβν R

)

, (6.14)

where εµνρ =
√−gǫµνρ with ǫ012 = −1. The linearized form of (6.14) is [45, 47]

δCµν = ε αβ
µ ∇̄α

(

δRβν −
1

4
ḡβν δR−Υhβν

)

, (6.15)

and conserved current constructed out of this term can be expressed as

Kµ=
1

µG
ξ̄νδC

µν=
1

2µG
∇̄α

{

εµαβδG νβ ξ̄
ν+εναβδG µβ ξ̄ν+εµνβδGα

β ξ̄ν
}

+
1

2µG
εανβδG µβ∇̄αξ̄ν .

(6.16)

we could write last term as η̄βδG µβ if we define η̄β ≡ 1
2 ε

αν
β ∇̄αξ̄ν . Again we write the

conserved current as a total derivative

Kµ =
1

µG
∇̄ν

(

Fµν
1 (η̄) + Fµν

4

)

,

Fµν
4 =

1

2

{

εµνβδGαβ ξ̄
α + εµαβδGν

β ξ̄α − εναβδGµ
β ξ̄α
}

. (6.17)

6.2 Asymptotic behavior of extremal solutions

By inserting results in equations (6.13) and (6.17) into equation (6.10) we can compute

conserved charge. Since the conserved current is written as a total derivative, integral over

bulk will be equal to an integral over boundary

Q(ξ̄) =
1

8πG

∫

∂M
dSi

√−ḡF0i
tot = lim

ρ→∞
1

8πG

∫

dφ
√−ḡF0ρ

tot , (6.18)

where

F0ρ
tot =

(

1 + 2(Dκ1 + κ2)Υ + 3 (κ3 +Dκ4 +D2κ5)Υ
2
)

F0ρ
1 (ξ) +

1

µG
F0ρ
1 (η) (6.19)

+
(

2κ1+κ2+
(

3κ3 + (D+4)κ4+ 6Dκ5
)

Υ
)

F0ρ
2 +

(

κ2+ (3κ3+Dκ4)Υ
)

F0ρ
3 +

1

µG
F0ρ
4 .
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As mentioned before, extremal solutions (5.4) are asymptotically AdS3, so we have

SL(2, R)L × SL(2, R)R symmetry at boundary and therefore we have two copies of Killing

vectors, ξLn and ξRn , which generate two copies of Virasoro algebra

i[ξLm, ξLn ] = (m− n)ξLm+n, i[ξRm, ξRn ] = (m− n)ξRm+n, [ξLm, ξRn ] = 0. (6.20)

Going to light-cone coordinates with τ± = t± lφ, the background metrics (5.4) change to

ds2log = 2(Dρν ln(ρ) +D0)(dτ
−)2 − 2ρ

l2
dτ+dτ− +

l2dρ2

4 ρ2
,

ds2poly = 2(Cρν + C0)(dτ
−)2 − 2ρ

l2
dτ+dτ− +

l2dρ2

4 ρ2
, (6.21)

which are asymptotically AdS3 and therefore one can use standard Brown-Henneaux

asymptotically AdS3 boundary conditions [18]. Since in above metrics ρν ln ρ and ρν

terms are diverging more slowly than ρ at boundary (0 < ν < 1), we can choose boundary

fluctuations as






h++ ∼ O(1) h+− ∼ O(1) h+ρ ∼ O
(

1
ρ2

)

h−− ∼ O(1) h−ρ ∼ O
(

1
ρ2

)

hρρ ∼ O
(

1
ρ3

)






. (6.22)

The most general diffeomorphism which preserves (6.22) is

ξ = ξµ∂µ =

[

ǫ+(τ+) +
2

ρ
∂2
−ǫ

−(τ−) +O
(

1

ρ2

)]

∂++

[

ǫ−(τ−) +
2

ρ
∂2
+ǫ

+(τ+) +O
(

1

ρ2

)]

∂−

−1

2

[

∂+ǫ
+(τ+) + ∂−ǫ

−(τ−) +O
(

1

ρ

)]

∂ρ , (6.23)

where left and right moving functions are parametrized by ǫ+(τ+) = eimτ+ and ǫ−(τ−) =

einτ− . We can parametrize asymptotic boundary conditions (6.22) in order to have true

conserved charges and consistent Lie derivative equations

h++ = f++(t, φ) + . . . , h+− = f+−(t, φ) + . . . , h−− = f−−(t, φ) + . . . ,

h+ρ =
1

ρ2
f+ρ(t, φ) + . . . , h−ρ =

1

ρ2
f+ρ(t, φ) + . . . , hρρ =

1

ρ3
fρρ(t, φ) + . . . , (6.24)

where ” . . . ” are next leading order terms which do not contribute to conserved charges.

Plugging (6.24) into (6.18) and taking ρ → ∞ limit, lead to

Q=
1

8πGl

∫

dφ

{

(

1− 1

2m2l2
− 1

8m4l4
− 1

µGl

)

ǫ+f++ +

(

1− 1

2m2l2
− 1

8m4l4
+

1

µGl

)

ǫ−f−−

−
(

1− 1

2m2l2
− 1

8m4l4

)(

f+−−
2

l4
fρρ

)

(ǫ+ + ǫ−)+
3

2µl

(

f+−−
2

l4
fρρ

)

(ǫ+− ǫ−)

}

, (6.25)

where we have inserted values of κ1, . . . , κ5. If we insert boundary conditions (6.24) into lin-

earized equations of motion (6.9) then the ρρ component at ρ → ∞, will give an asymptotic

constraint for equation (6.25)

f+− − 2

l4
fρρ = 0 . (6.26)
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According to this constraint the second line of (6.25) becomes zero at boundary. Now we

can define left and right moving conserved charges as

QL =
1

8πGl

∫

dφ (1− 1

2m2l2
− 1

8m4l4
− 1

µGl
) ǫ+f++ ,

QR =
1

8πGl

∫

dφ (1− 1

2m2l2
− 1

8m4l4
+

1

µGl
) ǫ−f−− , (6.27)

where Q = QL + QR. These charges satisfy two copies of Virasoro algebra with left and

right moving central charges

cL =
3l

2G

(

1− 1

2m2l2
− 1

8m4l4
− 1

µGl

)

, cR =
3l

2G

(

1− 1

2m2l2
− 1

8m4l4
+

1

µGl

)

. (6.28)

One can easily check that µG → ∞ is consistent with central function formalism in [41], i.e.

c =
l

2G
gµν

∂L
∂Rµν

, (6.29)

so simply we can read central charges of the dual CFT to the asymptotically AdS sector

of Born-Infeld Lagrangian

cL =
3l

2G

(

√

1− 1

m2l2
− 1

µGl

)

, cR =
3l

2G

(

√

1− 1

m2l2
+

1

µGl

)

. (6.30)

As we see, the left central charges we have found here in (6.28) and (6.30), are exactly

those in table 11, which we found from Cardy’s formula.

There is an important point to note. As we see, although we have ignored all terms

which contain field strength of the gauge field, final results for central charges have not

changed. We can check that these extra terms fall off more rapidly than pure gravity terms

as one goes to boundary (ρ → ∞). As an example consider the F 2 term in Lagrangian.

The contribution of this term to equations of motion is as follow

T (em)
µν = −1

2
gµνF

2 + 2Fµ
αFαν , (6.31)

which leads to the following electromagnetic conserved current

Kµ
(em) = −1

2
ξνh

µνF 2 + ξµhαβFα
ρFρβ − 2ξνh

αβFµ
αFβ

ν . (6.32)

For both logarithmic and polynomial solutions the first term above is zero because of

F 2 = 0. One can see that as we go to boundary (ρ → ∞) the next two terms also vanish.

This can be checked by choosing boundary fluctuations (6.22) and using the fact that our

solutions are restricted by (0 < ν < 1). The same behavior still holds for all other terms

which contain gauge field strength.2

2For a similar argument in four dimensions see for example [50].
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7 Asymptotic conserved charges for non-extremal solutions

For asymptotically AdS3 metric we used useful relations in equation (6.5) for lineariza-

tion of equations of motion. But for asymptotically warped-AdS3 metric we do not have

these properties and we must linearize equations of motion around an arbitrary general

background metric. As an example let us start from second order derivative terms in

Lagrangian. Most of calculations are similar to those performed in [48]. For an action

including Einstein-Hilbert and TMG terms we have

Rµν −
1

2
gµν R+ Λ gµν +

1

µG
Cµν = 0 . (7.1)

If we define Gµν = Rµν − 1
2g

µν R+Λ gµν then the conserved current associated to Einstein-

Hilbert terms will be

ξν δGµν = ξν

(

− 2 R̄µ(αhα
ν) +

1

2
(2∇̄α∇̄(µhν)α − �̄hµν − ∇̄µ∇̄νh) +

1

2
(R̄− 2Λ)hµν

)

−1

2
ξµ
(

− hαβR̄αβ + ∇̄α∇̄βh
αβ − �̄h

)

. (7.2)

Using the Killing vector equation and ∇̄α∇̄β ξ̄ν = R̄µ
ναβ ξ̄µ this current can be expressed

as [45]

Kµ
EH = ∇̄αFµα

EH − ξνGµαhαν +
1

2
ξµGανhαν −

1

2
ξνGµ

νh , (7.3)

Fµν
EH =

1

2

{

ξν∇αh
µα − ξµ∇αh

να + ξα∇µhαν − ξα∇νhαµ

+ξµ∇νh− ξν∇µh+ hαν∇αξ
µ − hαµ∇αξ

ν + h∇[µξν]
}

. (7.4)

For the TMG part the associated conserved charge is given by

ξνδC
µν=

1

2
√
g
ξν

{

ǫµαβ ∇αδG
ν
β+ǫναβ ∇αδG

µ
β+ǫµαβ δΓν

αλG
λ
β+ǫναβ δΓµ

αλG
λ
β−

√
ghCµν

}

.

(7.5)

Again if we define ην ≡ 1
2
√
g ǫ

ναβ∇αξβ we can find the following equations [45]

Kµ
CS = ∇̄αFµα

CS (ξ)− ξνCµαhαν +
1

2
ξµCανhαν −

1

2
ξνCµ

νh , (7.6)

Fµν
CS(ξ) = Fµν

EH(η) +
1√
g
ξλ

(

ǫµνα δGλ
α − 1

2
ǫµνλδG

)

+
1

2
√
g
ǫµνα

[

ξαh
λβGλβ +

1

2
h

(

ξβGβα +
1

2
ξαR

)]

. (7.7)

The sum of the last three terms of equation (7.3) and equation (7.7) is zero by using

equations of motion. Therefore conserved charge becomes

Q =
1

8πG

∫

M

√
gKµ =

1

8πG

∫

∂M

√
g

(

F0i
EH(ξ) +

1

µG
F0i
CS(ξ)

)

dSi . (7.8)
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For warped solution the metric is

ds2 = −β2 ρ
2 − ρ20
r2

dt2 + r2
(

dφ− ρ+ (1− β2)ω

r2
dt

)2

+
1

β2ζ2
dρ2

ρ2 − ρ20
, (7.9)

and asymptotic boundary fluctuations can be defined as






htt ∼ O(1ρ) htφ ∼ O(1) htρ ∼ O
(

1
ρ2

)

hφφ ∼ O(ρ) hφρ ∼ O
(

1
ρ

)

hρρ ∼ O
(

1
ρ3

)






. (7.10)

The most general diffeomorphism which preserves (7.10) is

ξ = N ǫ(φ) ∂t − ρ ǫ′(φ) ∂ρ + ǫ(φ) ∂φ , (7.11)

where prime is derivative with respect to φ and N is an arbitrary constant which does

not affect our results [49]. All remaining steps for finding central charge is similar to

the previous case. Since φ is a periodic coordinate with φ ∼ φ + 2π then it is better to

use the Fourier analysis by considering ǫ(φ) = einφ in (7.11). Inserting this vector into

equation (7.8) we will find exactly the left central charge in table 10 i.e.

cL =
12π

κβ2

(

2 +
2β2 − 1

µG

)

= 3.26π
z

(1− 2z)2
Ξ1 . (7.12)

As before we can show that at this order of calculations conserved current associated to

gauge field Lagrangian F 2, falls-off more rapidly than gravitational terms at boundary and

it has not any contribution to central charge.

Although this approach confirms left central charges found by Cardy’s formula, it is

unable to find right central charge, see [48] and [49] for the same obstruction. This is

because the asymptotic symmetry is SL(2, R) × U(1) and we must expect that since we

have one SL(2, R), we will find one of the central charges. It will be interesting to find

a way to compute the other central charges of this algebra. This situation still holds in

presence of higher order curvature terms with more lengthy calculations and again we can

only confirm left central charges of table 10.

8 Summary and conclusions

In this paper we have investigated several solutions corresponding to three dimensional

extended massive theories of gravity. The extension has been done either by adding gauge

fields through a Maxwell term or Maxwell-Chern-Simons term or by adding a gravitational

Chern-Simons term. In all these cases we have found charged solutions.

These charged solutions are as follows:

1. Extremal logarithmic and polynomial self dual black holes with and without gravi-

tational Chern-Simons term.

2. Maxwell charged solutions which have naked singularities.

3. Non-extremal warped-AdS solutions.
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We have found these solutions for different orders of expansion (up to six) of Born-

Infeld Lagrangian and for unexpanded Born-Infeld Lagrangian. The results of logarithmic

solutions are given in tables 3, 4, 7 and 8 while results for polynomial solutions are given

in the tables 2 and 6. Values of cosmological constant for extremal solutions are the same

at each level of expansion and are given in table 1.

Results for Maxwell-charged solutions are given in table 5. Results for non-extremal

warped-AdS solutions are given in tables 9 and 10. Values of cosmological constant differ

from those of extremal cases.

For all solutions we have found super-angular momentum as a conserved current for

SL(2, R) symmetry. Then we have read mass and angular momentum. For extremal cases

we always find J = Ml or ∆ = 0 but for non-extremal case we find (4.11) or ∆ = 2π(δJY ).

Results for mass have been checked by consistency between the first law of ther-

modynamics for black holes and the Smarr-like formula. For extremal solutions Smarr-

like formula is M = 1
2 THS + ΩhJ + ΦhQ̄ but for non-extremal solution it is given by

M = THS + 2ΩhJ + 1
2 ΦhQ̄.

We have also found entropy of each black hole, by using (2.12) when we have no

gravitational Chern-Simons term and we have used (2.13) when we have it. The value of

entropy helps us to read central charges of dual conformal field theories.

In this paper we used Cardy’s formula to find central charges. For asymptotically AdS

solutions we can only find left central charge (table 11) of dual CFTs from Cardy’s formula.

For asymptotically warped-AdS solutions the dual CFT is different from asymptotically

AdS solutions. The difference between left and right central charge gives the value of holo-

graphic gravitational anomaly. Our results show that the value of anomaly only depends

on the coupling of gravitational Chern-Simons term and is independent of expansion of

Born-Infeld Lagrangian.

To confirm our results for central charges of dual CFTs we have used another approach.

We calculate conserved charges associated to asymptotic symmetry transformations of

solutions, i.e. SL(2, R) × SL(2, R) for asymptotically AdS solutions and SL(2, R) × U(1)

for asymptotically warped-AdS ones. By choosing a proper gravitational perturbation at

boundaries we can find exactly central charges that we have found by Cardy’s formula.

By this approach we can compute both left and right central charges of the CFT dual to

asymptotically AdS solutions. But for dual CFTs associated to asymptotically warped-AdS

solutions only left central charges can be computed.

A Useful relations for linearization

In order to study fluctuations of a generic action around some background we need to

expand various tensors up to second order in metric perturbations hµν . Using

gµν ≡ ḡµν + hµν , (A.1)
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linearized Christoffel symbols and Riemann, Ricci and scalar tensors become

δΓµ
νρ =

1

2
ḡµλ(∇̄νhλρ + ∇̄ρhλν − ∇̄λhνρ) ,

δRµ
νρσ =

1

2
(∇̄ρ∇̄σh

µ
ν + ∇̄ρ∇̄νh

µ
σ − ∇̄ρ∇̄µhσν − ∇̄σ∇̄ρh

µ
ν − ∇̄σ∇̄νh

µ
ρ + ∇̄σ∇̄µhρν) ,

δRµν =
1

2
(∇̄λ∇̄µhλν + ∇̄λ∇̄νhλµ − �̄hµν − ∇̄µ∇̄νh) ,

δR = (∇̄λ∇̄ρhλρ − �̄h )− 2Λ0

D − 2
h . (A.2)

These relations help us to linearize different terms in equations of motion. By defining

Υ = 2Λ0
D−2 we find the following relations

δ(RµρνσR
ρσ) =

1

D − 1

(

(D − 2)ΥδRµν +ΥḡµνδR+Υ2hµν
)

,

δ(RRµν) = DΥδRµν +ΥḡµνδR ,

δ(Rα
µRαν) = 2ΥδRµν −Υ2hµν ,

[2pt]δ(RµνR
µν) = 2ΥδR ,

δ(Rα
µRαβR

β
ν ) = 3Υ2δRµν − 2Υ3hµν ,

δ(gµνRαβR
βρRα

ρ ) = 3Υ2ḡµνδR
L +DΥ3hµν ,

δ(RµνRαβR
αβ) = DΥ2δRµν + 2Υ2ḡµνδR ,

δ(RRα
µRαν) = 2DΥ2δRµν +Υ2ḡµνδR−DΥ3hµν ,

δ(gµνRRαβR
αβ) = 3DΥ2ḡµνδR+D2Υ3hµν ,

δ(gµνR
3) = 3D2Υ2ḡµνδR−D3Υ3hµν , (A.3)

δ(�Rµν) = �̄δRµν −Υ�̄hµν ,

δ(∇µ∇νRαβ) = ∇̄µ∇̄νδRαβ −Υ∇̄µ∇̄νhαβ ,

δ(�R) = �̄δR ,

δ(∇µ∇νR) = ∇̄µ∇̄νδR ,

δ(∇α∇βR
αρRβ

ρ ) = 2Υ∇̄α∇̄βδR
αβ − 2Υ2∇̄α∇̄βh

αβ ,

δ(�Rα
µRαν) = 2Υ�̄δRµν − 2Υ2

�̄hµν ,

δ(∇α∇(µRν)βR
βα) = 2Υ∇̄α∇̄(µδRν)α − 2Υ2∇̄α∇̄(µhν)α ,

δ(∇α∇βR
αβR) = DΥ(∇̄α∇̄βδR

αβ −Υ∇̄α∇̄βh
αβ) + Υ�̄δR ,

δ(∇µ∇ν [RαβR
αβ ]) = 2Υ∇̄µ∇̄νδR ,

δ(∇α∇(µR
α
ν)R) = Υ(∇̄α∇̄(µδR

α
ν) −Υ∇̄α∇̄(µh

α
ν)) + Υ∇̄(µ∇̄ν)δR ,

δ(�[RαβR
αβ ]) = 2Υ�̄δR ,

δ(�RRµν) = DΥ(�̄δRµν −Υ�̄hµν) + Υḡµν�̄δR ,

δ([gµν�−∇µ∇ν ]R
2) = 2DΥ(ḡµν�̄− ∇̄µ∇̄ν)δR . (A.4)
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[5] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].
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