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Abstract In this paper, a new analytical technique, called the Optimal Homotopy Perturbation Method
(OHPM), is suggested to solve a class of nonlinear Optimal Control Problems (OCP’s). Applying theOHPM to
a nonlinear OCP, the nonlinear Two-Point Boundary Value Problem (TPBVP), derived from the Pontryagin’s
maximum principle, is transformed into a sequence of linear time-invariant TPBVP’s. Solving the latter
problems in a recursivemanner provides the optimal trajectory and the optimal control law, in the form of
rapid convergent series. Furthermore, the convergence of obtained series is controlled through a number
of auxiliary functions involving a number of constants, which are optimally determined. In this study, an
efficient algorithm is also presented, which has low computational complexity and fast convergence rate.
Just a few iterations are required to find a suboptimal trajectory-control pair for the nonlinear OCP. The
results not only demonstrate the efficiency, simplicity and high accuracy of the suggested approach, but
also indicate its effectiveness in practical use.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

One of the most active research areas in the control theory
is optimal control, which has a wide range of applications in
different fields such as physics, economy, aerospace, chemical
engineering, robotic, etc. [1–4]. For linear time-invariant
systems, theory and application of optimal control have been
developed perfectly [5,6]. Although the optimal control of
nonlinear systems has been studied extensively, it is still
challenging.

In order to solve the nonlinear Optimal Control Problems
(OCP’s), many computational methods have been developed.
One familiar scheme is the State-Dependent Riccati Equation
(SDRE) technique [7]. Although this method has been widely
used in various applications, its major limitation is that it needs
solving a sequence of matrix Riccati algebraic equations. This
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property may take long computing time and large memory
space. Another scheme is called the Approximating Sequence
of Riccati Equations (ASRE) [8]. From a practical point of view
the ASRE is attractive; however, this scheme suffers from
computational complexity, since it needs solving a sequence
of linear quadratic time-varying matrix Riccati differential
equations.

To determine the optimal control law, there is another
approach using dynamic programming [9]. This approach leads
to the Hamilton–Jacobi–Bellman (HJB) equation that is hard
to solve in most cases. An excellent literature review on the
methods for solving the HJB equation is provided in [10], where
a Successive Galerkin Approximation (SGA) approach is also
considered. In the SGA, a sequence of generalized HJB equations
is solved iteratively to obtain a sequence of approximations
reaching eventually to the solution of HJB equation. However,
the above-mentioned sequence may converge very slowly or
even diverge.

The optimal control law can also be derived using the Pon-
tryagin’s maximum principle [11]. For the nonlinear OCP’s, this
approach leads to a nonlinear Two-Point Boundary Value Prob-
lem (TPBVP) that unfortunately in general cannot be solved
analytically. Therefore, many researchers have tried to find an
approximate solution for the nonlinear TPBVP’s [12]. In the re-
cent years, somebetter results have beenobtained. For instance,
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a new Successive Approximation Approach (SAA) has been pro-
posed in [13], where instead of directly solving the nonlinear
TPBVP, derived from the maximum principle, a sequence of
nonhomogeneous linear time-varying TPBVP’s is solved itera-
tively. It should be noted that solving time-varying equations is
much more difficult than solving time-invariant ones.

Recently, a growing interest has been appeared toward the
application of homotopy techniques in the nonlinear problems,
and many new methods have been introduced into the lit-
erature. In 1992, Liao [14] utilized the basic ideas of homo-
topy in topology to propose a general analytical technique,
namely theHomotopy AnalysisMethod (HAM), for solving non-
linear problems. The HAM approximates efficiently the solu-
tion of nonlinear problems by means of base functions, and
provides a great freedom for using different base functions.
This technique has been successfully applied to solve many
types of nonlinear problems [15–18]. In 1998, He [19] pro-
posed the Homotopy Perturbation Method (HPM) for solving
a large class of nonlinear problems. The HPM is a coupling of
the traditional perturbation method and the homotopy con-
cept as used in topology. This strategy has also been utilized
to solve many types of nonlinear problems, including fourth-
order parabolic equations [20], nonlinear boundary value prob-
lems [21], nonlinear partial differential equations of fractional
order [22], nonlinear coupled systems of reaction–diffusion
equations [23], integro-differential equations [24], delay differ-
ential equations [25], etc. In 2010, Marinca and Herişanu [26]
proposed a new analytical technique, called the Optimal Homo-
topy Perturbation Method (OHPM), for solving strongly nonlin-
ear differential equations. This technique starts from thebasis of
He’s HPM, but its homotopy structure is different. In the OHPM,
the nonlinear operator is expanded in a series with respect to
the parameter p, and a number of auxiliary functions are in-
troduced within the coefficients of this truncated power series.
These auxiliary functions depend on a number of unknown con-
stants, which ensure a rapid convergence of the obtained solu-
tion when they are optimally determined. In application, the
OHPM has been used to study the nonlinear behaviour of an
electrical machine rotor-bearing system [27].

The aim of this paper is to employ the OHPM for solving
a class of nonlinear OCP’s. To reach this goal, the optimal
trajectory and the optimal control law are determined in the
form of rapid convergent series. Moreover, the convergence
of obtained series is controlled through a number of auxiliary
functions involving a number of constants, which are optimally
determined. The main strength of the proposed technique is its
fast convergence. In fact, after only a few iterations it converges
to the exact solution of OCP, which proves that the suggested
approach is very efficient in practice.

The paper is organized as follows. Section 2 describes the
problem statement. The basic idea of OHPM is explained in
Section 3. In the following section, the OHPM is employed
to propose a new optimal control design strategy. Section 5
explains how to use the results of Section 4 in practice. In
Section 6, effectiveness of the proposed approach is verified by
solving a numerical example. Finally, conclusions and future
works are given in the last section.

2. Statement of the problem

Consider a nonlinear control system described by:
ẋ(t) = F(x(t)) + Bu(t), t ∈ [t0, tf ]
x(t0) = x0, x(tf ) = xf

(1)
where x ∈ Rn and u ∈ Rm are respectively the state and control
vectors, F : Rn

→ Rn is a nonlinear vector field, B is a constant
matrix of appropriate dimension, x0 ∈ Rn and xf ∈ Rn are
the initial and final state vectors, respectively. The objective
is to find the optimal control law u∗(t), which minimizes the
following quadratic performance index subject to the system in
Eq. (1):

J =
1
2

 tf

t0


xT (t)Qx(t) + uT (t)Ru(t)


dt, (2)

where Q ∈ Rn×n and R ∈ Rm×m are positive semi-definite and
positive definite matrices, respectively.

According to the Pontryagin’s maximum principle, the
optimality conditions are obtained as the following nonlinear
TPBVP:

ẋ(t) = −BR−1BTλ(t) + F(x(t))

λ̇(t) = −Qx(t) −


∂F(x(t))
∂x(t)

T

λ(t)

x(t0) = x0, x(tf ) = xf

(3)

where λ ∈ Rn is the co-state vector. Also, the optimal control
law is given by:

u∗(t) = −R−1BTλ(t) t ∈ [t0, tf ]. (4)

Unfortunately, Eq. (3) contains a nonlinear TPBVP that in
general cannot be solved analytically except in a few simple
cases. In order to overcome this difficulty, wewill introduce the
OHPM in the next section.

3. Basic idea of the OHPM

In order to explain the basic idea of OHPM, first we briefly
review the main points of He’s HPM. To this end, consider the
following nonlinear differential equation:

L(v(r)) + N(v(r)) = 0 r ∈ Ω, (5)

with the boundary condition:

B


v,
∂v

∂n


= 0 r ∈ Γ , (6)

where L is a linear operator, N is a nonlinear operator, Γ is
the boundary of domain Ω, B is a boundary operator, and ∂

∂n
denotes differential along the normal drawn outwards from Ω .

By means of He’s HPM, a homotopy is constructed for Eq. (5)
as follows:

H(ṽ, p) = L(ṽ) − L(vini) + p (L(vini) + N(ṽ)) = 0
p ∈ [0, 1] r ∈ Ω, (7)

where p ∈ [0, 1] is an embedding parameter called homotopy
parameter, and vini is an initial approximation for the solution
of Eq. (5), which satisfies the boundary condition in Eq. (6).
Obviously, when p = 0 and p = 1 it holds:

H(ṽ, 0) = L(ṽ) − L(vini) = 0, (8a)

H(ṽ, 1) = L(ṽ) + N(ṽ) = 0. (8b)

Thus, when p increases from zero to one, the trivial problem in
Eq. (8a) is continuously deformed to the problem in Eq. (8b).
Therefore, the changing process of p from zero to unity is just
that of ṽ from vini to v. In topology, this is called deformation,
and L(ṽ) − L(vini) and L(ṽ) + N(ṽ) are called homotopic.
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According to the He’s HPM, the embedding parameter p can
be used as a ‘small parameter’. Expanding ṽ in a power series
with respect to the parameter p, we obtain:

ṽ = ṽ(0)
+ pṽ(1)

+ p2ṽ(2)
+ · · · . (9)

Setting p = 1 in the above series results in the solution of Eq. (5)
as:

v = lim
p→1

ṽ = ṽ(0)
+ ṽ(1)

+ ṽ(2)
+ · · · (10)

which is the essence of He’s HPM.
We now explain themain idea of OHPM. Substituting ṽ from

Eq. (9) into N(ṽ) and then expanding N in a power series with
respect to the parameter p, we obtain:

N(ṽ) = N (ṽ) |p=0 +
∂N(ṽ)

∂p


p=0

p + · · ·

= N

ṽ(0)

+


∂N(ṽ)

∂ṽ

∂ṽ

∂p


p=0

p + · · ·

= N

ṽ(0)

+
∂N(ṽ)

∂ṽ


ṽ=ṽ(0)

ṽ(1)p + · · · . (11)

Then, we construct a new homotopy for Eq. (5) as follows:

H(ṽ, p) = L(ṽ) − L(vini) + p

L(vini) + K0(r, C0)N(ṽ(0))


+ p2


K1(r, C1)

∂N(ṽ)

∂ṽ


ṽ=ṽ(0)

ṽ(1)


+ · · · = 0, (12)

where Ki(r, Ci) for i = 0, 1, . . . is an auxiliary function, and Ci is
a vector of unknown constants. By equating the coefficients of
the same powers of p in Eq. (12), we obtain:

p0 : L(ṽ(0)) − L(vini) = 0, (13a)

p1 : L(ṽ(1)) + L(vini) + K0(r, C0)N(ṽ(0)) = 0, (13b)

p2 : L

ṽ(2)

+ K1(r, C1)
∂N(ṽ)

∂ṽ


ṽ=ṽ(0)

ṽ(1)
= 0,

... (13c)

and so on.
The functions K0, K1, . . . are not unique and can be chosen as

the same form of nonlinear operator N [26]. Also, the constant
Ci, that appears in the function Ki(r, Ci), can be optimally
determined by minimizing the following residual functional:

I =

 b

a


L(v(M)) + N(v(M))

2
dr, (14)

where a and b are two values depending on the given problem,
and v(M) is the Mth order approximate solution as:

v(M)
= ṽ(0)

+ ṽ(1)
+ · · · + ṽ(M). (15)

Once the parameter Ci is known, the solution of nonlinear
differential equation in Eq. (5) subject to the boundary
condition in Eq. (6) can be immediately determined.

In short, the main idea of OHPM is to construct the new
homotopy as Eq. (12), which contains a number of auxiliary
functions Ki(r, Ci). These auxiliary functions depend on several
unknown constants Ci which ensure a rapid convergence of the
obtained solution when they are optimally determined.

4. Optimal control design strategy via OHPM

In this section, we apply the OHPM for solving the nonlinear
TPBVP in Eq. (3). In order to perform this methodology, let
us define two operators F1(x(t), λ(t)) and F2(x(t), λ(t)) as
follows:

F1(x(t), λ(t)) , ẋ(t) + BR−1BTλ(t) − F(x(t)), (16)

F2(x(t), λ(t)) , λ̇(t) + Qx(t) +


∂F(x(t))
∂x(t)

T

λ(t). (17)

From the nonlinear TPBVP in Eq. (3) it is obvious that:

Fi(x(t), λ(t)) = 0 i = 1, 2. (18)

The operator Fi can generally be divided into a linear part Li and
a nonlinear part Ni, i.e. we can write:

Fi(x(t), λ(t)) = Li(x(t), λ(t)) + Ni(x(t), λ(t)) i = 1, 2. (19)

In accordance with Eqs. (16) and (17), Li and Ni for i = 1, 2 can
be defined as:
L1(x(t), λ(t)) , ẋ(t) + BR−1BTλ(t)
L2(x(t), λ(t)) , λ̇(t) + Qx(t)

(20a)
N1(x(t), λ(t)) , −F(x(t))

N2(x(t), λ(t)) ,


∂F(x(t))
∂x(t)

T

λ(t).
(20b)

Also, initial approximations for the solution of nonlinear TPBVP
in Eq. (3), i.e. xini(t) and λini(t), are chosen as the solution of
following linear time-invariant TPBVP:

L1(xini(t), λini(t)) = 0
L2(xini(t), λini(t)) = 0
xini(t0) = x0, xini(tf ) = xf .

(21)

Based on the OHPM, the solution of nonlinear TPBVP in Eq. (3)
can be expressed as:


x(t) = x̃(0)(t) + x̃(1)(t) + x̃(2)(t) + · · · =

∞
i=0

x̃(i)(t)

λ(t) = λ̃(0)(t) + λ̃(1)(t) + λ̃(2)(t) + · · · =

∞
i=0

λ̃(i)(t)

(22)

in which x̃(i)(t) and λ̃(i)(t) for i ≥ 0 are obtained by solving
the following sequence of linear time-invariant TPBVP’s in a
recursive manner:

p0 :


L1


x̃(0)(t), λ̃(0)(t)


− L1(xini(t), λini(t)) = 0

L2

x̃(0)(t), λ̃(0)(t)


− L2(xini(t), λini(t)) = 0

x̃(0)(t0) = x0, x̃(0)(tf ) = xf

(23a)

p1 :




L1(x̃(1)(t), λ̃(1)(t))
L2(x̃(1)(t), λ̃(1)(t))


+


L1(xini(t), λini(t))
L2(xini(t), λini(t))


+ K0(t, C0)


N1(x̃(0)(t), λ̃(0)(t))
N2(x̃(0)(t), λ̃(0)(t))


= 0

x̃(1)(t0) = 0, x̃(1)(tf ) = 0

(23b)
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p2 :




L1(x̃(2)(t), λ̃(2)(t))
L2(x̃(2)(t), λ̃(2)(t))


+ K1(t, C1)

×



∂N1(x, λ)

∂x

 x=x̃(0)(t)
λ=λ̃(0)(t)

x̃(1)(t)

+
∂N1(x, λ)

∂λ

 x=x̃(0)(t)
λ=λ̃(0)(t)

λ̃(1)(t)

∂N2(x, λ)

∂x

 x=x̃(0)(t)
λ=λ̃(0)(t)

x̃(1)(t)

+
∂N2(x,λ)

∂λ

 x=x̃(0)(t)
λ=λ̃(0)(t)

λ̃(1)(t)


= 0

x̃(2)(t0) = 0, x̃(2)(tf ) = 0,

... (23c)
and so on, where Ki(r, Ci) for i = 0, 1, . . . is an auxiliary
function, and Ci is a vector of unknown constants.

The parameter Ci can be optimally determined by minimiz-
ing the following residual functional:

I =

 tf

t0

2
i=1

Li(x(M)(t), λ(M)(t))

+ Ni(x(M)(t), λ(M)(t))
2
2 dt, (24)

where x(M)(t) and λ(M)(t) are the Mth order approximate
solutions as:

x(M)(t) =

M
i=0

x̃(i)(t)

λ(M)(t) =

M
i=0

λ̃(i)(t).

(25)

Finally, according to the previous discussions, the following
theorem can be stated:

Theorem 4.1. Consider theOCP of nonlinear system in Eq. (1)with
quadratic performance index in Eq. (2). Using the OHPM, the opti-
mal trajectory and the optimal control law can be determined as
follows:

x∗(t) =

∞
i=0

x̃(i)(t), t ∈ [t0, tf ]

u∗(t) = −R−1BT
∞
i=0

λ̃(i)(t), t ∈ [t0, tf ].
(26)

5. Practical implementation and suboptimal control design
strategy

In fact, it is almost impossible to obtain the optimal
trajectory and the optimal control law as in Eq. (26), since it
contains infinite series. In practice, the Mth order suboptimal
trajectory-control pair is obtained by replacing ∞ with a finite
positive integer M in Eq. (26) as follows:

x(M)(t) =

M
i=0

x̃(i)(t)

u(M)(t) = −R−1BT
M
i=0

λ̃(i)(t).
(27)

The integer M is generally determined according to a concrete
control precision. For example, the Mth order suboptimal
trajectory-control pair in Eq. (27) has the desired accuracy if for
a given positive constant ε > 0, the following condition holds: J (M)

− J (M−1)

J (M)

 < ε, (28)

where:

J (M)
=

1
2

 tf

t0


x(M)(t)

T
Qx(M)(t)

+

u(M)(t)

T
Ru(M)(t)


dt. (29)

In order to obtain an accurate enough suboptimal trajectory-
control pair, we present an iterative algorithm with low
computational complexity. This algorithm has also a relatively
fast convergence rate. Therefore, only a few iterations are
required to reach the desired accuracy. This fact reduces the size
of computations, effectively.

Algorithm.
Step 1. Obtain xini(t) and λini(t) from the linear time-invariant

TPBVP in Eq. (21). Set x̃(0)(t) = xini(t), λ̃(0)(t) = λini(t),
and i = 1.

Step 2. Calculate the ith order terms x̃(i)(t) and λ̃(i)(t) from the
sequence of linear time-invariant TPBVP’s in Eqs. (23a)–
(23c). Set M = i and calculate x(M)(t) and λ(M)(t) from
Eq. (25).

Step 3. Determine the unknown constant Cj, j = 0, . . . ,M − 1
by minimizing the residual functional in Eq. (24).

Step 4. Obtain x(M)(t) and u(M)(t) from Eq. (27), and then
calculate J (M) according to Eq. (29).

Step 5. If the inequality in Eq. (28) holds for the given small
enough constant ε > 0, go to step 6; else replace i by
i + 1 and go to Step 2.

Step 6. Stop the algorithm; x(M)(t) and u(M)(t) are accurate
enough.

6. Numerical example

In this section, we consider the optimal manoeuvres of a
rigid asymmetric spacecraft [28]. The Euler’s equations for the
angular velocities of spacecraft are given by:

ẋ(t) =

ẋ1(t)
ẋ2(t)
ẋ3(t)


=


−

(I3 − I2)
I1

x2(t)x3(t)

−
(I1 − I3)

I2
x1(t)x3(t)

−
(I2 − I1)

I3
x1(t)x2(t)


  

F(x(t))

+


1
I1

0 0

0
1
I2

0

0 0
1
I3


  

B

u1(t)
u2(t)
u3(t)


  

u(t)

, (30)

where x1, x2 and x3 are the angular velocities of spacecraft,
u1, u2, and u3 are control torques, I1 = 86.24 kg m2, I2 =

85.07 kg m2 and I3 = 113.59 kg m2 are the spacecraft principle
inertia.
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The quadratic performance index to be minimized is given
by:

J =
1
2

 100

0


xT (t)Qx(t) + uT (t)Ru(t)


dt, (31)

where:

Q =

0 0 0
0 0 0
0 0 0


, R =

1 0 0
0 1 0
0 0 1


.

In addition, the following boundary conditions should be
satisfied:x1(0) = 0.01 r/s, x2(0) = 0.005 r/s

x3(0) = 0.001 r/s
x1(100) = x2(100) = x3(100) = 0 r/s.

(32)

According to the Pontryagin’s maximum principle, the follow-
ing nonlinear TPBVP is obtained:

ẋ(t) =

ẋ1(t)
ẋ2(t)
ẋ3(t)



= −



λ1(t)
I21

λ2(t)
I22

λ3(t)
I23


  
−BR−1BT λ(t)

+


−

(I3 − I2)
I1

x2(t)x3(t)

−
(I1 − I3)

I2
x1(t)x3(t)

−
(I2 − I1)

I3
x1(t)x2(t)


  

F(x(t))

, (33a)

λ̇(t) =

λ̇1(t)
λ̇2(t)
λ̇3(t)



= −


−

(I1 − I3)
I2

x3(t)λ2(t) −
(I2 − I1)

I3
x2(t)λ3(t)

−
(I3 − I2)

I1
x3(t)λ1(t) −

(I2 − I1)
I3

x1(t)λ3(t)

−
(I3 − I2)

I1
x2(t)λ1(t) −

(I1 − I3)
I2

x1(t)λ2(t)


  

−


∂F(x(t))
∂x(t)

T
λ(t)

, (33b)

x(0) =

x1(0)
x2(0)
x3(0)


=

 0.01
0.005
0.001


r/s,

x(100) =

x1(100)
x2(100)
x3(100)


=

0
0
0


r/s, (33c)

and the optimal control law is given by:

u∗(t) =

u∗

1(t)
u∗

2(t)
u∗

3(t)


= −



λ1(t)
I1

λ2(t)
I2

λ3(t)
I3


  

−R−1BT λ(t)

t ∈ [0, 100]. (34)

For the nonlinear TPBVP in Eqs. (33a)–(33c), linear and
nonlinear operators Li and Ni are defined in accordance with
Eqs. (20a) and (20b). Then, the initial approximations, i.e. xini(t)
and λini(t), are obtained by solving the following linear time-
invariant TPBVP:

ẋini(t) =

ẋini,1(t)
ẋini,2(t)
ẋini,3(t)


= −



λini,1(t)
I21

λini,2(t)
I22

λini,3(t)
I23

 , (35a)

λ̇ini(t) =

λ̇ini,1(t)
λ̇ini,2(t)
λ̇ini,3(t)

 =

0
0
0


, (35b)

xini(0) =

xini,1(0)
xini,2(0)
xini,3(0)


=

 0.01
0.005
0.001


r/s,

xini(100) =

xini,1(100)
xini,2(100)
xini,3(100)


=

0
0
0


r/s, (35c)

where xini,j(t) and λini,j(t) are the jth elements of vectors xini(t)
and λini(t), respectively. By solving the linear TPBVP in Eqs.
(35a)–(35c), we obtain:

xini,1(t) = −0.0001t + 0.01
xini,2(t) = −0.00005t + 0.005
xini,3(t) = −0.00001t + 0.001
λini,1(t) = 0.7437337601
λini,2(t) = 0.3618452452
λini,3(t) = 0.1290268810.

(36)

Then, based on the proposedmethod in Section 4, the sequence
of linear time-invariant TPBVP’s in Eqs. (23a)–(23c) is solved in
a recursivemanner. Solving the linear TPBVP in Eq. (23a), x̃(0)(t)
and λ̃(0)(t) are obtained as:

x̃(0)
1 (t) = −0.0001t + 0.01
x̃(0)
2 (t) = −0.00005t + 0.005
x̃(0)
3 (t) = −0.00001t + 0.001

λ̃
(0)
1 (t) = 0.7437337601

λ̃
(0)
2 (t) = 0.3618452452

λ̃
(0)
3 (t) = 0.1290268810

(37)

where x̃(0)
j (t) and λ̃

(0)
j (t) are the jth elements of vectors x̃(0)(t)

and λ̃(0)(t), respectively.
Substituting x̃(0)(t) and λ̃(0)(t) from Eq. (37) into Eq. (23b)

and choosing K0(t, C0) = c00 + c01t + c02t2 where c0j
for j = 0, 1, 2 is unknown constant, Eq. (23b) becomes
a nonhomogeneous linear time-invariant TPBVP. Solving the
linear TPBVP in Eq. (23b), x̃(1)(t) and λ̃(1)(t) are obtained as:

x̃(1)
1 (t) = (−1.653525047 × 10−6c00

− 3.015834924 × 10−12c02
− 4.622920645 × 10−14c01)t
+ (−8.267625230 × 10−7c01
+ 2.480287570 × 10−8c00)t2

+ (−5.511750153 × 10−7c02
− 8.267625233 × 10−11c00
+ 1.377937539 × 10−8c01)t3

+ (−5.511750155 × 10−11c01
+ 9.645562772 × 10−9c02)t4

+ (−4.133812616 × 10−11c02)t5, (38a)
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x̃(1)
2 (t) = (3.214999411 × 10−6c00

− 5.066935000 × 10−13c02
− 1.266733750 × 10−14c01)t
+ (1.607499706 × 10−6c01
− 4.822499117 × 10−8c00)t2

+ (1.071666471 × 10−6c02
+ 1.607499706 × 10−10c00
− 2.679166176 × 10−8c01)t3

+ (1.071666470 × 10−10c01
− 1.875416324 × 10−8c02)t4

+ (8.037498529 × 10−11c02)t5, (38b)

x̃(1)
3 (t) = (5.150101215 × 10−7c00

− 2.548675675 × 10−12c02
− 6.371689186 × 10−14c01)t
+ (2.575050620 × 10−7c01
− 7.725151822 × 10−9c00)t2

+ (1.716700413 × 10−7c02
+ 2.575050607 × 10−11c00
− 4.291751021 × 10−9c01)t3

+ (1.716700407 × 10−11c01
− 3.004225717 × 10−9c02)t4

+ (1.287525306 × 10−11c02)t5, (38c)

λ̃
(1)
1 (t) = (2.242978248 × 10−8c02

+ 3.438222154 × 10−10c01
+ 7.555107281 × 10−12c00)
+ (−1.229782401 × 10−4c00)t
+ (6.148912005 × 10−7c00
− 6.148912005 × 10−5c01)t2

+ (4.099274670 × 10−7c01
− 4.099274670 × 10−5c02)t3

+ (3.074456002 × 10−7c02)t4, (38d)

λ̃
(1)
2 (t) = (3.666892675 × 10−9c02

+ 9.167231687 × 10−11c01
+ 3.666892675 × 10−3c00)
+ (2.326664500 × 10−4c00)t
+ (−1.163332250 × 10−6c00
+ 1.163332250 × 10−4c01)t2

+ (−7.755548333 × 10−7c01
+ 7.755548333 × 10−5c02)t3

+ (−5.816661250 × 10−7c02)t4, (38e)

λ̃
(1)
3 (t) = (3.288476730 × 10−8c02

+ 8.221191824 × 10−10c01
+ 3.288476730 × 10−11c00)
+ (6.645014900 × 10−5c00)t
+ (−3.322507450 × 10−7c00
+ 3.322507450 × 10−5c01)t2

+ (−2.215004967 × 10−7c01
+ 2.215004967 × 10−5c02)t3

+ (−1.661253725 × 10−7c02)t4, (38f)

where x̃(1)
j (t) and λ̃

(1)
j (t) are the jth elements of vectors x̃(1)(t)

and λ̃(1)(t), respectively.
Table 1: Simulation results of the proposed method at different iteration
times.

i (iteration time) Performance index value J (i)
 J(i)−J(i−1)

J(i)


0 0.004687795354 –
1 0.004688009428 4.566415731×10−5

Continuing as above, x̃(i)(t) and λ̃(i)(t) for i ≥ 2 are
obtained only by solving a nonhomogeneous linear time-
invariant TPBVP.

In order to obtain a suboptimal trajectory-control pair with
remarkable accuracy, we applied the proposed algorithm in
Section 5 with the tolerance error bound ε = 5 × 10−5. In
this case, convergence was achieved after only one iteration,
i.e.

 J(1)−J(0)

J(1)

 = 4.566415731 × 10−5 < 5 × 10−5, and a min-

imum of J (1) = 0.004688009428 was obtained. Also, follow-
ing the proposed procedure, the optimal values of constants
c0j, j = 0, 1, 2 were obtained as:

c00 = 0.953752782143730493,
c01 = −0.0126091120724424674,

c02 = −4.44834663666561910 × 10−5. (39)

Simulation results are listed in Table 1. From Table 1, it is ob-
served that very accurate results are obtained after only one it-
eration, which shows that the proposedmethod is very efficient
in practice.

Substituting the optimal values of constants from Eq. (39)
into Eqs. (38a)–(38f), and then substituting x̃(1)(t) and λ̃(1)(t)
from Eqs. (38a)–(38f) and x̃(0)(t) and λ̃(0)(t) from Eq. (37) into
Eq. (27) with M = 1, the first order suboptimal trajectory and
the first order suboptimal control law are obtained as follows:

x(1)
1 (t) = x̃(0)

1 (t) + x̃(1)
1 (t) = 0.01 − 1.015770541 × 10−4t

+ 3.408055302 × 10−8t2 − 2.280802189 × 10−10t3

+ 2.659146868 × 10−13t4 + 1.838863145 × 10−15t5

x(1)
2 (t) = x̃(0)

2 (t) + x̃(1)
2 (t) = 0.005 − 4.693368537 × 10−5t

− 6.626386345 × 10−8t2 + 4.434633580 × 10−10t3

− 5.170260734 × 10−13t4 − 3.575357955 × 10−15t5

x(1)
3 (t) = x̃(0)

3 (t) + x̃(1)
3 (t) = 0.001 − 9.508807663 × 10−6t

− 1.061479523 × 10−8t2 + 7.103830790 × 10−11t3

− 8.28223045 × 10−14t4 − 5.727358866 × 10−16t5

(40a)



u(1)
1 (t) = −R−1BT (λ̃

(0)
1 (t) + λ̃

(1)
1 (t))

= −8.624000001 × 10−3
+ 1.360051468 × 10−6t

− 1.579055426 × 10−8t2 + 3.879083839 × 10−11t3

+ 1.585835577 × 10−13t4

u(1)
2 (t) = −R−1BT (λ̃

(0)
2 (t) + λ̃

(1)
2 (t))

= −4.253500001 × 10−3
− 2.608513858 × 10−6t

+ 3.028553004 × 10−8t2 − 7.439897817 × 10−11t3

− 3.041557012 × 10−13t4

u(1)
3 (t) = −R−1BT (λ̃

(0)
3 (t) + λ̃

(1)
3 (t))

= −1.135900000 × 10−3
− 5.579453691 × 10−7t

+ 6.477892070 × 10−9t2 − 1.591349235 × 10−11t3

− 6.505706859 × 10−14t4

(40b)

where x(1)
j (t) and u(1)

j (t), are the jth elements of vectors
x(1)(t) and u(1)(t), respectively. Simulation curves of the state
trajectories and control laws, computed by the suggested
technique, have been shown in Figures 1–6. Besides, simulation
curves have been obtained by directly solving the nonlinear
TPBVP in Eqs. (33a)–(33c), using the collocation method [12].
Figures 1–6 show that the obtained solutions by the proposed
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Figure 1: Simulation curves of x1(t) computed by the proposed method and
collocation method.

Figure 2: Simulation curves of x2(t) computed by the proposed method and
collocation method.

Table 2: Simulation results of the He’s HPM at different iteration times.

i (iteration time) Performance index value J (i)
 J(i)−J(i−1)

J(i)


0 0.004687795354 –
1 0.004688452416 1.401447518×10−4

2 0.004687810140 1.370098150×10−4

3 0.004687795533 3.115963548×10−6

approach are nearly identical with those of the collocation
method. Moreover, in comparisonwith the collocationmethod,
our computing procedure is very straightforward, which can be
done by pencil and paper only.

We have also solved the aforementioned OCP by solving
the nonlinear TPBVP in Eqs. (33a)–(33c) via He’s HPM [19].
Simulation results are listed in Table 2.

Comparing Tables 1 and 2 verifies that the OHPM is superior
to the He’s HPM; it converges after only one iteration while the
HPM converges after 3 iterations.
Figure 3: Simulation curves of x3(t) computed by the proposed method and
collocation method.

Figure 4: Simulation curves of u1(t) computed by the proposed method and
collocation method.

Figure 5: Simulation curves of u2(t) computed by the proposed method and
collocation method.

7. Conclusions

This paper presented a new analytical technique, called the
OHPM, for solving a class of nonlinear OCP’s. The proposed
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Figure 6: Simulation curves of u3(t) computed by the proposed method and
collocation method.

method avoids directly solving the nonlinear TPBVP or the
HJB equation. Furthermore, despite the other approximate
approaches such as SAA [13], ASRE [8], SDRE [7] and SGA [10],
the suggested technique keeps away from solving a sequence
of linear time-varying TPBVP’s or a sequence of matrix
Riccati differential (or algebraic) equations or a sequence
of generalized HJB equations. It only requires solving a
sequence of linear time-invariant TPBVP’s, and it needs only
a few iterations to obtain a remarkable accuracy due to
its fast convergence. Therefore, in view of computational
complexity, the proposed method is more practical than the
other approximate approaches. Future works can be focused
on extending this method for solving more general form of
nonlinear OCP’s than one, which was considered in this paper.
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