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Abstract

This paper makes a survey on the linear stationary first-order(degree) iterative

methods for solving the linear systems. Some techniques of preconditioning which

improve the rate of convergence of these iterative methods are presented. Some

comparison results between Jacobi iterative method with the modified precondi-

tioned simultaneous displacement (MPSD) iteration and other iterations are given.

As well as, a new iterative method based on a block splitting of the coefficient ma-

trix is developed. Convergence analysis of the proposed method is provided. Some

results comparing the Jacobi iterative method with the new method are presented.

Numerical examples are also given to illustrate our results.
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1 Introduction

Assume we are given the linear system of algebraic equations

Ax = b, A ∈ Cn,n, b ∈ Cn,n\{0}, (1.1)

and det(A) 6= 0 so that the uniqueness of its solution is guaranteed. The simplest iterative

method for the numerical solution of (1.1) is based on a splitting of A

A = M −N, (1.2)
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with det(M) 6= 0 and M easily inverted. Thus (1.1) is written equivalently as

x = Tx + c, T = M−1N, c = M−1b. (1.3)

which yields the following iterative scheme for the solution of (1.1):

x(m+1) = Tx(m) + c, m = 0, 1, 2, . . . , (1.4)

The initial vector x(0) ∈ Cn can be arbitrary; if a good guess of the solution is available,

it should be used for x(0). We say that the iterative method in Eq. (1.4) converges if it

converges for any initial vector x(0). A sequence of vectors x(1), x(2), . . . can be computed

from Eq. (1.4), and our objective is to choose M so that

(i) the sequence {x(m)} is easily computed,

(ii) the sequence {x(m)} converges rapidly to the solution.

As is Known a sufficient and necessary condition for (1.4) to converge, to the solution

x = A−1b = (I − T )−1c of (1.1), is ρ(T ) < 1, where ρ(.) denotes spectral radius, while a

sufficient condition for convergence is ‖T‖ < 1, where ‖.‖ denotes matrix norm induced

by a vector norm (see, e.g. [33], [36], [1]). Let ω ∈ C \ {0} be the so-called extrapolated

parameter and let us, based on (1.2), consider the splitting

A = Mω −Nω, Mω = (1/ω)M, Nω = (1/ω)[(1− ω)M + ωN ], (1.5)

and construct, for the solution of (1.1) the iterative (or extrapolation) method

x(m+1) = Tωx(m) + cω, m = 0, 1, 2, . . . , (1.6)

where

Tω = (1− ω)I + ωT, cω = ωc

Our problem now is that of finding ω′s for which ρ(Tω) < 1 and among them to choose

the one ωb which minimizes ρ(Tω). Now assume:

(i) the convex hull H(T ) of the spectrum σ(T ) of T (namely the smallest convex polygon

containing all the eigenvalues of T in the closure of its interior) is known and
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(ii) 1 /∈ H(T ).

Then the optimization problem posed previously possesses a unique solution.

Assume that A in (1.1) is written as

A = DA − LA − UA, (1.7)

where DA, LA, UA, are any matrices, with det(DA) 6= 0 and D−1
A easily computed, and

define

L == D−1
A LA, U = D−1

A UA, c := D−1
A b.

Then (1.1) is written equivalently as

(I − L− U)x = c, (1.8)

where, throughout this paper, L and U will be considered as strictly lower and strictly

upper triangular matrices unless otherwise stated. Without loss of generality it may be

assumed that

A = I − L− U, (1.9)

the matrix coefficient in (1.7). In the sequel we will use either (1.7) or (1.9), whichever is

the most convenient.

1.1 Some special matrices

Definition 1.1. A matrix A ∈ Cn,n is said to be Hermitian if and only if (iff) AH = A,

where the superscript H denotes complex conjugate transpose. (A real Hermitian matrix

is a real symmetric matrix and there holds AT = A; where T denotes transpose.)

Definition 1.2. An Hermitian matrix A ∈ Cn,n is said to be positive definite iff xHAx >

0,∀x ∈ Cn\{0}. (For A real symmetric, the condition becomes xT Ax > 0,∀x ∈ Rn\{0}).

Definition 1.3. (see [33].) A matrix A is said to be irreducible if the directed graph

associated with A is strongly connected.
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Definition 1.4. A matrix A is irreducibly diagonally dominant if A is irreducible and

|aii| ≥
i=n∑

j=1,j 6=i

|aij|, i = 1, . . . , n;

with strict inequality for at least one i.

Notation 1.5. Let A, B ∈ <n×n. If aij ≥ bij (aij > bij), i, j = 1, 2, . . . , n, we write A ≥ B

(A > B). The same notation applies to vectors x, y ∈ <n.

Definition 1.6. If A ∈ <n×n satisfies A ≥ 0(> 0) then it is said to be nonnegative

(positive). The same terminology applies to vectors x ∈ <n.

Theorem 1.7. (see [33].). Let A ≥ 0 be an n×n matrix. Then ρ(A) is an eigenvalue of

A, and there exists a nonnegative eigenvector of A associated with ρ(A).

Notation 1.8. Let A ∈ Cn×n. Then |A| denotes the matrix whose elements are the

modula of the elements of A. The same notation applies to vectors x ∈ Cn.

Theorem 1.9. (see [33], [36].) Let A ∈ Cn×n and B ∈ <n×n satisfy 0 ≤ |A| ≤ B, then

0 ≤ ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Definition 1.10. (see [36].) A matrix A ∈ <n×n is called a Z-matrix if for any i 6= j,

aij ≤ 0; an L-matrix if it is a Z-matrix with aii > 0, i = 1, 2, . . . , n.

Definition 1.11. A matrix A ∈ <n×n is said to be an M -matrix if aij ≤ 0, i 6= j =

1, 2, . . . , n, A is nonsingular and A−1 ≥ 0.

Theorem 1.12. (see [33].) Let A = (aij) and B = (bij) satisfy A ≤ B and bij ≤ 0, for

i 6= j. If A is an M-matrix, then B is an M-matrix

Definition 1.13. A matrix A ∈ Cn×n is said to be an H-matrix if its comparison matrix,

that is, the matrix 〈A〉 with elements αii = |aii|, i = 1, 2, . . . , n, and αij = −|aij|,
i 6= j = 1, 2, . . . , n, is an M -matrix.

Lemma 1.14. (see [14].) A is an H-matrix if and only if there exist a vector r > 0 such

that 〈A〉r > 0.
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Theorem 1.15. (see [33].) If A ≥ 0 is an H-matrix, then the following are equivalent:

(1) α > ρ(A)

(2) αI − A is nonsingular, and (αI − A)−1 ≥ 0.

Definition 1.16. (see [33].) A splitting (??) of a nonsingular matrix A ∈ <n×n is said to

be regular if M−1 ≥ 0 and N ≥ 0.

Theorem 1.17. (see [33].) Let A = M1 −N1 = M2 −N2 be two regular splittings of A,

where A−1 ≥ 0. If N2 ≥ N1 ≥ 0, then, 0 ≤ ρ(M−1
1 N1) ≤ ρ(M−1

2 N2) < 1.

Definition 1.18. A matrix A ∈ Cn,n possesses Young’s ”property A” if there exists a

permutation matrix P such that

PAP T =

 D1 B

C D2

 , (1.10)

where D1, D2 are nonsingular diagonal matrices not necessarily of the same order. A

special case of Young’s ”property A” is what Varga calls two-cyclic consistently ordered

property [33].

Definition 1.19. A matrix A ∈ Cn,n is said to be two-cyclic consistently ordered if

σ(D−1(αL + (1/a)U)) is independent of α ∈ C \ {0}.

Among others, matrices that possess both Young’s ”property A” and Varga’s ”two-

cyclic consistently ordered property” are the tridiagonal matrices, with nonzero diagonal

elements, and the matrices that have already form (1.10).

Varga generalized the concept of two-cyclic consistently ordered matrices to what he

called (block) p-cyclic consistently ordered.

Definition 1.20. A matrix A ∈ Cn,n in the block form

A =


A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

. . .
...

Ap1 Ap2 · · · App

 (1.11)
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is said to be (block) p-cyclic consistently ordered if σ(D−1(αL+(1/αp−1)U)) is independent

of α ∈ Cn \ {0}.

The best representative of such a block partitioned matrix will be the following:

A =



A11 0 0 · · · A1p

A21 A22 0 · · · 0

0 A32 A33 · · · 0
...

...
. . . . . .

...

0 0 · · · Ap,p−1 App


(1.12)

The block form of generalized (q, p−q)-cyclic consistently ordered matrices is the following:

A =



A11 0 · · · 0 A1,p−q+1 0 · · · 0

0 A22 · · · 0 0 A2,p−q+2 · · · 0
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · Aqp

Aq+1,1 0 · · · 0 0 0 0 0
...

...
...

...
...

...

0 0 · · · Ap,p−q 0 0 · · · App


(1.13)

where the diagonal blocks satisfy the same restrictions as in (1.11) and p and q are

relatively prime. Obviously, for q = 1 the generalized (1; p−1)-cyclic consistently ordered

matrices reduce to the block p-cyclic consistently ordered ones of the previous section.

2 Iterative methods

2.1 Richardson method

We consider the Richardson method, in which M = I and N = I −A is chosen to be the

identity matrix of order n. Eq. (1.4) in this case is as follows:

x(m+1) = (I − A)x(m) + b,
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and the Richardson iteration matrix is T = (I−A). In this approach the sequence {x(m)}
is easily computed, but the rate of convergence of the sequence {x(m)} is very slow. By

this method we have

ρ(T ) =
n

max
i=1

{|1− λi(A)|}.

So, when A is a symmetric positive definite matrix, then the Richardson method converges

if and only if ρ(A) < 2 [13].

2.2 The extrapolated Richardson (ER) method

Another iterative method is the ER iteration, in which M = 1
α
I and N = 1

ω
(I − ωA),

where ω > 0 is called the extrapolation parameter. In this case we have

x(m+1) = (I − ωA)x(m) + ωb,

and the ER iteration matrix as T = (I − ωA). When A is a symmetric positive definite

matrix, it can be shown that the method converges for any scalar ω satisfies

0 < ω <
2

M(A)

where M(A) is the largest eigenvalue of A. The optimal extrapolation parameter would

be

ωb =
2

m(A) + M(A)

where m(A) and M(A) are the smallest and the largest eigenvalues of A, and in this case

we have

ρ(T ) =
M(A)−m(A)

M(A) + m(A)

(see [13]).

2.3 Jacobi method

The Jacobi iteration is defined by M = I and N = L + U . So, we have

TJ = (L + U)

x(m+1) = (L + U)x(m) + b, (2.1)
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For the Jacobi method the sequence x(m) is easily computed, and the rate of convergence

is better than the Richardson’s method.

Theorem 2.1. Let matrix A in Eq. (1.1) be strictly diagonally dominant or irreducibly

diagonally dominant, then the Jacobi method converge to A−1b for any arbitrary initial

value x(0).

Theorem 2.2. Let A = I −B be a nonnegative H-matrix, then TJ = B and

(1) 1 < ρ(A) < 2;

(2) ρ(B) = ρ(A)− 1;

(3) ρ(B) < 1.

(see [15]).

2.4 Jacobi Overrelaxation (JOR) method

If we use the Jacobi method with an extrapolation parameter ω, i.e., M = 1
ω
I and

N = 1
ω
[(1−ω)I + ω(L + U)], we have the extrapolated Jacobi method which is called the

JOR method by Young [36]. Thus we have

TJOR = (1− ω)I + ω(L + U)

x(m+1) = [(1− ω)I + ω(L + U)]x(m) + ωb, (2.2)

When A is a symmetric positive definite matrix, we can show [13] that

ωb =
2

2−m(TJ)−M(TJ)

where m(TJ) and M(TJ) are the smallest and the largest eigenvalues of TJ , (see [13]).

Theorem 2.3. Let matrix A in Eq. (1.1) be strictly diagonally dominant or irreducibly

diagonally dominant, then the JOR methods with 0 ≤ ω ≤ 1 converges to A−1b for any

arbitrary initial value x(0).
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2.5 Gauss-Seidel method

Let us first observe forward Gauss-Seidel iteration and then observe the backward Gauss-

Seidel iteration. The forward Gauss-Seidel is defined by letting M = I − L and N = U .

So, we have

TGS = (I − L)−1U

x(m+1) = (I − L)−1Ux(m) + (I − L)−1b, (2.3)

The backward Gauss-Seidel is defined by letting M = I − U , N = L. So, we have

TGSB = (I − U)−1L

x(m+1) = (I − U)−1Lx(m) + (I − U)−1b, (2.4)

Theorem 2.4. Let matrix A in Eq. (1.1) be strictly diagonally dominant or irreducibly

diagonally dominant, then the Gauss-Seidel converges to A−1b for any arbitrary initial

value x(0).

2.6 The extrapolated Gauss-Seidel (EGS) method

The forward extrapolated Gauss-Seidel (EGS) method is defined by M = 1
ω
(I − L), and

N = 1
ω
[(1− ω)(I − L) + ωU ] where ω is the extrapolation parameter. So, we have

TEGS = (1− ω)I + ω(I − L)−1U,

x(m+1) = ((1− ω)I + ω(I − L)−1U)x(m) + ω(I − L)−1b. (2.5)

Similarly the backward EGS method can be obtained by letting M = 1
ω
(I − U), and

N = 1
ω
[(1− ω)(I − U) + ωL]

Theorem 2.5. Let A be irreducibly diagonally dominant, then the EGS method converges

for 0 < ω ≤ 1.

The following theorems have been proved in [24].

Theorem 2.6. If A is a two-cyclic consistently ordered matrix with nonzero diagonal

elements and TJ has real eigenvalues, then ρ(TEGS) < 1 if and only if ρ(TJ) < 1 and

0 ≤ ω < 2.
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Theorem 2.7. Let A be a two-cyclic consistently ordered matrix with nonzero diagonal

elements such that TJ has real eigenvalues with ρ(TJ) < 1. If we let

ωb =
2

2− (ρ(TJ))2

then ρ(TEGS) is minimized and its corresponding value is ρ(TEGS) = ωb(ρ(TJ ))2

2

Theorem 2.8. Under hypotheses of the previous theorem and by ωb and R(M) = −logρ(M)

as the asymptotically rate of convergence of matrix M , we have

lim
ρ(TJ )→1−

R(TEGS)

R(TJ)
= 2

2.7 The successive overrelaxation (SOR) method

The next important iterative methods are known as forward and backward Successive

Over-Relaxation methods commonly abbreviated as SOR. The forward SOR iterative

method is defined by M = 1
ω
(I − ωL), N = 1

ω
[(1− ω)I + ωU ] and we have

TSOR = (I − ωL)−1[(1− ω)I + ωU ],

x(m+1) = (D − ωL)−1[(1− ω)I + ωU ]x(m) + ω(I − ωL)−1b. (2.6)

Evidently the forward SOR method (2.6) is reduced to the forward Gauss-Seidel method

for ω = 1 . Similarly, the backward SOR iteration is defined by letting M = 1
ω
(I − ωU)),

N = 1
ω
[(1 − ω)I + ωL] and the backward SOR method reduces to the backward Gauss-

Seidel method for ω = 1.

The following theorems have been proved in [33].

Theorem 2.9. (Kahan). A necessary condition for the SOR method to converge is |ω −
1| < 1. (For ω ∈ R this condition becomes ω ∈ (0, 2).)

Theorem 2.10. (Reich-Ostrowski-Varga). Let A = D−E−EH ∈ Cn,n be Hermitian, D

be Hermitian and positive definite, and det(D−ωE) 6= 0,∀ω ∈ (0, 2). Then, ρ(TSOR) < 1

iff A is positive definite and ω ∈ (0, 2). (Note: Notice that except for the restrictions in

the statement the matrices D, E ∈ Cn,n must satisfy, they can be any matrices!)
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Theorem 2.11. Let A be an irreducibly diagonally dominant matrix. Then the SOR

method converge for 0 ≤ ω ≤ 1.

A theorem connecting spectral radii of the Jacobi and the Gauss-Seidel iteration ma-

trices associated with an L-matrix A was given originally by Stein and Rosenberg. In

Young [36] a form of it that includes the spectral radius of the SOR iteration matrix is

given below. Its proof is mainly based on the Perron-Frobenius theory.

Theorem 2.12. If A ∈ Rn,n is an L-matrix and ω ∈ (0, 1], then:

(a) ρ(TJ) < 1 iff ρ(TSOR) < 1.

(b) ρ(TJ) < 1 iff A is an M-matrix, if ρ(TJ) < 1 then ρ(TSOR) ≤ 1− ω + ωρ(TJ).

(c) If ρ(TJ) ≥ 1 then ρ(TSOR) ≥ 1− ω + ωρ(TJ) ≥ 1:

Notes: (i) The original form of Stein-Rosenberg theorem restricts to ω = 1 and gives

four mutually exclusive relations:

(a) 0 = ρ(TJ) = ρ(TGS), (b) 0 < ρ(TGS) < ρ(TJ) < 1,

(c) 1 = ρ(TJ) = ρ(TGS); (d) 1 < ρ(TJ) < ρ(TGS):

In [36] a theorem that gives an interval of ω for which the SOR method converges for

M -matrices A is based on the theory of regular splittings is stated.

Theorem 2.13. If A ∈ Rn,n is an M-matrix and if ω ∈ (0, 2/(1+ρ(TJ))) then ρ(TSOR) <

1.

The following is a statement extending the previous one to H-matrices.

Theorem 2.14. If A ∈ Cn,n is an H-matrix and if ω ∈ (0; 2/(1+ρ(|TJ |))) then ρ(TSOR) <

1.

There is a class of matrices for which the investigation for the optimal value of ω leads

to the most beautiful theory that has been developed for the last 50 years and which is

still going on. It is associated with the class of p-cyclic consistently ordered matrices.
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Such matrices naturally arise, e.g., for p = 2 in the discretization of second-order elliptic

or parabolic PDEs by finite differences, finite element or collocation methods, for p = 3

in the case of large-scale least-squares problems, and for any p > 2 in the case of Markov

chain analysis. For two-cyclic consistently ordered matrices A, Young [36] discovered

that the eigenvalues µ and λ of the Jacobi and the SOR iteration matrices, respectively,

associated with A satisfy the functional relationship

(λ + ω − 1)2 = ω2µ2λ. (2.7)

He also found that if TJ = (L + U), the eigenvalues of J2 are nonnegative and ρ(TJ) < 1,

then there exists an optimal value of ω, ωb, such that

ωopt =
2

1 + (1− ρ2(TJ))1/2
, ρ(TSOR,ωopt) = |ωopt−1|(< ρ(TSOR,ω) for all ω 6= ωopt.) (2.8)

(Note: For more details see [36].)

Remark 2.15. The spectrum ρ(TJ) of the eigenvalues of the (block) Jacobi iteration

matrix associated with a p-cyclic consistently ordered matrix A (1.12), which Varga calls

weakly cyclic of index p [33], presents a p-cyclic symmetry about the origin. That is, with

each eigenvalue µ ∈ σ(TJ) \ {0} there are another p − 1 eigenvalues of J; of the same

multiplicity as that of µ; given by the expressions µ exp(i(2πk)/p), k = 1, 2, . . . , p− 1.

Notation 2.16. From now on the Jacobi iteration matrix associated with a block p-cyclic

consistently ordered matrix will be denoted by TJp .

For such matrices Varga [31] extended Young’s results (2.7)-(2.8) to any p > 3; namely

(λ + ω − 1)p = ωpµpλp−1. (2.9)

He also proved that if the pth powers of the eigenvalues µ ∈ σ(TJp) are real nonnegative

and ρ(Jp) < 1, then there exists an optimal value of ω, ωopt, which is the unique positive

real root in (1, p/(p− 1)) of the equation

(ρ(TJp)ωopt)
p =

pp

(p− 1)p−1
(ωopt − 1), (2.10)
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which is such that

ρ(TSOR,ωopt)
p = (p− 1)(ωopt − 1)(< ρ(TSOR,ω) for all ω 6= ωb), (2.11)

In [1] the optimal values and the regions of convergence are also given.

Theorem 2.17. Let the matrix A ∈ Cn,n be p-cyclic consistently ordered and suppose

that all the eigenvalues of T p
Jp

are nonnegative (nonpositive). Let s = 1(−1) if the signs

of the eigenvalues of T p
Jp

are nonnegative (nonpositive). If

ρ(TJp) <
p− 1− s

p− 2
, (2.12)

then the regions of convergence of the SOR method (ρ(TSOR) < 1) are

For s = 1, ω ∈ (0,
p

p− 1
) and for s = −1, ω ∈ (

p− 2

p− 1
,

2

1 + ρ(TJp)
). (2.13)

The optimal relaxation factor ωopt is the unique real positive root ωopt ∈ ((2p−3+s)/(2(p−
1)), (2p− 1 + s)/(2(p− 1))) of the equation

(ρ(TJp)ωopt)
p = spp(p− 1)1−p(ωopt − 1) (2.14)

and the optimal SOR spectral radius is given by

ρ(TSOR,ωopt) = s(p− 1)(ωopt − 1)(< ρ(TSOR,ω) for all ω 6= ωb). (2.15)

Note: For p = 2; (p − 2)/(p − 2) and p/(p − 2) should be interpreted as 1 and ∞,

respectively.

2.8 The symmetric SOR (SSOR) method

Each iteration step of the Symmetric SOR (SSOR) method consists of two semi-iterations

the first of which is a usual (forward) SOR iteration followed by a backward SOR iteration,

namely an SOR where the roles of L and U have been interchanged. More specifically

x(m+1/2) = (I − ωL)−1[(1− ω)I + ωU ]x(m) + ω(I − ωL)−1b

,

x(m+1) = (I − ωU)−1[(1− ω)I + ωL]x(m+1/2) + ω(I − ωU)−1b
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An elimination of x(m+1/2) from the above equations yields

x(m+1) = TSSORx(m) + cSSOR, k = 0, 1, 2, . . . , x(0) ∈ Cn arbitrary (2.16)

with

TSSOR = (I − ωU)−1[(1− ω)I + ωL](I − ωL)−1[(1− ω)I + ωU ]

,

cSSOR = ω(2− ω)(I − ωU)−1(I − ωL)−1b.

For this method we have

M =
1

ω(2− ω)
(I − ωL)(I − ωU), N =

1

ω(2− ω)
[(1− ω)I + ωL][(1− ω)I + ωU ].

Statements analogous to Kahan’s theorem and also to Reich-Ostrowski Varga’s theorem

of the SOR method can be proved. Specifically we have:

Theorem 2.18. A necessary condition for the SSOR method defined in (2.33) to converge

is |ω − 1| < 1. For ω ∈ R the condition becomes ω ∈ (0, 2).

Theorem 2.19. Let A ∈ Cn,n be Hermitian with positive diagonal elements. Then for

any ω ∈ (0, 2) the SSOR iteration matrix TSSOR has real nonnegative eigenvalues. In

addition, if A is positive definite then the SSOR method converges. Conversely, if the

SSOR method converges and ω ∈ R then ω ∈ (0, 2) and A is positive definite.

For 2-cyclic consistently ordered matrices the first functional relationship between the

eigenvalues µ and λ of the associated Jacobi and SSOR iteration matrices was given by

D’Sylva and Miles [4] and Lynn [22] and is the following:

(λ− (ω − 1)2)2 = ω2(2− ω)2µ2λ.

It can be found that for A as in (1.10) the optimal ω, ωb = 1. Then ρ(TSOR,1) =

ρ(TSSOR,1) = ρ2(TJ) The functional eigenvalue relationship in the case of block p-cyclic

consistently ordered matrices was discovered by Varga, Niethammer and Cai [32], who

obtained the relationship

(λ− (ω − 1)2)p = ωp(2− ω)2µpλ(λ− (ω − 1))p−2.

14



The relationship above was then extended by Chong and Cai [3] to cover the class of

GCO(q; p− q) matrices in (1.13) to

(λ− (ω − 1)2)p = ωp(2− ω)2qµpλq(λ− (ω − 1))p−2q.

Optimal values of the SSOR method for spectra σ(Jp
p ) nonnegative or nonpositive for

any p ≥ 3 cannot be found anywhere in the literature except in a very recent article [9],

where a number of cases are covered analytically and experimentally and a number of

conjectures based on strong numerical evidence are made

2.9 The unsymmetric SOR (USSOR) method

The USSOR method differs from the SSOR method in the second SOR part of each

iteration where a different relaxation factor is used. It consists of the following two half

steps:

x(m+1/2) = (I − ω1L)−1[(1− ω1)I + ω1U ]x(m) + ω1(I − ω1L)−1b,

x(m+1) = (I − ω2U)−1[(1− ω2)I + ω2L]x(m+1/2) + ω2(I − ω2U)−1b

On elimination of x(m+1/2) it is produced

x(m+1) = TUSSORx(m) + cUSSOR, k = 0, 1, 2, . . . , x(0) ∈ Cn arbitrary (2.17)

with

TUSSOR = (I − ω2U)−1[(1− ω2)I + ω2L](I − ω1L)−1[(1− ω1)I + ω1U ],

cUSSOR = (ω1 + ω2 − ω1ω2)(I − ω2U)−1(I − ω1L)−1b.

We can obtain this method easily by

M =
1

ω1 + ω2)− ω1ω2

(I−ω1L)−1(I−ω2U), N =
1

ω1 + ω2 − ω1ω2

[(1−ω1)I+ω1L][(1−ω2)I+ω2U ].

Theory analogous to that of the SSOR method can be developed and the interested reader

is referred to [36]. The only point we would like to make is that for p-cyclic consistently

ordered and for GCO(q, p − q) matrices A there are functional eigenvalue relationships

connecting the eigenvalue spectra of the Jacobi and of the USSOR iteration matrices.
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They were discovered by Saridakis [29] and the most general one below by Li and Varga

[19]

(λ−(1−ω1)(1−ω2))
p = (ω1+ω2−ω1ω2)

2qµpλq(λω1+ω2−ω1ω2)
|ζL|−q(λω2+ω1−ω1ω2)

|ζU |−q.

where |ζL| and |ζU | are the cardinalities of the sets ζL and ζU , which are the two disjoint

subsets of P = {1, 2, . . . , p} associated with the cyclic permutation σ = (σ1, σ2, . . . , σp) as

these are defined in [19].

2.10 The modified successive overrelaxation (MSOR) method

The idea of Modified SOR (or MSOR) method is to associate a different ω with each

(block) row of the original linear system. The idea goes back to Russell [27] but it was

mainly McDowell [23] and Taylor [30], who analyzed its convergence properties (see also

[16]). It is best applied when the matrix A is 2-cyclic consistently ordered of the form

(1.10). In such a case by partitioning b as to b = [bT
1 , bT

2 ]T , the MSOR method will be

defined by the following iterative scheme: xm+1
1 = ω1(UAxm

2 + b1) + (I − ω1D1)x
m
1 ,

xm+1
2 = ω2(LAxm

1 + b2) + (I − ω2D2)x
m
2

Evidently we may write this iterative scheme in the form

x(m+1) = TMSORx(m) + cMSOR, (2.18)

where

TMSOR = (D − ω2LA)−1[diag((1− ω1)D1, (1− ω2)D2) + ω1UA],

cMSOR = (D − ω2LA)−1diag(ω1In1 , ω2In2)b

with In1 , In2 the unit matrices of the orders of D1, D2, respectively. In such a case the

basic relationship that connects the eigenvalues µ and λ of the spectra σ(J2) and σ(ω1, ω2)

is

(λ + ω1 − 1)(λ + ω2 − 1) = ω1ω2µ
2λ,

which reduces to the classical one by Young for the SOR method for ω1 = ω2. The

following theorem has been proved in [10].
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Theorem 2.20. Let A ∈ Rn,n be a symmetric positive-definite matrix having property A

and the block form

A =

 In1 −M

−MT In2

 = I − J2, , n1 + n2 = n. (2.19)

Then for any fixed t = ρ2(j2) ∈ [0, 1) the pair (ω1, ω2) call it (ω̂1, ω̂2), which yields the

minimum in δ̂ = minω1,ω2∈(0,2) ‖TMSOR‖2 is as follows. For t ∈ [0, 1
3
]

(ω̂1, ω̂2) = (
1

1 + t
,

1

1− t
) when δ̂ = (

t

1 + t
)1/2

while for t ∈ [1
3
, 1]

(ω̂1, ω̂2) = (
4

5 + t
,

4

3− t
) when δ̂ = (

1 + t

3− t
)

2.11 the extrapolated successive overrelaxation (ESOR) method

With M = 1
ωr

(I − rL)) = 1
ω′

(I − rL)) and N = 1
ωr

[(1 − ωr)I + (ωr − r)L + ωrU ] =

1
ω′

[(1 − ω′)I + (ω′ − r)L + ω′U ], where ω′ = ωr, we can obtain the Extrapolated SOR

(ESOR) method with relaxation parameter r and extrapolation parameter ω′).

Similarly, the backward ESOR iteration is defined by letting M = 1
ωr

(D − αU)) =

1
ω′

(D − αU))

2.12 The accelerated overrelaxation (AOR) method

The AOR method is first introduced by Hadjidimos [7]. This method uses two parameters

r (called relaxation parameter) and ω (called extrapolation parameter). The forward AOR

method is defined by M = 1
ω
(I − rL)) and N = [(1− ω)I + (ω − r)L + ωU ]. So, we have

TAOR = (I − rL)−1[(1− ω)I + (ω − r)L + ωU ],

and

x(m+1) = (I − rL)−1[(1− ω)I + (ω − r)L + ωU ]x(m) + ω(I − rL)−1b, (2.20)

Evidently the forward AOR method (2.10) is reduced to

17



(i) Jacobi method (2.1) for r = 0 and ω = 1.

(ii) JOR method (2.2) for r = 0.

(iii) Forward Gauss-Seidel method (2.3) for r = ω = 1.

(iv) EGS method (2.5) for r = 1 .

(v) Forward SOR method (2.6) for r = ω.

(vi) ESOR method for ω = ω′

For Hermitian matrices A ∈ Cn,n a statement analogous to the Reich-Ostrowski-Varga

theorem holds for the AOR method as well. Here is one version of it given in [42].

Theorem 2.21. Let A = D−E−EH ∈ Cn,n be Hermitian; D be Hermitian and positive

definite, det(D − rE) 6= 0, ω ∈ (0, 2) and r ∈ (ω + (2 − ω)/µm, ω + (2 − ω)/µM) with

µm < 0 < µM being the smallest and the largest eigenvalues of D−1(E + EH). Then;

ρ(Lr,ω < 1 if A is positive definite. (Note: Except for the restrictions in the statement the

matrices D, E ∈ Cn,n can be any matrices.)

Many more theoretical results can be proved in case A isp-cyclic consistently ordered.

For example, if A is 2-cyclic consistently ordered and ρ(J2
2 ) is either nonnegative or

nonpositive then optimal parameters for the AOR method can be derived. They are better

than the optimal ones for the corresponding SOR method if some further assumptions

are satisfied. These results can be found in [1,62,27].

Theorem 2.22. Let µ and µ̄ denote the absolutely smallest and the absolutely largest of

the eigenvalues of the Jacobi iteration matrix J2 of a 2-cyclic consistently ordered matrix

A. Then: For σ(J2
2 ) nonnegative and 0 < µ < µ̄ < 1 if 1 − µ2 < (1 − µ̄2)1/2 the optimal

parameters of the AOR method are given by the expressions

rb =
2

1 + (1− µ̄2)1/2
, ωb =

1− µ2 + (1− µ̄2)1/2

(1− µ̄2)(1 + (1− µ̄2)1/2)
(2.21)

ρ(Lrb,ωb
) =

µ(µ̄2 − µ2)1/2

(1− µ2)1/2(1 + (1− µ̄2)1/2)
(2.22)

18



Furthermore, for 0 < µ = µ̄ < 1 there are two pairs of optimal parameters

(rb, ωb) = (
2

1 + ε(1− µ̄2)1/2
,

ε

(1− µ̄2)1/2)ν
ε± 1, (2.23)

both of which give ρ(Lrb,ωb
) = 0. For σ(J2

2 ) nonpositive and if (1 + µ̄2)1/2 < 1 + µ2 the

optimal parameters of the AOR method are given by the expressions

rb =
2

1 + (1 + µ̄2)1/2
, ωb =

1 + µ2 + (1 + µ̄2)1/2

(1 + µ̄2)(1 + (1 + µ̄2)1/2)
, (2.24)

ρ(Lrb,ωb
=

µ(µ̄22− µ2)1/2

(1 + µ2)1/2(1 + (1 + µ̄2)1/2)
. (2.25)

Again for 0 < µ = µ̄ there are two pairs of optimal parameters

(rb, ωb) = (
2

1 + ε(1 + µ̄2)1/2
,

ε

(1 + µ̄2)1/2
), ε = ±1, (2.26)

both of which give ρ(Lrb,ωb
) = 0.

2.13 The symmetric AOR (SAOR) method

The SAOR iterative method [8] is defined by{
x(m+1/2) = (I − rL)−1[(1− ω)I + (ω − r)L + ωU ]x(m) + ω(I − rL)−1bx(m+1) = (I − rU)−1[(1− ω)I + (ω − r)U + ωL]x(m+1/2) + ω(I − rU)−1b

On elimination of x(m+1/2) it is produced

x(m+1) = TSAORx(m) + (I − rU)−1[(2− ω)I + (ω − r)(L + U)(I − rL)−1b (2.27)

where

TSAOR = Ur,ωLr,ω

Ur,ω = (I − rU)−1[(1− ω)I + (ω − r)U + ωL]

Lr,ω = (I − rL)−1[(1− ω)I + (ω − r)L + ωU ]
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2.14 The unsymmetric AOR (USAOR) method

The USAOR iterative method [?],[38] is defined by{
x(m+1/2) = Lr1,ω1x

(m) + ω1(I − r1L)−1bxm+1 = Ur2,ω2x
(m+1/2) + ω2(I − r2U)−1b

On elimination of x(m+1/2) it is produced

x(m+1) = TUSAORx(m)+(I−r2U)−1[(ω1+ω2−ω1ω2)I+ω2(ω1−r1)L+ω1(ω2−r2)U(I−r1L)−1b

(2.28)

where

TUSAOR = Ur2,ω2Lr1,ω1

U = (I − r2U)−1[(1− ω2)I + (ω2 − r2)U + ω2L]

L = (I − r1L)−1[(1− ω1)I + (ω1 − r1)L + ω1U ]

It is easy to see that many known iterative methods are its special cases

(1) r1 = 0, ω1 = 1, r2 = ω2 = 0, Jacobi,

(2) r1 = ω1 = 1, r2 = ω2 = 0, GaussSeidel;

(3) r1 = 0, ω1 = ω, r2 = ω2 = 0, JOR,

(4) r1 = ω1 = ω, r2 = ω2 = 0, SOR,

(5) r1 = r2 = ω1 = ω2 = ω, SSOR,

(6) r1 = ω1 = ω, r2 = ω2 = ω̂, USSOR,

(7) r1 = r, ω1 = ω, r2 = ω2 = 0, AOR,

(8) r1 = r2 = r, ω1 = ω2 = ω, SAOR,
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2.15 The two-parameter overrelaxation (TOR) method

Kuang [?] generalized the AOR method in the case of A Hermitian (positive definite)

by splitting further the component LA(= UH
A ) of A into the sum of two other matrices

(LA = EA + FA) and used again two parameters in his ”two-parameter overrelaxation

(TOR) method”. He found many interesting results and applied his method for the

numerical solution of the biharmonic equation. The TOR method corresponds to the

splitting

M =
1

α + β
(2DA − αEA − βFA),

N =
1

α + β
(2− α− β)DA + (α + β)(EH

A + FH
A ) + βEA + αFA],

with α + β)det(2DA − αEA − βFA) 6= 0 and α, β ∈ R. For FA = 0, α = 2r, β = 2(ω − r)

or EA = 0, α = 2(ω − r), β = 2r, TOR reduces to the AOR method.

2.16 The extrapolated modified Aitken (EMA) method

The extrapolated modified Aitken (EMA) iterative method was first introduced by Evans

[5] as a method for solving the systems of linear algebraic equations arising from discretiz-

ing of the elliptic difference equations. This method could be easily used for solving the

fuzzy linear systems by taking

M =
1

ω
(I − ωL)(I − ωU), N =

1

ω
[(1− ω)I − ω2LU ].

and

x(m+1) = TEMAx(m) + ω(I − ωU)−1(I − ωL)−1b (2.29)

where

TEMA = (I − ωU)−1(I − ωL)−1[(1− ω)I − ω2LU ]
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2.17 the Preconditioned Simultaneous Displacement (PSD) method

and the modified preconditioned simultaneous displace-

ment (MPSD) method

The PSD and MPSD method is studied in [2], [18], [25]. Let us now transform the original

system into the following preconditioned form

R−lAx = R−lb, (2.30)

where the conditioning matrix R is non-singular and is required to satisfy the following

properties:

(i) The spectral condition number of R−1A, κ(R−1A becomes smaller than κ(A).

(ii) For any vectors s and t it is ”computationally convenient” to solve the system

Rs = t, i.e. R is easily solvable.

For the numerical solution of system (2.13) we define the general iterative scheme

x(m+l) = x(m) + rR−l(b− Ax(m)

where r is a real parameter. A general form of R associated with the splitting of A =

I − L− U is the following

R = (I − ω1L)(I − ω2U)

where ω1, ω2 are real parameters. In this case, the iterative method (2.13, which called

MPSD method, can be written as follows:

x(m+1) = x(m) + r(I − ω2U)−1(I − ω1L)−1(b− Ax(m)),

or

x(m+1) = TMPSDx(m) + r(I − ω2U)−1(I − ω1L)−1b (2.31)

where

TMPSD = I − r(I − ω2U)−1(I − ω1L)−1A

= I − ω1L)−1(I − ω2U)−1[(1− r)I + (r − ω1)L + (r − ω2)U + ω1ω2LU ].

= M−1N,
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where M = (I − ω1L)(I − ω2U), N = M − rA; ω1, ω2, r ∈ R and r 6= 0.. For ω1, ω2 = ω

we obtain, from (2.13, the PSD iterative method defined by

x(m+1) = TPSDx(m) + r(I − ωU)−1(I − ωL)−1b (2.32)

where

TPSD = I − r(I − ωU)−1(I − ωL)−1A

Some special cases of MPSD method are studied in [4,5,9,14].With special values of ω1, ω2

and r, the corresponding iterative methods are as follows:

(1) r = 1, ω1 = 0, ω2 = 0, Jacobi,

(2) r = ω, ω1 = 0, ω2 = 0, JOR,

(3) r = ω, ω1 = 0, ω2 = 0, RF,

(4) r = 1, ω1 = 1, ω2 = 0, GS,

(5) r = ω, ω1ω, ω2 = 0, SOR,

(6) r = r, ω1 = ω, ω2 = 0, AOR,

(7) r = ω(2− ω), ω1 = ω2 = ω, SSOR,

(8) r = ω, ω1 = ω, ω2 = ω,, EMA,

(9) r = r, ω1 = ω, ω2 = ω, PSD,

When τ < ωi ≤ 1, i = 1, 2, the following theorem is presented in [2].

Theorem 2.23. (Chen [2]). Let A be irreducible, B = L + U ≥ 0. Then, for 0 < ωi <

r ≤ 1, i = 1, 2, we have

(1) ρ(B) > 0, ρ(Sr,ω1,ω2) < 1− r,

(2) 0 < ρ(B) < 1 ⇔ 1− r < ρ(Sr,ω1,ω2) < 1,

(3) ρ(B) = 1 ⇔ ρ(Sr,ω1,ω2) = 1,
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(4) ρ(B) > 1 ⇔ ρ(Sr,ω1,ω2) > 1.

In [21], the authors considered the iterative scheme

x(m+l) = x(m) + R−lT (b− Ax(m) (2.33)

where R is the nonsingular matrix

R = (I − ΩL)(I − ΩU)

with T and Ω the diagonal matrices T = diag(r1I1, r2I2), with r1, r − 2 ∈ R {0}, Ω =

diag(ω1I1, ω2I2), with r1, r − 2 ∈ R, I1I2 identity matrices of order n1, n2, respectively.

Alternatively, (2.33) takes the form

x(m+1) = DT,Ωx(m) + δT,Ω (2.34)

where DT,Ω is the iteration matrix of the MPSD method, with

DT,Ω = I − (I − ΩU)−1(I − ΩL)−1TA

and

δT,Ω = (I − ΩU)−1(I − ΩL)−1Tb

For various values of the parameters r1, r2, ω1 and ω2, (2.34) yields some known iterative

methods.

(1) ω1 = 0, the Modified Extrapolated SOR (MESOR) method,

(2) ω1 = ω2 = 1, the backward Modified Extrapolated GaussSeidel (MEGS) method,

(3) r1 = r2 = ω(2− ω), ω1 = ω2 = ω,the Symmetric SOR (SSOR) method,

(4) r1 = r2 = ω1 + ω2 − ω1ω2,the Unsymmetric SOR (USSOR) method

(5) r1 = r2 = r, ω1 = ω2 = ω, the PSD method,
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3 Improving iterative methods

Transforming the original systems (1.1) into the preconditioned form

PAx = Pb (3.1)

Then, we can define the basic iterative scheme:

Mpx
(k+1) = Npx

(k) + Pb, k = 0, 1, . . . ,

where PA = M−1
p Np and Mp is nonsingular. Thus (5) can also be written as

x(k+1) = Tx(k) + c, , k = 0, 1, . . . ,

where T = M−1
p Np, c = M−1

p b. Assuming

PA = Â = D̂ − L̂− Û ,

where D̂, L̂ and Û are diagonal, strictly lower and strictly upper triangular part of Â,

respectively.

3.1 Improving Jacobi method

The iteration matrix of the classical Jacobi method for preconditioned system is given by

T = D̂−1B̂, where B̂L̂ + Û . In [improving Jaobi], the authors proposed a preconditioner

of the following general form:

P = I + S =



1 −c1,k1

1 −c2,k2

. . .

−cr,kr

. . .

. . .

−cn,kn 1


(3.2)

We can obtain Â = (âij)n,n = D̂ − B̂ and

âij = aij − ciki
akij, i, j = 1, . . . , n.
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If ciki
akii 6= 1, i, j = 1, . . . , n, then D̂−1 exists, and hence it is possible to define Jacobi

iteration matrix for Â,namely T = D̂−1B̂.

Theorem 3.1. If A = I − L− U is a nonnegative H-matrix, let B = L + U and

bi = min
i
{ 2aij

akij + akiiaij

} i = 1, . . . , n,

for any i, if akii ≤ bi and akij ≥ akiiaij, j = 1, . . . , n, then

(1) |D̂−1A| ≤ A;

(2) ρ(|D̂−1A|) ≤ ρ(A);

(3) ρ(|D̂−1B|) ≤ ρ(B) < 1;

(4) Â is an H-matrix.

(Note that: if akij +akiiaij = 0 and aij 6= 0 we take
2aij

akij+akiiaij
= ∞ if akij +akiiaij = 0

and aij = 0, we take
2aij

akij+akiiaij
= 0.)

In [ ], the authors proposed to take ckii = bi.

3.2 Improving Gauss-Seidel method

In [Gaussimproving Jaobi], the authors proposed the preconditioners of the following

general forms:

Pmax = I + Smax + Rmax, PR = I + Smax + R, PSmax = I + Smax,

where

Smax = (sij) =

 −ai,ki
, i = 1, . . . , n− 1, j > i;

0 otherwise.

with ki = min{j|maxj |ai,j, i < n} and

Rmax = ((Rmax)ij)) =

 −an,kn , i = n, j = kn,

0 otherwise.
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with kn = min{j||an,j| = max{|an,j|, l = 1, . . . , n− 1}} and

R = ((R)ij) =

 −ai,j, i = n, 1 ≤ j ≤ n− 1,

0 otherwise.

For these preconditioners, the preconditioned matrices are

Amax = PmaxA, AR = PRA, ASmax = PSmaxA.

For matrices , A, Amax, AR, ASmax if we denote the iteration matrix of the Gauss-Seidel

method by T, Tmax, TR, TSmax , respectively, we have the following comparison theorems:

Theorem 3.2. Let A be a nonsingular M-matrix. Assume that 0 < ai,ki
akii < 1, 1 ≤ i ≤

n− 1 and 0 < an,kj
akjn < 1, kj = 1, . . . , n− 1. Then, we have

ρ(Tmax) ≤ ρ(T ) < 1 and ρ(Tmax) ≤ ρ(TSmax) < 1

.

Theorem 3.3. Let A be a nonsingular M-matrix. Assume that 0 < ai,ki
akii < 1, 1 ≤ i ≤

n− 1 and 0 ≤
∑n−1

k=1 an,kak,n < 1, kj = 1, . . . , n− 1. Then, we have

ρ(TR) ≤ ρ(T ) < 1

.

Theorem 3.4. Let A be a nonsingular M-matrix. Assume that 0 < ai,ki
akii < 1, 1 ≤ i ≤

n−1, 0 ≤
∑n−1

k=1 an,kak,n < 1, kj = 1, . . . , n−1 and anj

∑n−1
k=1 an,kak,n ≤

∑n−1
k=1 an,kak,j, 1 ≤

j ≤ n− 1 . Then, we have

ρ(TR) ≤ ρ(TSmax) < 1

.

Theorem 3.5. Let A be a nonsingular M-matrix. If (an,knaknj − an,j)
∑n−1

k=1 an,kak,n −
an,knakn,j ≤ (an,knakn,n − 1)

∑n−1
k=1 an,kak,j − an,jan,knakn,n, 1 ≤ j ≤ n − 1. then under the

assumptions of Theorems 3.2 and 3.5 we have

ρ(TR) ≤ ρ(Tmax) ≤ ρ(TSmax)

.
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3.3 Improving SOR method

In [dehghan], the authors introduced two preconditioners P = I + S and P̃ = I + S̃ with

S =



0 0 . . . 0

−(a21 + γ2) 0 . . . 0

−(a31 + γ3) . . . .

. . . .

. . . 0

−(an1 + γn) 0 . . . 0


(3.3)

S =



0 0 . . . −(a1n + δ1)

0 0 . . . −(a2n + δ2)

. . . .

. . . .

. . . −(an−1,n + δn−1)

0 0 . . . 0


(3.4)

where γ2, γ3 . . . , γn and δ1, δ2, . . . , δn−1 are real parameters. Now we consider two precon-

ditioned linear systems as follows:

Ax = b where A = PA and b = Pb

Ãx = b̃ where Ã = PA and b̃ = Pb

Suppose that

AD − L− U and Ã = D̃ − L̃− Ũ

where

D = I + D1, L = L +−S + l1 U = U + U1

and

D̃ = I + D̃1, L̃ = L + L̃1 Ũ = U + ŨD1

It is not difficult to see that D1, L1, and U1 (D̃1, L̃1 and Ũ1) are diagonal, strictly lower

and strictly upper triangular parts of SU = −D1 + L1 + U1(S̃A = S̃ − S̃U − S̃L =
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D̃1− L̃1− Ũ1 +U1), respectively. Two different forms of SOR iteration matrix associated

with A and Ã can be denoted by

T 1(ω) = (D − ωL)−1[(1− ω)D + ωU ], T 2(ω) = (I − ωL)−1[(1− ω)I + ω(U −D1)]

and

T̃1(ω) = (D̃ωL̃−1[(1− ω)D̃ + ωŨ ], T̃2(ω) = (I − ωL̃)−1[(1− ω)I + ω(Ũ − D̃1)]

respectively. we have the following comparison theorems:

Theorem 3.6. Let T (ω), T 1(ω) be defined by (2) and (11). If γq ∈ (1−a1qaq1)/a1q,−aq1)
⋂

(0,−aq1), 0 <

ω < 1 and A is an irreducible L-matrix with a1qaq1 > 0 for q = 2, 3, . . . , n, then

(1) ρ(T 1(ω)) < ρ(T (ω)), if ρ(T (ω)) < 1;

(2) ρ(T 1(ω)) = ρ(T (ω)), if ρ(T (ω)) = 1;

(1) ρ(T 1(ω)) > ρ(T (ω)), if ρ(T (ω)) > 1;

Theorem 3.7. Let T (ω), T 2(ω) be defined by (11) and (11). If γq ∈ (1−a1qaq1)/a1q,−aq1)
⋂

(0,−aq1), 0 <

ω < 1 and A is an irreducible L-matrix with a1qaq1 > 0 for q = 2, 3, . . . , n, then

(1) ρ(T 2(ω)) < ρ(T (ω)), if ρ(T (ω)) < 1;

(2) ρ(T 2(ω)) = ρ(T (ω)), if ρ(T (ω)) = 1;

(1) ρ(T 2(ω)) > ρ(T (ω)), if ρ(T (ω)) > 1;

Theorem 3.8. Let T (ω), T̃1(ω) be defined by (2) and (12). If δs ∈ (1−asnans)/ans,−asn)
⋂

(0,−asn), 0 <

ω < 1 and A is an irreducible L-matrix with ansasn > 0 for s = 1, 2, . . . , n− 1, then

(1) ρ(T̃1(ω)) < ρ(T (ω)), if ρ(T (ω)) < 1;

(2) ρ(T̃1(ω)) = ρ(T (ω)), if ρ(T (ω)) = 1;

(1) ρ(T̃1(ω)) > ρ(T (ω)), if ρ(T (ω)) > 1;

Theorem 3.9. Let T (ω), T̃2(ω) be defined by (2) and (12). If δs ∈ (1−asnans)/ans,−asn)
⋂

(0,−asn), 0 <

ω < 1 and A is an irreducible L-matrix with ansasn > 0 for s = 1, 2, . . . , n− 1, then
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(1) ρ(T̃2(ω)) < ρ(T (ω)), if ρ(T (ω)) < 1;

(2) ρ(T̃2(ω)) = ρ(T (ω)), if ρ(T (ω)) = 1;

(1) ρ(T̃2(ω)) > ρ(T (ω)), if ρ(T (ω)) > 1;

3.4 Improving SSOR method

In [ ] the authors proposed a multi-parameters preconditioned SSOR iterative method

with a preconditioner as following:

P̃ = I + S̃α

where

S̃α =



0 0 0 · · · 0

−α2a21 0 0
. . .

...

0 α3a32
. . . . . . 0

...
. . . . . . . . . 0

0 · · · 0 −αnann−1 0


(3.5)

Now, we consider the preconditioned linear system

Ãx = b̃

whereÃ = (I + S̃α)A and b̃ = (I + S̃α) We express the coefficient matrix Ã of (5) as

Ã = D̃ − L̃Ũ

where D̃ is the diagonal matrix, L̃ and Ã are strictly lower and strictly upper triangular

matrices, respectively. Then the corresponding iterative matrix of the above precondi-

tioned SSOR method is

T̃SSOR = (D̃ − ωŨ)−1[(1− ω)D̃ + ωL̃](D̃ − ωL̃)−1[(1− ω)D̃ + ωŨ ]

Theorem 3.10. Let A be a nonsingular M-matrix, TSSOR and T̃SSOR are be defined by

(4) and (6), respectively. Assume that 0 < ω ≤ 1 and 0 ≤ αi ≤ 1, i = 2, 3, . . . , n, then

ρ(T̃SSOR) ≤ TSSOR < 1

30



3.5 Improving AOR method

In [ ], the authors considered the preconditioned linear system as follows:

Ax = b where A = PA and b = Pb

and split A

A = D − L− U

with D, L and U being diagonal, strictly lower and strictly upper triangular matrices,

respectively. The preconditioned AOR iterative method of (1.1), i.e., the AOR iterative

method of (2.1), is defined as

xk+1 = TAORx(k) + (D − rL)−1ωb, k = 0, 1, 2, . . . ,

where

TAOR = (D − rL)−1[(1− ω)D + (ω − r)L + ωU ]

is the preconditioned AOR iteration matrix.

Theorem 3.11. Let A = (ai,j) ∈ Rn,n be a nonsingular Z-matrix. Assume that 0 < r <

ω < 1, and P = (pi,j) ≥ 0 is a nonsingular preconditioner with pi,i = 1 for 1 ≤ i ≤ n, and

pi,j +
n∑

k=1,k 6=j

Pi,kak,j ≤ 0, 1 ≤ i 6= j ≤ n.

(1) if ρ(TSOR) < 1, then ρ(T SOR) < ρ(TSOR) < 1

(2) if ρ(TSOR) > 1, and P satisfies

1 +
n∑

k=1,k 6=i

Pi,kak,i > 0, 1 ≤ i 6= j ≤ n.

then ρ(T SOR) > ρ(TSOR) > 1

Theorem 3.12. Let A = (ai,j) ∈ Rn,n be a nonsingular M-matrix. Assume that 0 < r <

ω < 1, and P = (pi,j) ≥ 0 is a nonsingular preconditioner with pi,i = 1 for 1 ≤ i ≤ n, and

pi,j = αi,jai,j, 0 ≤ αi,j ≤ 1, for 1 ≤ i 6= j ≤ n. Then we have

ρ(T SOR) < ρ(TSOR) < 1
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3.6 Block Gauss elimination followed by a classical iterative

method for the solution of linear systems

Theorem 3.13. Let A ∈ Rn,n be a nonsingular M-matrix partitioned as in (1.3). Then

n1 successive applications of the Gauss elimination process on A are equivalent to premul-

tiplying A by the (preconditioning) matrix

P =


L−1

11 O12 · · · O1p

−A21A
−1
11 I22 · · · O2p

...
...

. . .

−Ap1A
−1
11 Op2 · · · Ipp

 = Q + S, (3.6)

Q = diag(L−1
11 , I22, . . . , Ipp) ≥ 0, Iii ∈ Rni,ni , i = 2, 3, . . . , p

S =


O−1

11 O12 · · · O1p

−A21A
−1
11 I22 · · · O2p

...
...

. . .

−Ap1A
−1
11 Op2 · · · Opp

 ≥ 0, (3.7)

with L11 being the lower triangular matrix in the LU triangular decomposition of A11.

Moreover, Ā = PA and the matrix Ā1, obtained from Ā by deleting its first n1 rows and

columns, are also nonsingular M-matrices.(Note: If A is irreducible then so is Ā1 while

if A is, in addition, singular then so are Ā and Ā1.)

Let

A = D - L - U

(3.8)

D = diag(A11, A22, . . . , App),

L =


O11 O12 · · · O1p

−A21 I22 · · · O2p

...
...

. . .
...

−Ap1 −Ap2 · · · Opp

 , U =


O11 −A12 · · · −A1p

O21 O22 · · · −A2p

...
...

. . .
...

Op1 Op2 · · · Opp

 .
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To solve (2.6) using a classical iterative method we consider various splittings of A. For

this we define the following matrices:

SU = L̂ + D̂ + Û

where

D = diag(O11, A21A
−1
11 , . . . , Ap1A

−1
11 A1p) ≥ 0,

L̂ =



O11 O12 · · · O1p

O21 O22 · · · O2p

O31 A31A
−1
11 A12 · · · O2p

...
...

. . .
...

Op1 Ap1A
−1
11 A12 · · · Opp


(≥ 0),

Û =



O11 O12 O13 · · · O1p

O21 O22 A21A
−1
11 A13 · · · A21A

−1
11 A1p

O31 O32 O33 · · · A31A
−1
11 A1p

...
...

...
. . .

...

Op1 Op2 Op3 · · · Opp


(≥ 0),

Having in mind (2.10) and (2.9), we consider the following splittings of A:

A = (Q + S)(D − L− U) =

 QD − (PL− SD + L̂ + D̂ + QU + U),

(QD − D̂)− (PL− SD + L̂ + QU + Û) :

The block Jacobi and GaussSeidel as well as the block Jacobi and GaussSeidel-type iter-

ation matrices associated with the two splittings in (2.14) are:

B = D−1(L + U)(forA),

B′ = (QD)−1(PL− SD + L̂ + D̂ + QU + Û),

B” = (QD − D̂)−1(PL− SD + L̂L + QU + Û),

H = (D − L)−1U(forA),

H ′ = (P (D − L)− L̂)−1(D̂ + QU + Û),

H” = (P (D − L)− L̂− D̂)−1(QU + Û),
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Theorem 3.14. Under the notation and the definitions so far, suppose that A is a nonsin-

gular M-matrix and let ρ(B) > 0. Let B′
1, B1, H1, H

′
1, H1 denote the (n− n1)× (n− n1)

bottom right corner submatrices of B′
1, B1, H1, H

′
1, H1, respectively. Then the following

relationships hold:

ρ(B1) = ρ(B) ≤ ρ(B′) = ρ(B′
1) < 1,

ρ(H1) = ρ(H) ≤ ρ(H ′) = ρ(H ′
1) ≤ rho(H) = rho(H1) < 1.

Theorem 3.15. Under the notation and the de9nitions used in above Theorem, sup-

pose that A is a nonsingular M-matrix. Let B′(k), B(k), H ′(k); H(k), k = 1(1)n1, denote

the ”point” iteration matrices (Jacobi and GaussSeidel type) associated with the matrix

A
(k)

(A
(0)

= A) of above Theorems after the kth elimination step k = 1(1)n1. Let also

B(0), H(0) be the point Jacobi and GaussSeidel iteration matrices associated with A. Then,

there will hold

ρ(H) ≤ ρ(Hn1) ≤ ρ(H ′1) ≤ ρ(H0)(< 1). (3.9)

If, in addition, A is irreducible, then there will also hold

ρ(B) < ρ(Bn1) < ρ(B′1) < ρ(B0)(< 1),

and all the inequalities in (3.9) will be strict

4 Comparison results between Jacobi and other iter-

ative methods

In [], the authors showed that spectral radius of Jacobi iteration matrix B is less than

that of several iteration matrices introduced.

Theorem 4.1. Let A be a nonsingular matrix. B ≥ 0 the Jacobi iteration matrix in

(1.2). If 0 ≤ ω ≤ 1 and ρ(B) ≤ (1− ω)2, we have that

ρ(B) ≤ ρ(TSSOR,
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Theorem 4.2. Let A be a nonsingular matrix. B ≥ 0 the Jacobi iteration matrix in

(1.2). If 0 ≤ ω ≤ 1 and ρ(B) ≤ 1− ω, we have that

ρ(B) ≤ ρ(TJOR,

ρ(B) ≤ ρ(TSOR,

5 The BSCM method

Some effective splitting iterative methods and preconditioning methods were presented

for solving the linear system of equations (??) (see [1-14]). Here, we consider A as a block

matrix in the form

A =

 A1 A2

A3 A4

 if n = 2l, A =


A1 c1 A2

dT
1 1 dT

2

A3 c2 A4

 if n = 2l + 1, (5.1)

where c1, c2, d1, d2 ∈ <l and Ai ∈ <l×l, i = 1, 2, 3, 4. By assuming that A has unit diagonal

elements, we split A into

A = V −B, (5.2)

where V is a block matrix in the form of

V =

 I D2

D3 I

 if n = 2l, V =


I 0 D2

0 1 0

D3 0 I

 if n = 2l + 1, (5.3)

in which D2 = diag(A2), D3 = diag(A3), and I ∈ <l×l is identity matrix. By assuming

that I −D2D3 is a nonsingular matrix, it is easy to see that

V −1 =

 (I −D2D3)
−1 0

0 (I −D2D3)
−1

  I −D2

−D3 I

 (5.4)

if n = 2l, and

V −1 =


(I −D2D3)

−1 0 0

0 1 0

0 0 (I −D2D3)
−1




I 0 −D2

0 1 0

−D3 0 I

 (5.5)
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if n = 2l + 1. This split leads to the new iterative method

x(k+1) = V −1Bx(k) + V −1b, k = 0, 1, 2, . . . . (5.6)

In section 2, We present the convergence analysis for this new iterative method, called the

BSCM (Block Splitting of the Coefficient Matrix) method, and provide a comparison of

the spectral radii for the Jacobi iterative method and this method. In section 3, numerical

examples are given to illustrate our results. Section 4 is devoted to concluding remarks.

Now we give the main results.

Theorem 5.1. Let A = V −B be a strictly diagonally dominant or irreducibly diagonally

dominant matrix with unit diagonal entries and partitioned as in (5.1). If I − D2D3 is

a nonsingular matrix, then the associated BSCM iteration converges for any initial value

x(0).

Proof. Only a sketch of the proof will be given, since the main line of reasoning is analo-

gous to that found in [28] for the Gauss-Seidel method. Let λ be the dominant eigenvalue

of the iteration matrix V −1B. Let x = (xi) be an eigenvector associated with λ, with

|xm| = 1 and |xi| ≤ 1 for i 6= m. If m ≤ l, from equation Bx = λV x, we have

−
∑

j 6=m,l+j

amjxj = λ(xm + am,l+jxl+j)

which yields the inequality

|λ| ≤
∑

j 6=m,l+j |amj||xj|
1− |am,l+j||xl+j|

≤
∑

j 6=m,l+j |amj|
1− |am,l+j|

=

∑
j 6=m,l+j |amj|

(1−
∑

j 6=m |amj|) +
∑

j 6=m,l+j |amj|

In the case when the matrix A is strictly diagonally dominant, from the last term of the

above inequality, we have |λ| < 1.

In the case when the matrix A is only irreducibly diagonally dominant, the last term

of the above inequality only shows |λ| ≤ 1. As in [28], by contradiction, we can show that

in fact |λ| < 1. The case m > l can be proved in a similar way.

Theorem 5.2. Let A = V − B be a nonsingular M-matrix and partitioned as in (5.1).

If I −D2D3 is nonsingular, then ρ(V −1B) < 1.
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Proof. By the assumptions, we have B ≥ 0 and A ≤ V . So, by Theorem ??, V is

an M -matrix and we have V −1 ≥ 0. Thus, by Definition ??, A = V − B is a regular

splitting. Since A is an M -matrix, we have A−1 ≥ 0. Thus, by Theorem ??, we have

ρ(V −1B) < 1.

Theorem 5.3. Let A = V −B be a nonsingular H-matrix with unit diagonal entries and

partitioned as in (5.1). If D2 ≥ 0, D3 ≥ 0 and I − D2D3 has positive diagonal entries,

then V −1A is an H-matrix and ρ(V −1B) < 1.

Proof. We will prove for the case n = 2l, the case n = 2l+1 can be proved in a similar way.

Since A is an H-matrix, we have from Definition 2.11 that 〈A〉−1 ≥ 0. Denote r = 〈A〉−1e,

where e = (1, 1, . . . , 1)T ∈ <2l. Then r > 0. Let r = (rT
1 , rT

2 ), where r1, r2 ∈ <l. By using

the definition of comparison matrix (Definition ??), we have

〈A〉r =

 I − |A1 − I| −|A2|
−|A3| I − |A4 − I|

 r

=

 (I − |A1 − I|)r1 − |A2|r2

(I − |A4 − I|)r2 − |A3|r1


=

 e1

e1


(5.7)

where e1 = (1, 1, . . . , 1)T ∈ <l. We now show that 〈V −1A〉r > 0 which will be useful to

show that V −1A is an H-matrix. From (5.1) and (5.4), we have

V −1A = D

 A1 −D2A3 A2 −D2A4

A3 −D3A1 A4 −D3A2

 ,

where

D =

 (I −D2D3)
−1 0

0 (I −D2D3)
−1

 .

From the assumption I − D2D3 has positive diagonal entries, we have D ≥ 0. So, from

the definition of comparison matrix (Definition ??), we have

〈V −1A〉
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= D

 |I −D2D3| − |(A1 −D2A3)− (I −D2D3)| −|A2 −D2A4|
−|A3 −D3A1| |I −D2D3| − |(A4 −D3A2)− (I −D2D3)|


= D

 |I −D2D3| − |(A1 − I)−D2(A3 −D3)| −|(A2 −D2)−D2(A4 − I)|
−|(A3 −D3)−D3(A1 − I)| |I −D2D3| − |(A4 − I)−D3(A2 −D2)|


Using the assumption I −D2D3 ≥ 0 and D2 ≥ 0, D3 ≥ 0, we obtain

〈V −1A〉

≥ D

 (I −D2D3)− |A1 − I| − |D2(A3 −D3)| −|A2 −D2| − |D2(A4 − I)|
−|A3 −D3| − |D3(A1 − I)| (I −D2D3)− |A4 − I| − |D3(A2 −D2)|


= D

 I − |A1 − I| −D2(D3 + |A3 −D3|) D2(I − |A4 − I|)− (D2 + |A2 −D2|)
D3(I − |A1 − I|)− (D3 + |A3 −D3|) I − |A4 − I| −D3(D2 + |A2 −D2|)


= D

 I − |A1 − I| −D2|A3| D2(I − |A4 − I|)− |A2|
D3(I − |A1 − I|)− |A3| I − |A4 − I| −D3|A2|


By using the vector r = (rT

1 , rT
2 ) > 0 and the equation (5.7), we have

〈V −1A〉r ≥ D

 (I − |A1 − I|)r1 − |A2|r2 + D2((I − |A4 − I|)r2 − |A3|r1)

(I − |A4 − I|)r2 − |A3|r1 + D3((I − |A1 − I|)r1 − |A2|r2)


= D

 e1 + D2e1

e1 + D3e1

 > 0.

By Lemma ??, it follows that V −1A is an H-matrix. By using (5.4) and the definition of

B, we obtain

V −1B = D

 (I − A1)−D2(D3 − A3) (D2 − A2)−D2(I − A4)

(D3 − A3)−D3(I − A1) (I − A4)−D3(D2 − A2)

 .

This relation shows that the diagonal entries of V −1B are zeros. So, from V −1A =

I − V −1B, we have

〈V −1A〉 = I − |V −1B|.

Since 〈V −1A〉 is an H-matrix, (I−|V −1B|) is nonsingular and (I−|V −1B|)−1 ≥ 0. Finally,

by using Theorem ?? and Theorem ??, one can obtain

ρ(V −1B) ≤ ρ(|V −1B|) < 1.
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For comparing the asymptotic rate of convergence or equivalently the spectral radii of

the iteration matrices of the Jacobi and the BSCM methods, we suppose that A has unit

diagonal elements and define

S = I − V, (5.8)

So, from the definition of the Jacobi matrix J , we have

J = B + S (5.9)

We now state the following theorem.

Theorem 5.4. Let A = V −B be a nonsingular L-matrix and partitioned as in (5.1). If

I −D2D3 has positive diagonal entries, then

(a) ρ(V −1B) < 1 if and only if ρ(J) < 1 and ρ(V −1B) ≤ ρ(J) < 1.

(b) ρ(V −1B) ≥ 1 if and only if ρ(J) ≥ 1 and ρ(V −1B) ≥ ρ(J) ≥ 1.

Proof. By using the assumptions, we have V −1B ≥ 0 and J = B + S ≥ 0. Let λ̄ =

ρ(V −1B) and µ̄ = ρ(J). By Theorem ??, λ̄ is an eigenvalue of V −1B and for some x 6= 0,

we have V −1Bx = λ̄x, which implies that

(λ̄S + B)x = λ̄x.

Since λ̄ is an eigenvalue of λ̄S + B, we have

λ̄ ≤ ρ(λ̄S + B).

If λ̄ ≤ 1, then by Theorem ??, ρ(λ̄S + B) ≤ ρ(S + B) = µ̄, which implies that λ̄ ≤ µ̄. So,

we have

(i) If λ̄ ≤ 1, then λ̄ ≤ µ̄.

On the other hand, if λ̄ ≥ 1, then by Theorem ??, we have

λ̄ ≤ ρ(λ̄S + B) ≤ ρ(λ̄S + λ̄B) = λ̄µ̄,

which implies that µ̄ ≥ 1. So, we have
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(ii) if λ̄ ≥ 1, then µ̄ ≥ 1.

Assume that µ̄ ≥ 1. By the definition of S, (I − 1
µ̄
S) is nonsingular for µ̄ ≥ 1. Since

J = B + S ≥ 0, it follows, by Theorem ??, µ̄ is an eigenvalue of J . Therefore for some

y 6= 0, we have (B + S)y = µ̄y and

(I − 1

µ̄
S)−1By = µ̄y. (5.10)

In addition for µ̄ ≥ 1, we have

0 ≤ (I − 1

µ̄
S)−1 ≤ (I − S)−1 = V −1,

and

0 ≤ (I − 1

µ̄
S)−1B ≤ V −1B.

This together with Theorem ?? and equation (5.10) implies that

µ̄ ≤ ρ((I − 1

µ̄
S)−1B) ≤ ρ(V −1B) = λ̄.

Therefore,

(iii) if µ̄ ≥ 1 then λ̄ ≥ µ̄ ≥ 1.

Now, by (i) and (iii), we have (a) and by (ii) and (iii), we have (b).

6 Numerical results

In this section we give the numerical examples to illustrate the results obtained in Section

2. In our implementation, the initial approximation x(0) is taken as the zero vector, and

the right hand side vector b is chosen so that x = (1, 1, . . . , 1)T is the solution of the

consider system. The stopping criterion ‖x(k) − x∗‖∞ ≤ 10−7 is used, where x(k) is the

kth iterative vector for the corresponding iterative method, while x∗ is the solution of the

given linear system. The maximum number of iterations is set to 10, 000. We compare the

numerical behaviors of the BSCM method with the Jacobi and Gauss-Seidel methods. We

report the spectral radius of corresponding iteration matrix and the number of iterations
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in the following tables. In these tables n represents the dimension of matrices and a † is

used to indicate that there was no convergence in 10000 iterations. The numerical results

in the following tables were computed using MATLAB 7.9.

Example 6.1. The coefficient matrices A of (??) is given by

A1 =



1 −0.01 0.19 −0.25 −0.04

−0.28 1 0.17 −0.22 0.22

−0.25 0.27 1 0.19 −0.09

−0.14 0.01 −0.25 1 0.13

−0.26 0.08 −0.14 0.05 1


, A2 =



1 0.1 0.2 0.0 0.2 −0.5

0.2 1 0.3 0.0 −0.4 0.1

0.0 0.2 1 −0.6 0.2 0.0

0.2 −0.3 0.1 1 0.1 0.3

0.0 0.3 0.2 0.1 1 0.2

0.2 −0.3 0.0 −0.3 0.1 1


where A1 and A2 are strictly diagonally dominant and irreducibly diagonally dominant

matrices, respectively. Numerical results for these matrices are given in Table 1.

Example 6.2. (see [26].) The coefficient matrices A of is given by

A3 =



1 q r s q r · · ·
s 1 q r

r
. . . . . . . . . . . .

q
. . .

s
. . . . . . . . .

r
. . .

...
. . . . . .

1



,

where q = − 1
n+1

, r = − 1
n
, s = − 1

n+1
and A3 is an M -matrix. The numerical results for

different values of n are given in Table 2. By choosing q = 1
n−1

, r = 1
n
, and s = 1

n+1
, A3 is

an H-matrix. The numerical results for this matrix and different values of n are presented

in Table 3
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Table 1. Numerical results for Example 6.1

Jacobi Gauss-Seidel BSCM

Coefficient matrix IT ρ IT ρ IT ρ

A1 9 0.3389 5 0.1107 7 0.2415

A2 21 0.6513 10 0.3509 16 0.5539

Example 6.3. The coefficient matrices A of (??) is given by

A4 =


1 −0.2 −0.1 −0.6

−0.2 1 −0.3 −0.6

−0.3 −0.2 1 −0.1

−0.1 −0.1 −0.1 1

 A5 =


1 −0.2 −0.7 −0.3

−0.2 1 −0.9 −0.4

−0.7 −0.5 1 −0.5

−0.3 −0.4 −0.3 1



A6 =


1 −0.2 −0.5 −0.3

−0.2 1 −0.4 −0.4

−0.2 −0.3 1 −0.5

−0.3 −0.4 −0.3 1

 A7 =


1 1 4 2

1 1 −1 4

4 1 1 −1

1 4 1 1


where A4, A5, and A6 are L-matrices, but A7 is not. Numerical results for these matrices

are given in Table 4

Remark 6.4. From Tables 1-4, it is easy to verify that the numerical results are consistent

with the theorems in Section 2. We observe that when the methods converge, the spectral

radius of the BSCM method is smaller than that of the Jacobi Method and is larger

than that of the Gauss-Seidel method. In the case of L-Matrix, the BSCM iteration

matrix V −1B and the Jacobi iteration matrix J are either both convergent, or both

divergent(Table 4, the matrices A4, A5, and A6). Finally, Table 4 also shows that there

is a coefficient matrix (A7) for which the BSCM method converges, but the Jacobi and

the Gauss-Seidel methods diverge.
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Table 2. Numerical results for Example 6.2, when A3 is an M -matrix

Jacobi Gauss-Seidel BSCM

n IT ρ IT ρ IT ρ

10 55 0.8455 29 0.7199 49 0.8283

20 111 0.9198 57 0.8477 105 0.9158

50 277 0.9672 140 0.9358 271 0.9665

100 553 0.9835 278 0.9673 547 0.9833

Table 3. Numerical results for Example 6.2, when A3 is an H-matrix

Jacobi Gauss-Seidel BSCM

n IT ρ IT ρ IT ρ

10 94 0.9061 7 0.2088 30 0.7328

20 186 0.9516 7 0.2099 61 0.8584

50 463 0.9803 7 0.2131 153 0.9414

100 923 0.9901 7 0.2145 307 0.9704

Table 4. Numerical results for Example 6.3

Jacobi Gauss-Seidel BSCM

Coefficient matrix IT ρ IT ρ IT ρ

A4 22 0.6361 12 0.4069 16 0.5308

A5 † 1.3758 † 1.8668 † 1.8969

A6 † 1.0 † 1.0 † 1.0

A7 † 5.29 † 16.40 15 0.5211
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7 Conclusion

In this paper, we have presented a new iterative method based on a block splitting of

coefficient matrix A for solving linear system Ax = b. The new method, called the

BSCM method, uses a nonsingular block matrix for splitting the coefficient matrix A. We

proved its convergence when A is a strictly diagonally dominant, an irreducibly diagonally

dominant matrix, an M -matrix, or an H-matrix. We provided a comparison of spectral

radii for the BSCM method and the Jacobi method when A is an L-matrix. Numerical

examples showed that the rate of convergence of the BSCM method is faster than that of

the Jacobi method, but is larger than that of the Gauss-Seidel method.
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