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Abstract: 
This paper consider on multi-objective resource allocation problem (MORAP). To solve a hypothetical MORA problem, simulated annealing algorithm 

was used. Results showed that simulated annealing is very efficient to solve this problem. At the end of paper we provide results of running the algorithm 

in various size problems and we conclude simulated annealing can be an appropriate choice to solve a MORAP. 
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1- Introduction 

 

Recently, some researchers have adopted computational 

optimization techniques, such as genetic algorithms and 

simulated annealing to solve TCTP. Feng et al. and Chua 

et al.proposed models using genetic algorithms and the 

Pareto front approach to solve construction time-cost 

trade-off problems. These models mainly focus on 

deterministic situations. However, during project 

implementation, many uncertain variables dynamically 

affect activity durations, and the costs could also change 

accordingly. Examples of these variables are weather, 

space congestion, productivity level, etc. To solve 

problems of this kind, PERT has been developed to deal 

with uncertainty in the project completion time. PERT 

does not take into account the time-cost trade-off. 

Therefore, combining the aforementioned concepts to 

develop a time-cost trade-off model under uncertainty 

would be beneficial to scheduling engineers in forecasting 

a more realistic project completion time and cost. In this 

paper, we develop a multi-objective model for the time-

cost trade-off problem in PERT networks, using a genetic 

algorithm. It is assumed that the activity durations are 

independent random variables with generalized Erlang 

distributions. It is also assumed that the amount of resource 

allocated to each activity is controllable, where the mean 

duration of each activity is a non-increasing function of 

this control variable. The direct cost of each activity is also 

assumed to be a non-decreasing function of the amount of 

resource allocated to it. The problem is formulated as a 

multi-objective optimal control problem, where the 

objective functions are the project direct cost (to be 

minimized), the mean of the project completion time 

(min), its variance (min) and the probability that the 

project completion time does not exceed a given level 

(max). Then, we apply the goal attainment technique, 

which is a variation of the goal programming technique, to 

solve this multi-objective problem. 

For the problem concerned in this paper, as a general 

purpose solution method for non-linear programming 

problems, in order to consider the nonlinearity of problems 

and to cope with large-scale problems, we apply the 

revised GENOCOP V, developed by Suzuki which is a 

direct extension of the genetic algorithm for numerical 

optimizations of constrained problems (GENOCOP), 

proposed by Koziel and Michalewicz  Three factorial 

experiments are performed to identify appropriate genetic 

algorithm parameters that produce the best results within a 

given execution time in the three typical cases with 

different configurations. Moreover, an experiment in 

randomized block design is conducted to study the effects 

of three different methods of solving this problem, 

including the SA, on the objective function value and on 

the computational time. 

 

 2- SA algorithm for numerical optimizations of 
constrained problems 
The simulated annealing algorithm is derived from the 

field of statistical mechanics. It follows a slow cooling 

process called ‘annealing’ to estimate the ground state 

energy of a matter (Van Laarhoven and Aarts, 1987). 

Metropolis and his colleagues developed an algorithm 

based on annealing principle to simulate a solid to thermal 

equilibrium (Luke, 2002). Krikpatrick, Gelatt, and Vecchi 

(1983) and C�rney (1985) successfully illustrated the 

application of this algorithm to optimize a combinatorial 

problem. The state of the solid, its energy and temperature 

were represented by the search space, the cost function and 

the control parameter of a combinatorial problem 

respectively. Simulated annealing performs better than any 

local optimization method and yields a solution close to 

global optimum (Fleischer, 1995). It is mainly attributed to 

the occasional acceptance of the higher cost function, 
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which enables to escape f

minimum. The acceptance of deteriorated cost function is 

probabilistically

(P

where Fi is the cost function (energy) at current state 

(configuration) i ; Fj 

new state j and T is the control parameter (temperature).

The probability of acceptance of higher cost function, Fj is 

found by comparing the value of the

(P) to the uniformly distributed random nu

between 0 and 1. If the value of

higher cost function Fj and new configuration j is accepted 

otherwise it is rejected.

delivered acceptable and efficient solutions for a wide 

range of

traveling salesman problem, circuit design ( Krikpatrick,

Gelatt, and Vecchi, 1983)

Aragon, McGeoch, and Schevon, 1989), job shop

scheduling (Van Laarhoven, Aarts, and Lenstra, 1992),

harvesting scheduling (Lockwood and Moore,

the land allocation problem (Aerts , 2002).

implementation of simulated annealing requires the 

definition of the following parameters specific to

problem; the search space, the new solution genera

mechanism, the cost function and a cooling

including the initial control parameter or temperature, the 

decrease rate, number of iterations per

stage and the stopping rule (Pirlot, 1996; Sunderman, 

1996). In a MOLAA problem, 

initial solution generated by random allocation of land uses 

satisfying the area

alternative. The summation of the cost of each land unit 

with respective

cost function Fi and is subjected to minimization. A new

solution j is generated 

units and exchanging the land uses between them.

cost function Fj is compa

Fi. All new solutions with im

function (Fj < Fi ) ar

solution with higher cost function (Fj >

is probabilistically determin

The algorithm starts at a

parameter and is decreased by a specified rate after 

completion of a stated

stopped at the point when all swaps are unable to reduce 

the cost

flowchart of simulated anne

shown in figure 1.
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which enables to escape from

minimum. The acceptance of deteriorated cost function is 

probabilistically determined by the Metropolis Criterion 

) as given by equation (1).

where Fi is the cost function (energy) at current state 

(configuration) i ; Fj is the cost function of the

new state j and T is the control parameter (temperature).

The probability of acceptance of higher cost function, Fj is 

found by comparing the value of the

(P) to the uniformly distributed random nu

between 0 and 1. If the value of

higher cost function Fj and new configuration j is accepted 

otherwise it is rejected. This procedure has successfully 

delivered acceptable and efficient solutions for a wide 

combinatorial optimization problems such as the 

traveling salesman problem, circuit design ( Krikpatrick,

Gelatt, and Vecchi, 1983), graph partitioning ( Johnson, 

Aragon, McGeoch, and Schevon, 1989), job shop

scheduling (Van Laarhoven, Aarts, and Lenstra, 1992),

harvesting scheduling (Lockwood and Moore,

the land allocation problem (Aerts , 2002).

implementation of simulated annealing requires the 

definition of the following parameters specific to

problem; the search space, the new solution genera

mechanism, the cost function and a cooling

including the initial control parameter or temperature, the 

decrease rate, number of iterations per

stage and the stopping rule (Pirlot, 1996; Sunderman, 

1996). In a MOLAA problem, 

initial solution generated by random allocation of land uses 

satisfying the area requirement for each land use 

alternative. The summation of the cost of each land unit 

with respective land use at the initial solution i equal to the 

cost function Fi and is subjected to minimization. A new

solution j is generated by random selection of two land 

units and exchanging the land uses between them.

cost function Fj is compared with previous cost function 

Fi. All new solutions with im

function (Fj < Fi ) are always accepted. In case of a 

solution with higher cost function (Fj >

is probabilistically determin

The algorithm starts at a high value of the initial contro

parameter and is decreased by a specified rate after 

completion of a stated number of swaps. The algorithm is 

stopped at the point when all swaps are unable to reduce 

function throughout a control parameter stage. The 

flowchart of simulated annealing for a MOLAA

shown in figure 1. 
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Since one month deviation from the mean project 

completion time is considered

variance and also 20 and 5 times as important as

thousand dollars deviation from the project direct 

the probability

exceed the threshold, respectively,

attainment of the goals are considered as (c1 = 0.7407,

= 0.037, c3 = 0.037, c4 

following b vectors are al

indicates cases: Case I: (b1 = 25, b2 = 8, b3 = 25,

b4 = 0.98), Case II: (b1 = 40, b2 = 1.5, b3 = 0.7, b4 

0.95), and Case III:

(b1 = 65, b2 = 5, b3 = 3.5, b4 

stage the fixed values

three cases, but in the next experiments we

different sets of b and c in each case.

 

4. 
Activity time is the elapsed time required for an activity. 

Estimating activity times is probably

critical features. Agribusiness firms are often so closely 

linked with

susceptible to seasonal fluctuations and market

as producers. Consequently, agribusiness managers are 

reluctant to commit

Weather conditions, alone, prompt uncertainties and make 

it

estimate. However, experience has shown that

are less reluctant if allowed three different estimates, 

especially when they understand

concept of three time estimates is used. PERT, therefore, 

calls for not one,

and allows the manager an opportunity to express his

uncertainty about the possible time

three time estimates assume a static level of re

The estimates should be as good
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critical features. Agribusiness firms are often so closely 

agricultural production that they become as 

susceptible to seasonal fluctuations and market

as producers. Consequently, agribusiness managers are 

reluctant to commit themselves to a rigid time schedule. 

Weather conditions, alone, prompt uncertainties and make 

difficult for the manager to develop a single time 

estimate. However, experience has shown that

are less reluctant if allowed three different estimates, 

specially when they understand

concept of three time estimates is used. PERT, therefore, 

calls for not one, but three estimates of every activity time 

and allows the manager an opportunity to express his

uncertainty about the possible time

three time estimates assume a static level of re

The estimates should be as good
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