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ABSTRACT

We introduce an optimal method for controlling the bone marrow dynamics in cell-cycle-specific cancer
chemotherapy. This method is based on measure theory and gives us the strategy applying drug where both bone
marrow mass and the dose be maximized over the treatment interval. Using measure theory, the corresponding
optimal control problem be transfer into a modified problem which is a type of an infinite dimensional linear
programming problem whose its optimal solution can be approximated by optimal solution of finite dimensional
problem.
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INTRODUCTION

In the last two decades there has been growingesttén developing and analyzing models for cacbemotherapy
[1,2,3,4]. In these models, finding optimal wayaminister drugs is very important. Since, drudisdath healthy
and cancer cells. Some of these models be calledyode-specific which drugs act on cells that amea specific
phase of the cell cycle [5,6,7,8]. However, thedamarrow is one of the main factors in cell-cyghedfic cancer
chemotherapy. Since the bone marrows cells prodtieedlood cells and by blood cell count from aigvat

clinicians determine the doses of chemotherapyfirdt, Panetta [9] and, Fister and Panetta [7]oititice and
analyze a bone marrow model. They use dynamicdta@osystems which include both the active andimggphases
of the cell-cycle to analyze the effect of celldgyspecific chemotherapy. This system is as

{D(t)=(V—5—H—Su(t))|°(t)+/3Q(t), W

Qt)=aPt)-(A+AR(),

whereP (.) and Q(.) are the proliferating and quiescent cells mashéltone marrow respectively, and bounded
measurable functioni(.) shows the drugs treatment which takes values ieniaff0,1] and acts only on the
proliferating cells. Moreover, the parameters dre@nsidered constant, positive, and are definedodlows. y,
cycling cells’ growth rate;a, transition rate from proliferating to resting, natural cell deathy3, transition rate
from resting to proliferatingA, cell differentiation-mature bone marrow cell leayithe bone marrow and entering
the blood stream as various types of blood cefid; g the strength or effectiveness of the treatnidéote thatu(.)

is control function andi(t) = 0means no drug is injected at timewhile u(t) =1 means maximum rate is used.
Usually for dynamical control system (1) be defireedobjective function which form an optimal comtpooblem
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that by solving it we can determine the value afgdas possible such that at the same time keepathe marrow
high[5,7,10,11]. Alamir and Chareyrbsuggest a good constraint on the bone marrow whiish is as follows:

PO+Q(t)2p, tOOT] (2

whereT is the treatment duration and is a positive constant. By (2), we can only usggdr(.) which functions
P(.) and Q(.) of system (1) satisfy constraint (2). The purpoBalloconsidered optimal control problems for bone

marrow in papers [5,7,10,11] is maximizing both &anarrow mass and the drug over the treatmentvalterere,
we consider an optimal control problem which isliking and covering all suggested problems by Ataamd
Chareyron [5], Fister and Panetta [7], and Ledzewitd Schattler[10,11].

By system (1) and constraint (2), we define andgesgthe following optimal control problem for borm&arrow
cells in cancer chemotherapy which has a lineadigis objective function:
maximize

|(P.QU)=LPT)+rQ()
(PP +rQ 0 PO +1 QO -1 LU ) +raE)d

subject to  pt) =(y-o-a-su(t))Pt)+R(t), (3)
Q) =aPt)-(A+BR0),
Pt)+Q(t)=p, 0<sut)<1,tO[OT ]
P(0)=FR,.Q(0)=Q,.

where P, and Q, are initial values of the proliferating and quiestcells mass in the bone marrow respectively.
Moreover, the proliferating and quiescent cells snesfinal timeT is P(T) and Q(T ), respectively . Here,
parametersr,,r,,...,r, and r; are given nonnegative weights which describing ithportance of each term in
objective function of problem (3) and satisfying tlellowing relations:

r,xro=0,r,xr,=0,r,xr = 0.

In optimal control problem (3), we maximize the lbdtone marrow cells and drug over treatment int¢oya ] .
The problem (3) forr, =0,i =1,2,...€ and r, :171, r, =0 is discussed in paper [5]. Indeed problem (3) for

rr=0,i =1,2,3,4,fandr, >0,i =5,6,7 is analyzed and discussed in paper [7] Moreovaial control problem
(3) is considered in paper [10,11] where=0,i =3,4,7 andr, >0,i =1,2,5,6,¢{ Thus, the suggested optimal

control problem (3) is including and covering ttensidered problems in all paper [5,7,10,11]. Howgetleere are
many well known works in dealing with cancer cheheoapy [12,13,14].

In this paper, we use the measure theory appraashlting optimal control problem (3). The struetwf paper is
as follows: In Section 2, we transform optimal ¢ohproblem (3) to the corresponding variationahfioIn Section
3, an optimization problem in measure space beesigd which appear to have good properties in sapect. In
Section 4, be introduced a finite linear programgnmproblem which by solving it we can approximatedimgl
measure. Section 5 is including a numerical exaraptethe conclusion of approach is given in Sediof paper.

2. VARIATIONAL FROM OF THE PROBLEM
In this paper, we assumea (.)=(x,(.).x,())= (P().Q()),J =[0,T] and U =[0,1].Moreover, assume the

proliferating and quiescent cells mass are boutyezbmpact se in [ % Now we have:

P)= | 2rpw) | = [[Ro(y-0-a-aw)pw) s 0 Jar @
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Q(T):J'(%Hj(t)jdt :J’(%+ap(t)—()l +,B)Q(t)jdt (5)

We define the following functions dd=J x A xU :
0.t xu)=(y-3-a-su@))x, )+ Bx, ),
g, x,u)=ax,t)-(A+B)x,). (6)

By (4), (5) and (6) we can write objective functiofproblem (3) as follows:
I (t,x,u):]'f t,x ,u)dt

where for ;II(t,x u)aQ

fx0)= CR 0 g, x )1, € X U XS O+ EE)

+1 5, (t) +rex ) ~ 1, (1-u )" +ru ) (7)

Definition 2.1: We cally = (x(.),u(.)) is an admissible pair if the following conditionsld:

I) The two-vector functionx (.) satisfiex(t) A , t 0J and be absolutely continuous dn.

1) The functionu(.) be Lebesgue measurable functiondmnd takes its values id .

[1) The two -vector functionx (.) satisfies boundary conditions(0) = (P,,Q,)andx (T ) =(P(T ),Q(T)).

IV) The pairy = (x(.),u(.)) satisfies equationX (t) = g (t,x ,u) whichg =(g,,9,) satisfies (6).

We suppose that the set of all admissible pairsoisempty and denote it ¥y . We are going to find an optimal
pair y” = (x"(.),u”(.))OW . Consider the following map:

A, :F OC(Q) —>jF(t,x,u)dt, (8

whereC (Q) is the space of all continuous function &. The transformationy - A, of the admissible pairs
y =(x(.),u(.))IW into mappingsA, defined in (8) is injection [15]. Now, leB be an open ball inl % containing
JxA andC'(B) be the space of all bounded real-valued continyadifferentiable functions on B such that the
first derivative is also bounded. We define funcgd for all ¢ 0C'(B) as follows:

¢g(t,x(t),u(t»=g—f+g(t,x(t),ua»g—"’, t0J. (©)

X

We have

[47 € X OUEN =BT X T )-ht,x t))=29. (10)

Now, let J, = (0,T ), we denote the space of all infinity differentialfienctions onJ, with compact support by
D(J,) and define

gt xeu)=x,; e t)+atxt)ut)ywt) ¢ODG,) j=12 (11)
Thus
jz//j @, x (t).u)dt =0, (12)

sincey(0) =g/ ) = 0. Moreover, ifC,(Q) be space of all function i€ (Q) that depends only on time, then
je(t,x(t),u(t )dt =a,, 60C,(Q), 13
J

wherea, is the integral of functiofon J .
We need to convert the inequality constraimigt) +x,(t) =2 p,t O[0,T ] to integral form. For this purpose we
define
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h(x,(t),%, ) =0 =X,(t) =X ,t) +[2=Xx,t) = x )| (14)

By (14), we can show the inequality constramft) +x,(t) = p,t O[0,T ] is equivalent to the following equality:
j h(x,(t),x,(t))dt =0.

J
Thus, the corresponding varitional form (or funotibform) of the problem (3) is as follows:

maximize  A(f) (15)
subject to  A(¢°) =Ag, ¢0OC'(B) (19
A@,)=0, ¢OD@,), j=12 (17)
AB) =a,, 60C,(Q) (18)
A(h)=0 (29)

where/\y(F):jF(t,x,u)dt , FOC(Q).

3. OPTIMIZATION IN THE MEASURE SPACE
In this section, we introduce an equivalent optaticn problem to optimal control problem (15)-(li@)measure
space. By the Riesz representation theorem [lGfetlists a positive Radon measute on Q such that

A, (F)=[Ft.xu)dt = [Fdu=u(F),

FOC(Q) (20
Here, the space of all positive Radon measureSowill be denoted by *(Q) . In measure theoretical approach
for obtaining optimal state and control of the genb (15)-(19) a measuge’ M *(Q) is identified such that be
equal to functionaV\yDWhere y”=(x"(),u”()) is an optimal admissible pair for problem (15))1&e topologize

the spaceM " (Q) by the weak— topology [16]. By relation (20) we can change peobl(15)-(19) as follows:
maximize u(f ) (21

y7ns]
where theS O M *(Q) is set of measures satisfying

H(P°)=0¢, u@;)=0,u@)=3,, £h)=0,
¢0C'(B), wOD(J,), 60C,(Q), j =1,2.

Proposition 3.1 (i) The functionall : #0S — w(F)O0 is continuous. (i) In the topology inducéyy weak.
topology onM *(Q) , setS is compact. (iii) There is an optimal measwélS such that

H(F) =§gspﬂF)

Proof: see [15].
Now, the maximizing problem (21) is an infinite dignsional problem. We are interested in approximatiothis

infinite dimensional problem by a finite dimensibpaoblem. Le{¢, OC'(B):i 00}, {x, OD(J,):h 00} and
{6,0C,(Q):sO0} are total sets i€'(B), D(J,) andC,(Q), respectively. Define
the setS(M,;,M ,,L) O M *(Q) of measures satisfying

HP)=40¢,, u(x,)=0, u@.)=a, uh)=0

. (22)
i=1,2,.M,,h=12.M, s= 121,

Now, let7(M;,M,,L)=sup u{ ). Then one can prove that(M,,M,,L) tends tsupu ) whileM,,

LOS(Mq,M,,L) uas

M, andL tend to infinity (see page 25 of book [15]).
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4. OPTIMAL MEASURE
Now, for triplez =(t,x,u)0Q, consider unitary atomic measuggz)OM *(Q) with support the singleton set

{7} as follows:

o(z)F =F(z), FOC(Q) (2<
As a result of Rosenbloofth7], if '(f )= sup € ) Then there exist coefficients, > 0 and pointsz, 0Q
S(M;,M,,L)
for k =1,2,...M such that
M
H'=3 al dz,) (24,
k=1

whereM =M, +M,+L . Thus using (22) and (24), we can approximate lprol{21) as the following nonlinear

optimization problem with decision variables and z, fork =1,2,..M :

maximize ia’k f(z,) 2%)

k=1
subject to

Zak #°(z,)=40¢ , Zak /Yh(zk):(),
k=1 k=1

M M
> a, 65(z,)=0,) a, h(z,)=0,a, 20,
k=1 k=1

h=12,.M,,s=12,.L k= 12,.M
whereM =M, +M, +L . The following proposition helps us to convert thenlinear problem (25) to the linear
programming problem.

Proposition 4.1: Let @ be a countable dense subset®find x'is satisfying (24). For giverr >0 there exists a
measurev OM *(Q) such that

(" -v)(F)| <&, | -v)ge) <e,

(W =v)00)| <&l -v)(6,)
i =1,2,..M, ,h=12,.M, s= 12,1,

<&

M
and measure/ has the formv = ZaE d(z,) where the coefficientr, for k =1,2,...M are the same as in the
k=1

optimal measure (24) and, Dw, k =1,2,...M

Proof: see page 29 of [15].

Thus, by attention to the above results, we obtiafollowing linear programming problem which hdecision
variablesr,, a,,.....ay :

N
maximize Y a, f (z,)

subject to Nzak #7 (z,) =09, szak Xn(z)=0, (26)

N N
Zakes(zk):as’ zak h(z,)=0,a, 20,
k=1 k=1

i =1,2,..M,,h=12.M, s= 12.L, k= 12M,

whereN [0 M andz,, k=1,2,..M is chosen fix point in th&™ grid of w. By solving the problem (26), we

N
gain coefficientsay, ay,....ay of measurey’which is a” 0 Y a,' 3(z,) .
k=1

Now, we may construct a piecewise constant opticmaitrol (which is optimal way to administer drug3ing
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coefficient a,’,a3,.....a based on given analysis in Section 5 of the Rubip[th addition, for known control we
can reach to the optimal state by solving dynamsgatemx = g(t,x ,u)using Runge-Kutta method in numerical

analysis.
In this paper, we choose functions in total dgts: i =1,2,...M,}, {x,,: h=1,2,...M,}and{6,: s=1,2,...,L} as
follows:

1 tJ )
Bs(t):{ S, g tx)=x", i=12,..M,
0 ow
. 2mht
sin ) h=12,.7%

t 1,
h =M
1-co M) h="2+172+ 2,.M,
£ to

WhereJS =( (s _1)I(:[f _to)’s(tf

X )=

L_tO) ),s=1,2,...L andM,is an even number.

Remark 4.2: Note that the se© =J x A xU must be covered with a grid, where the grid willdefined by taking
points inQ asz, =(t,,x,.u, ),k =1,2,..N .

5. NUMERICAL RESULTS
Consider the following optimal control problem ajrie marrow in cell-cycle-specific cancer chemotpgrahich
is special case of problem (3) and analyzed araigéed bys,7,11] :

maximize | (P,Q,U):TI(3P¢)+3? €)-(1-u¢ ))z)dt

subject to  p(t) =(y-Jd-a-su(t))P(t)+A(t). (27)
Qt)=aP(t)-(1+p)Q() 0su)<y,
P(0)=F,,Q(0)=Q, .t I[OT ].
Where the therapy interval 1 = 3and the numerical values of the problem are takem {7]:
y=147,0=564A= 0.160= O
£=048P, =1Q,=1s= 1.
Here, we set x =(x,,x,)=(P.Q), M, =2, M, =4, L =15and choose based functiog (.,.),i =1,2 and
Xo(,),h=1,2,3,<as follows:
gt x)=x,, 0, x)=X,
X)) =sin@t), x,t)=sin¢*),
Xs(t) =1-cosE®), x,{ )= & cos{®

Moreover, we assume thatO<x; <2,j=12( by attention to results of papers [5,7,11]) and
Q =[0,3]%][0, 2]x[0,2]x[0,1], and divide intervals[0,3], [0,2]and[0,1] to the 15, 8, and 10 equidistance
subintervals, respectively. By these assumptionfiavee N=9600. From above subintervals, we may dititt set

Q to the 9600 grid. By solving the correspondingdinprogramming (26) and applying analysis in $ach of the
Rubio [15] we obtain optimal states (bone marroveshand control (drug treatment) which are showhigures 1
and 2, respectively.
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Fig. 1. Optimal statesx,(.) = P(.) (Top) and x,(.) =Q(.) (Bottom) for problem (27)
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Fig. 2. Optimal control u(.) for problem (27)

CONCLUSION

We introduced measure theoretical approach forrabing the bone marrow dynamics in cell-cycle-sfiecancer
chemotherapy. By measure theory, we convert thénaptcontrol problem of bone marrow to an optimiaat
problem in measure space. The corresponding optiordtol problem be transfer into a modified praoblehich is
a type of an infinite dimensional linear programgjproblem whose its optimal solution can be appnated by
optimal solution of finite dimensional problem. Bily, we give the strategy applying drug where bdmbhe marrow
mass and the dose be maximized over the treatmienval.
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