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a b s t r a c t

In this paper, we apply the wavelet-Galerkin method to obtain approximate solutions
to linear Volterra integral equations (VIEs) of the second kind. Daubechies wavelets are
used to find such approximations. In this approach, we introduce some new connection
coefficients and discuss their properties and propose algorithms to evaluate them. These
coefficients can be computed just once and applied for solving every linear VIE of the second
kind. Convergence and error analysis are discussed and numerical examples illustrate the
efficiency of the method.
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1. Introduction

In recent years, wavelets have played a crucial role in approximating the solution of a wide range of problems arising in
science and engineering. Wavelets have been used in numerous areas of applied mathematics as diverse as signal analysis,
statistics, computer aided geometric design, image processing and numerical analysis. Glowinski in [1] used wavelets to
approximate the solution of a partial differential equation. Wavelet bases are also used for solving integral equations,
in which Fredholm equations are investigated more than other types; for e.g. see [2–5]. Wavelets are mostly suited for
approximating linear problems, but some numerical results were obtained for nonlinear Fredholm and Volterra equations
in [6,7]. The approximate solution of two-dimensional Fredholm equations is discussed in [8].

In a wavelet-Galerkin scheme, wavelet bases are applied with the well-known Galerkin method, in place of other
conventional bases like Legendre or Chebyshev bases. This method has been used for approximating PDE problems
in [9–12]. The solution of integral equations by the wavelet-Galerkin method is studied by various authors such as Fang
in [13], Liang in [14] and Xiao in [15]. Integro-differential equations are also considered in [16].

As we are aware, the wavelet-Galerkin scheme has not been applied for solving VIEs yet. The main difficulty in applying
this procedure happens in the evaluation of the connection coefficientswhich arise in thismethod. It is difficult and unstable
to compute connection coefficients by the numerical evaluation of integrals. Therefore in this paper, we propose algorithms
for the exact evaluation of these coefficients.

This paper is organized as follows. In Section 2, some properties of Daubechies wavelets are reviewed. In Section 3,
the wavelet-Galerkin scheme is proposed to approximate the solution of a linear VIE of the second kind. The evaluation of
connection coefficients is the subject of Section 4. In Section 5, we present the error analysis of this method. The efficiency of
thismethod is shown by providing some numerical experiments in Section 6 and a brief conclusion is presented in Section 7.
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2. Daubechies wavelets

Daubechies wavelets have gained considerable attention in the numerical analysis of partial differential and integral
equations because of possessing some useful properties, such as orthogonality, compact support and ability to represent
functions at different levels of resolution. In this section we review some properties of Daubechies wavelets.

Definition 2.1. A refinable function is a function φ : R → C which satisfies a two-scale refinement equation of the form

φ(x) =


k

akφ(2x − k). (2.1)

The ak ∈ C are called scaling or recursion coefficients. The exact values of some of these coefficients are evaluated in [17].
Since φ(·) has compact support, the series in (2.1) reduces to a finite series as:

φ(x) =

2g−1
k=0

akφ(2x − k),

where g denotes the genus of the scaling function.
The refinable function φ is called orthogonal if

⟨φ(x), φ(x − k)⟩ =


R
φ(x)φ(x − k)dx = δ0,k, k ∈ Z, (2.2)

where δ0,k is the Kronecker delta function. In order to obtain approximations of a function f (x) ∈ L2(R), one can use the
translated dilations of the scaling function, defined as

φn,l(x) = 2n/2φ(2nx − l), n, l ∈ Z . (2.3)
The set of orthogonal functions {φn,l(x)}l∈Z for a particular n, generates a space Vn ⊂ L2(R). Let Pn denote the orthogonal
projection L2(R) → Vn. The vector spaces Vn(n ∈ Z) have the following properties defining a multiresolution analysis:
1. Vn ⊂ L2(R) and Vn ⊂ Vn+1
2. ∥f (x) − Pnf (x)∥ = min ∥f (x) − g(x)∥, where g(x) ∈ Vn.
3. v(x) ∈ Vn ⇔ v(2x) ∈ Vn+1.
4. The projection Pnf (x) converges to f (x) as n tends to infinity:

lim
n→∞

Pnf (x) = f (x) or
∞
n=0

Vn is dense in L2(R).

Definition 2.2. The kth discrete and continuous moments of φ are respectively defined by

mk =
1
2


l

lkal, (2.4)

Mk =


xkφ(x)dx. (2.5)

In this paper by integral sign

, we mean


R .

Theorem 2.1 ([18]). The discrete and continuous moments are related by

Mk = 2−k
k

l=0


k
l


mk−lMl, (2.6)

and we let
k

φ(x − k) =


φ(x)dx = M0 = 1.

3. Problem approximation

In this section we propose the wavelet-Galerkin method to approximate the solution of a linear VIE of the second kind.
Letφ(x) be the Daubechies scaling function of genusN and the support is [0, L−1], where L = 2N . Therefore the function

φn,i(x) = 2−n/2φ(2nx − i) has the support [2−ni, 2−n(i + L − 1)]. Consider the following VIE of the second kind

u(x) = f (x) +

 x

0
K(x, t)u(t)dt, 0 ≤ t ≤ x ≤ 1, (3.1)
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where u is an unknown function and f ∈ L2[0, 1], K ∈ L2([0, 1] × [0, 1]) are explicitly known. Since φ is orthogonal, φn,i(x)
generates an orthogonal MRA, hence u(x) can be approximated by scaling function series as

u(x) =


i

uiφn,i(x), (3.2)

where uis are unknown coefficients. Since φn,i(x) has compact support and we look for a solution of (3.1) in the interval
[0, 1], the infinite series in (3.2) reduces to a finite series

u(x) =

2n−1
i=2−L

uiφn,i(x). (3.3)

Substituting (3.3) into (3.1) leads to

2n−1
i=2−L

uiφn,i(x) = f (x) +

2n−1
i=2−L

ui

 x

0
K(x, t)φn,i(t)dt, 0 ≤ t ≤ x ≤ 1. (3.4)

To solve (3.4), two different approaches are mostly applied, one of them is the collocation method and the other one is the
Galerkin method. In order to solve (3.4) by the Galerkin procedure, first we must approximate functions f (x) and K(x, t). In
the sequel we mention how to approximate these functions properly.

Let f (x) is defined on R, to approximate this function we have

f (x) ≃

+∞
k=−∞

akφn,k(x), ak =


f (x)φn,k(x)dx. (3.5)

The coefficients ak are unknown. In order to evaluate them we apply a quadrature rule. The idea of a quadrature formula is
to find weights wi and abscissae xi such that

g(x)φ(x)dx =

 L−1

0
g(x)φ(x)dx ≃

p
i=0

wig(xi). (3.6)

We try to find unknown weights wi such that, relation (3.6) holds exactly for polynomials of degree p. Hence we have
xjφ(x)dx =

 L−1

0
xjφ(x)dx = Mj =

p
i=0

wix
j
i, j = 0, . . . , p,

which leads to an algebraic system. In case the abscissae xi are fixed, this system is linear in the unknownswi. More efficient
quadrature formula can be constructed by also treating the abscissae as unknowns, cf. Gauss quadrature formulae. Here we
let xi =

i(L−1)
p , i = 0 . . . p, so the unknowns ak in (3.5) are approximated as follows

ak =


f (x)φn,k(x)dx = 2−

n
2

 L−1

0
f

t + k
2n


φ(t)dt = 2−

n
2

p
q=0

wqf

tq + k
2n


. (3.7)

The function f (x) in (3.1) is defined in the interval [0, 1] and by considering (3.7) we need some values of this function out
of this interval, hence we extend this function smoothly by the following procedure.

3.1. Smooth extension of functions

Let f ∈ Cm
[0, 1]. This function can be extended to [−δ, 1], 0 < δ ≤

1
m , by the reflection formula (see, e.g. [19,20])

f (x) =

m
j=0

cjf (−jx) − δ ≤ x < 0, (3.8)

where cj are chosen such that a Cm-smooth joining takes place at x = 0. The Cm-smooth joining at x = 0 happens if
limx→0 f (k)(x) = f (k)(0), i.e., if

m
j=0

(−j)kcj = 1, k = 0, . . . ,m. (3.9)

The values of cj can be obtained by solving the system (3.9). Same cj suit to extend f onto [0, 1 + δ]:

f (x) =

m
j=0

cjf (1 − j(x − 1)), 1 < x ≤ 1 + δ, (3.10)
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As the result we obtain an extended function f ∈ Cm
[−δ, 1 + δ]. It holds

max
−δ≤x≤1+δ

|f (x)| ≤

m
j=0

|cj| max
0≤x≤1

|f (x)| = (2m+1
− 1) max

0≤x≤1
|f (x)|.

Thus after extending the function f (x) ∈ L2[0, 1] by the mentioned procedure and considering (3.5) and (3.7) we have

f (x) ≃ 2−
n
2

2n−1
k=2−L

p
q=0

wqf

xq + k
2n


φn,k(x). (3.11)

The kernel K(x, t) ∈ L2([0, 1] × [0, 1]) can be extended and approximated similarly by

K(x, t) ≃ 2−n
2n−1

j,l=2−L

p
r,s=0

wrwsK

xr + j
2n

,
ts + l
2n


φn,j(x)φn,l(t). (3.12)

Considering relations (3.11) and (3.12), Eq. (3.4) can be rewritten as
i

uiφn,i(x) = 2−
n
2

k


q

wqf

xq + k
2n


φn,k(x)

+ 2−n

i,j,l


r,s

wrwsK

xr + j
2n

,
ts + l
2n


uiφn,j(x)

 x

0
φn,i(t)φn,l(t)dt. (3.13)

To find the unknown coefficients ui by theGalerkinmethod,wemultiply (3.13) by the functionsφn,m(x),m = 2−L, . . . , 2n
−

1, then integrate over [0, 1] to get
i

ui

 1

0
φn,i(x)φn,m(x)dx = 2−

n
2

k


q

wqf

xq + k
2n

  1

0
φn,k(x)φn,m(x)dx

+ 2−n

i,j,l


r,s

wrwsuiK

xr + j
2n

,
ts + l
2n

  1

0
φn,j(x)φn,m(x)

 x

0
φn,i(t)φn,l(t)dtdx. (3.14)

Now by introducing the following connection coefficients

Γk(x) =

 x

0
φ(y)φ(y − k)dy, (3.15)

Ω
k,l
i,j =

 2n

0
φ(y − i)φ(y − j)Γk−l(y − l)dy (3.16)

the linear system (3.14) reduces to
i

ui

Γi−m(2n

− m) − Γi−m(−m)


= 2−
n
2

k


q

wqf

xq + k
2n


(Γk−m(2n

− m) − Γk−m(−m))

+ 2−n

i,j,l


r,s

wrwsuiK

xr + j
2n

,
ts + l
2n

  1

0
φn,j(x)φn,m(x)(Γi−l(2nx − l) − Γi−l(−l))dx, (3.17)

consequently
i

ui

Γi−m(2n

− m) − Γi−m(−m)


= 2−
n
2

k


q

wqf

xq + k
2n


(Γk−m(2n

− m) − Γk−m(−m))

+ 2−n

i,j,l


r,s

wrwsuiK

xr + j
2n

,
ts + l
2n

 
Ω

i,l
j,m − Γi−l(−l)(Γj−m(2n

− m) − Γj−m(−m))


(m = 2 − L, . . . , 2n
− 1). (3.18)

Hence the unknown parameters ui can be obtained by solving a linear system of the form

Au = b, (3.19)
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Table 1
Some values of Γk(x) for the case L = 6.

x k Γk(x) x k Γk(x) x k Γk(x) x k Γk(x)

1 −3 −0.4413282833e–3 2 −2 0.1343887190e–3 3 −1 −0.32493517105e–4 4 0 0.9999985220887
−2 −0.1879313571e–1 −1 0.5652294255e–2 0 0.99866006117067 1 −0.3249351711e–4
−1 0.1233282357158 0 0.9675965284579 1 0.56522942556e–2 2 0.1343887189e–3
0 0.4966477981054 1 0.1233282357158 2 −0.18793135706e–1 3 −0.4413282828e–3

where

Am,i = Γi−m(2n
− m) − Γi−m(−m)

− 2−n
2n−1

j,l=2−L

p
r,s=0

wrwsK

xr + j
2n

,
ts + l
2n

 
Ω

i,l
j,m − Γi−l(−l)(Γj−m(2n

− m) − Γj−m(−m))


,

bm = 2−
n
2

2n−1
k=2−L

p
q=0

wqf

xq + k
2n


(Γk−m(2n

− m) − Γk−m(−m)). (3.20)

It is important to note that the connection coefficients Γk(x) and Ω
k,l
i,j depend only on L and not on n.

4. Evaluation of the connection coefficients

In this section we provide special algorithms to evaluate the connection coefficients which were defined in the previous
section.

4.1. Evaluation of Γk(x) =
 x
0 φ(y)φ(y − k)dy

Assume that the support of the scaling function φ(·) is [0, L − 1], therefore the support of the function φ(· − k) is
[k, k + L − 1] and generally φn,k(·) has the compact support [2−nk, 2−n(k + L − 1)]. Consider the following properties
of Γk(x):

Γk(x) = 0, if (x ≤ 0 or x ≤ k), (4.1)
Γk(x) = 0, if |k| ≥ L − 1, (4.2)
Γk(x) = δk,0 if x ≥ L − 1, (4.3)

Γk(x) = Γ−k(x − k), (4.4)

Γk(x) = δ−k,0 if x − k ≥ L − 1, (4.5)

Γk(x) =
1
2

L−1
i,j=0

aiajΓ2k+i−j(2x − j), (4.6)

Relation (4.1) is trivial by considering the support of functions φ(·) and φ(· − k), on the other hand if |k| ≥ L − 1 then the
support of these functions has no interconnection so (4.2) is also valid. Relation (4.3) holds, since if x ≥ L − 1 then

Γk(x) =


R
φ(y)φ(y − k)dy = δk,0.

The property (4.4) results from choosing y − k = t in (3.15) and (4.5) is the consequence of (4.3) and (4.4). The two-scale
relation (4.6) follows from applying (2.1) to (3.15)

Γk(x) =

L−1
i,j=0

aiaj

 x

0
φ(2y − j)φ(2y − 2k − i)dy =

1
2

L−1
i,j=0

aiaj

 2x−j

j
φ(t)φ(t − (2k + i − j))dt

=
1
2

L−1
i,j=0

aiaj(Γ2k+i−j(2x − j) − Γ2k+i−j(−j)) =
1
2

L−1
i,j=0

aiajΓ2k+i−j(2x − j).

The last equality holds because of (4.1). According to relations (4.1)–(4.5), the unknown values of Γk(x) reduce to the integer
values of x ∈ [1, L−2] and |k| ≤ L−2. To find these valueswe apply the two-scale relation (4.5) for unknowns x and k to find
a nonsingular linear system. The nonsingularity of this system is discussed in [9,12]. Some values of Γk(x) for Daubechies
wavelets of genus N = 3, i.e. L = 6, are gathered in Table 1.
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4.2. Evaluation of integrals Υ k,l
r =


R φ(y)φ(y − r)Γk−l(y − l)dy

In order to evaluate values of Ωk,l
i,j , we need to define a new three parameter connection coefficient Υ k,l

r as follows:

Υ k,l
r =


R
φ(y)φ(y − r)Γk−l(y − l)dy. (4.7)

Before we discuss some properties of Υ k,l
r we present the following lemma:

Lemma 4.1. The support of function Γk−l(x − l) is

suppΓk−l(x − l) ⊆


[max{k, l},min{k, l} + L − 1] , k ≠ l
[max{k, l}, +∞) , k = l. (4.8)

Proof. It is easy to see that

Γk−l(x − l) = Γl−k(x − k). (4.9)

Applying (4.1) and (4.9), reveals that

Γk−l(x − l) = 0 if (x − l ≤ 0 or x − k ≤ 0),

hence, Γk−l(x − l) ≠ 0 if x ≥ max{k, l}. Let k ≠ l then by using (4.3) and (4.9),

Γk−l(x − l) = 0 if (x − l ≥ L − 1 or x − k ≥ L − 1),

therefore when k ≠ l, if x ≤ min{k, l} + L − 1 then Γk−l(x − l) may be nonzero. On the other hand when k = l,
Γk−l(x − l) = Γ0(x − l) thus by considering (4.3), relation (4.8) is valid. �

The integrals Υ k,l
r satisfy the following properties

Υ k,l
r = Υ l,k

r (4.10)

Υ k,l
r = 0, if (|r| ≥ L − 1 or |k − l| ≥ L − 1) (4.11)

Υ k,l
r = 0, if max{k, l} ≥ L − 1 (4.12)

Υ k,l
r = 0, if (k ≠ l and min{k, l} + L − 1 ≤ 0) (4.13)

Υ k,k
r = δr,0 if k ≤ 1 − L (4.14)

Υ k,l
r =

1
4

L−1
k1,...,k4=0

ak1ak2ak3ak4Υ
2k+k3−k1,2l+k4−k1
2r+k2−k1

. (4.15)

Relation (4.10) follows immediately from (4.9). Relation (4.11) follows from the compact support of functions φ(·) and
φ(·− r) and also (4.2). Relations (4.12) and (4.13) are valid because of (4.8) and the support of function φ(y). To verify (4.14)
owing to the support of function φ(y) we have

Υ k,k
r =


φ(y)φ(y − r)Γ0(y − k)dy =


+∞

0
φ(y)φ(y − r)Γ0(y − k)dy = δr,0.

Last equality holds, since when k ≤ 1 − L and y ≥ 0 then y − k ≥ L − 1, hence by (4.5) Γ0(y − k) = δ0,0 = 1.
To prove (4.15), we apply the two-scale relations (2.1) and (4.6) to (4.7)

Υ k,l
r =

1
2

L−1
k1,...,k4=0

ak1ak2ak3ak4


φ(2y − k1)φ(2y − 2r − k2)Γ2(k−l)+k3−k4(2y − 2l − k4)dy

=
1
4


k1,...,k4

ak1ak2ak3ak4


φ(t)φ(t − (2r + k2 − k1))Γ(2k+k3)−(2l+k4)(t − (2l + k4 − k1))dt

=
1
4


k1,...,k4

ak1ak2ak3ak4Υ
2k+k3−k1,2l+k4−k1
2r+k2−k1

.

In the next lemma we propose a useful relation concerning integrals Υ k,l
r .
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Table 2
Some values of integrals Υ k,l

r for the case L = 6.

r k l Υ k,l
r r k l Υ k,l

r r k l Υ k,l
r r k l Υ k,l

r

−3 −2 −3 −7.68523e–7 −1 −1 −2 3.38897e–3 1 1 −1 −1.10634e–3 3 2 0 −1.15834e–5
−2 3.44478e–6 −1 −1.75358e–2 1 −9.70245e–2 1 1.08026e–4
−1 −1.15834e–5 1 7.61407e–4 2 −3.38897e–3 2 −4.94291e–4
0 −1.11526e–8 2 −3.44478e–6 3 1.37889e–5 3 −2.62214e–4

−2 0 −1 1.10634e–3 0 1 0 1.75358e–2 2 1 1 3.82301e–3 4 2 3 1.37104e–6
0 1.48138e–2 1 3.17289e–2 2 1.10634e–3 4 2.01381e–7
1 8.44486e–6 2 7.44154e–4 3 −2.21011e–5 3 3 −4.96920e–6
2 −9.35083e–8 3 −5.66583e–6 4 1.11526e–8 4 −6.4296e–7

Lemma 4.2. If |r − l| ≥ L − 1 then

Υ k,l
r = δk−l,0(δr,0 − Γr(l + L − 1)), (4.16)

and if |r − k| ≥ L − 1 then

Υ k,l
r = δl−k,0(δr,0 − Γr(k + L − 1)). (4.17)

Proof. If y − l ≤ 0 then by (4.1), Γk−l(y − l) = 0. On the other hand, by considering (4.9) and (4.5) we have Γk−l(y − l) =

Γl−k(y − k) = δk−l,0 if y − l ≥ L − 1. Hence

Υ k,l
r =

 l+L−1

l
φ(y)φ(y − r)Γk−l(y − l)dy + δk−l,0


+∞

l+L−1
φ(y)φ(y − r)dy

=

 l+L−1

l
φ(y)φ(y − r)Γk−l(y − l)dy + δk−l,0

 L−1

l+L−1
φ(y)φ(y − r)dy.

Which results from the support of function φ(y). Now, if r ≥ l + L − 1 or r + L − 1 ≤ l then the first integral in the above
equation vanishes. So when |r − l| ≥ L − 1 then

Υ k,l
r = δl−k,0(Γr(L − 1) − Γr(l + L − 1)) = δk−l,0(δr,0 − Γr(l + L − 1)).

Relation (4.17) can also be verified similarly. �

Based on relations (4.10)–(4.15), and supposing integer values for k, l and r , nonzero values of integrals Υ k,l
r are limited

to the cases when |r| ≤ L− 2, k ≤ L− 2, l ≤ L− 2 and if k ≠ l, then k ≥ 2− L and l ≥ 2− L. And when k = l ≤ 1− L then
Υ k,k

r = δr,0.
Now by applying the recursive relation (4.15) for the unknowns k, l and r , one can find a non-homogeneous system of

linear equations which can be easily solved. Some values of Υ k,l
r have been collected in Table 2.

4.3. Evaluation of integrals Ω
k,l
i,j =

 2n

0 φ(y − i)φ(y − j)Γk−l(y − l)dy

The following relations can be easily verified

Ω
k,l
i,j = Ω

k,l
j,i = Ω

l,k
i,j = Ω

l,k
j,i , (4.18)

Ω
k,l
i,j = 0 if |k − l| ≥ L − 1 or |i − j| ≥ L − 1, (4.19)

Ω
k,l
i,j = 0 if (i ≤ 1 − L or j ≤ 1 − L or i ≥ 2n or j ≥ 2n or k ≥ 2n or l ≥ 2n), (4.20)

Ω
k,l
i,j = 0 if k ≠ l and (k ≤ 1 − L or l ≤ 1 − L), (4.21)

Ω
k,l
i,j = Γj−i(2n

− i) − Γj−i(−i) if (k = l ≤ 1 − L). (4.22)

Relation (4.18) is valid due to (4.9) and the formulae of Ω
k,l
i,j . Relation (4.19) follows from (4.2) and the compact support of

functionsφ(y−i) andφ(y−j). The support of these functions also reveals thatwhen i ≤ 1−L or j ≤ 1−L or i ≥ 2n or j ≥ 2n,
there is no interconnection between their support and the interval [0, 2n

] and also when k ≥ 2n or l ≥ 2n, then by (4.8)
relation (4.20) holds. Relation (4.21) is another consequence of (4.8). To verify (4.22) note that when k = l ≤ 1 − L and
x ≥ 0 then x − l ≥ L − 1, so

Ω
k,k
i,j =

 2n

0
φ(y − i)φ(y − j)Γ0(y − l)dy =

 2n

0
φ(y − i)φ(y − j)

 x−l

0
φ2(t)dtdy

=

 2n

0
φ(y − i)φ(y − j)dy = Γj−i(2n

− i) − Γj−i(−i).
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Fig. 1. Region of unknown values of integrals Ω
k,l
i,j related to variables i and j. (n = 5).

Another important relation for the integrals Ω
k,l
i,j is discussed in the next lemma.

Lemma 4.3. For the integrals Ω
k,l
i,j , if |i − l| ≥ L − 1 or |j − l| ≥ L − 1 then

Ω
k,l
i,j = δk−l,0(Γj−i(2n

− i) − Γj−i(l − i + L − 1)), (4.23)

and if |i − k| ≥ L − 1 or |j − k| ≥ L − 1 then

Ω
k,l
i,j = δl−k,0(Γj−i(2n

− i) − Γj−i(k − i + L − 1)). (4.24)

Proof. As mentioned in the proof of Lemma 4.2, we have

Ω
k,l
i,j =

 l+L−1

l
φ(y − i)φ(y − j)Γk−l(y − l)dy + δk−l,0

 2n

l+L−1
φ(y − i)φ(y − j)dy

=

 l+L−1

l
φ(y − i)φ(y − j)Γk−l(y − l)dy + δk−l,0

 2n−i

l+L−1−i
φ(y)φ(y − (j − i))dy

=

 l+L−1

l
φ(y − i)φ(y − j)Γk−l(y − l)dy + δk−l,0(Γj−i(2n

− i) − Γj−i(l − i + L − 1)),

if i ≥ l + L − 1 or j ≥ l + L − 1 or i + L − 1 ≤ l or j + L − 1 ≤ l, the integral in the last equation vanishes and (4.23) holds.
Relation (4.24) can also be proved by the same discussion. �

By considering the above relations, one can find out which unknown values of integrals Ω
k,l
i,j fall in a bounded region

related to variables i, j, k and l. The grey part in Fig. 1 indicates the region where the unknown values of Ω
k,l
i,j are with

respect to variables i and j. The same figure can be plotted for the region where the variables k and l can vary.
To evaluate the unknowns Ω

k,l
i,j we try to find a recursive relation. By applying (2.1) and the two-scale relation (4.6) to

(3.16), we get

Ω
k,l
i,j =

1
4

L−1
k1,...,k4=0

ak1ak2ak3ak4

 2n+1

0
φ(y − (2i + k1))φ(y − (2j + k2))Γ(2k+k3)−(2l+k4)(y − 2l − k4)dy. (4.25)

The upper limit of the integral in the right-hand side of (4.25) is 2n+1, hence there is not a recursive relation forΩ
k,l
i,j generally.

Now we consider the following cases. Fig. 1 can also be helpful in better understanding these cases.
Case 1. If i or j ∈ [0, 2n

− L + 1], then for each k and l

Ω
k,l
i,j =

 2n

0
φ(y − i)φ(y − j)Γk−l(y − l)dy =


R
φ(y − i)φ(y − j)Γk−l(y − l)dy,
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since in this case the support of functions φ(y − i) or φ(y − j) fall inside the interval [0, 2n
]. Now by using of (4.7), we have

Ω
k,l
i,j =


φ(y − i)φ(y − j)Γk−l(y − l)dy =


φ(y)φ(y − (j − i))Γk−l(y − (l − i))dy = Υ

k−i,l−i
j−i . (4.26)

Case 2. If (i, j) ∈ [2 − L, −1]2, then for each k and l and by choosing n ≥ log2(2L − 4), relation (4.25) can be written in the
recursive form, as

Ω
k,l
i,j =

1
4

L−1
k1,...,k4=0

ak1ak2ak3ak4Ω
2k+k3,2l+k4
2i+k1,2j+k2

. (4.27)

This is due to the fact that the support of the functionφ(y−(2i+k1)) in (4.25) is [2i+k1, 2i+k1+L−1] and if 2i+k1+L−1 ≤ 2n

then the integration in relation (4.25) can be considered over the interval [0, 2n
] instead of [0, 2n+1

]. On the other hand by
Lemma 4.3, one can see that in this case when k or l ≥ L−2 then the values ofΩk,l

i,j are known. Therefore, relation (4.27) can
be applied for (i, j) ∈ [2 − L, −1]2 and (k, l) ∈ [2 − L, L − 3]2. After evaluating the connection coefficients Υ k,l

r and using
them in (4.27), a non-homogeneous system of linear equations is obtained which can be easily solved.
Case 3. If (i, j) ∈ [2n

− L + 2, 2n
− 1]2, then for each k and l note that

Ω
k−2n,l−2n
i−2n,j−2n =

 2n

0
φ(y − i + 2n)φ(y − j + 2n)Γk−l(y − l + 2n)dy

=

 2n+1

2n
φ(t − i)φ(t − j)Γk−l(t − l)dt. (4.28)

Adding (3.16) to (4.28), leads to

Ω
k,l
i,j + Ω

k−2n,l−2n
i−2n,j−2n =

 2n+1

0
φ(y − i)φ(y − j)Γk−l(y − l)dy. (4.29)

Since i ∈ [2n
− L + 2, 2n

− 1], by choosing n ≥ log2(L − 2), the support of function φ(y − i) falls in the interval [0, 2n+1
],

so (4.29) can be written as

Ω
k,l
i,j + Ω

k−2n,l−2n
i−2n,j−2n =


φ(y − i)φ(y − j)Γk−l(y − l)dy,

which, by applying (4.7), yields

Ω
k,l
i,j = −Ω

k−2n,l−2n
i−2n,j−2n + Υ

k−i,l−i
j−i . (4.30)

This means that in this case, all values of Ω
k,l
i,j can be obtained directly from the other values that have been evaluated in

previous cases. In fact Lemma 4.3 shows that when (i, j) ∈ [2n
− L + 2, 2n

− 1]2, if k or l ≤ 2n
− 2L + 2 the values of Ω

k,l
i,j

are known. Hence relation (4.30) can be used for (i, j) ∈ [2n
− L + 2, 2n

− 1]2 and (k, l) ∈ [2n
− 2L + 3, 2n

− 1]2.
Considering the above cases, all of unknowns Ω

k,l
i,j can be computed. In Table 3 we have proposed some values of these

integrals.

5. Error analysis

Consider the following VIE of the second kind

u(x) = f (x) +

 x

0
K(x, t, u(t))dt, x ∈ I := [0, 1], (5.1)

where f : I → R and K : D × R → R (with D := {(x, t) : 0 ≤ t ≤ x ≤ 1}) are known functions. The problem (5.1)
has a unique solution if g ∈ C(I) and K is continuous for all (x, t) ∈ D and all u and also satisfies the (uniform) Lipschitz
conditions:

|K(x, t, u1) − K(x, t, u2)| ≤ l1|u1 − u2|, (5.2)
|Kx(x, t, u1) − Kx(x, t, u2)| ≤ l2|u1 − u2|, (5.3)

for all x ∈ I, (x, t) ∈ D and u1, u2 ∈ R, with Lipschitz constants l1, l2 being independent of u1 and u2.
Define a nonlinear integral operator G : C(I) → C(I) by

(Gv)(x) := f (x) +

 x

0
K(x, t, v(t))dt.



J. Saberi-Nadjafi et al. / Computers and Mathematics with Applications 63 (2012) 1536–1547 1545

Table 3
Some values of integrals Ω

k,l
i,j for the case L = 6.

i j k l Ω
k,l
i,j i j k l Ω

k,l
i,j i j k l Ω

k,l
i,j

−4 −4 −4 −4 1.4779e–6 0 0 0 −1 9.7025e–2 9 9 10 9 1.7536e–2
−2 −2 1.4433e–6 0 4.9999e–1 10 3.1729e–2

−3 −3 −2 −2 1.3144e–3 4 3 6 3 −3.4448e–6 12 11 11 10 3.3889e–3
−1 −2 1.0299e–4 4 −1 −1 1 13 10 −1.0802e–4

−2 −2 0 −2 −1.6977e–4 3 2 5.3638e–3 12 14 14 1.2727e–3
0 −1 7.4415e–4 3 9.6827e–1 15 14 16 14 7.6140e–4

0 −1 0 0 −9.7025e–2 9 7 9 8 1.1063e–3 16 −5.3638e–3
2 1 −4.3049e–5 9 1.4814e–2 15 14 12 2.0386e–4

16 14 17 15 −2.2101e–5 23 20 22 22 −4.9429e–4 27 27 22 22 1
15 18 17 −4.3049e–5 23 22 −2.6221e–4 23 23 9.9999e–1
16 7 7 1 21 23 23 1.4814e–2 29 29 16 16 9.9866e–1

19 19 1.0987e–5 25 22 25 24 −2.6221e–4 31 31 3.8723e–4
19 17 20 19 8.4448e–6 25 25 7.3695e–5 30 28 9 9 1.3438e–4

18 19 16 2.6221e–4 24 27 27 2.5982e–5 29 29 3.9573e–3
19 20 17 4.9429e–4 27 25 26 26 3.8230e–3 31 30 −2 −2 1.2332e–1

21 19 −1.6976e–4 26 29 27 1.3788e–5 31 31 30 6.9671e–2

Then the problem (5.1) reads: Find u = u(x) such that

u(x) = (Gu)(x), x ∈ I, (5.4)

and its weak form is to find u ∈ L2(I) such that

(u, v) = (Gu, v), v ∈ L2(I), (5.5)

where (·, ·) denotes the usual inner product in L2-space. The Galerkin approximation of (5.5) is nowdefined as: Find uN
∈ VN

such that

(uN , v) = (GuN , v), v ∈ VN . (5.6)

Let PN : L2(I) → VN denote the orthogonal projection operator defined by

(u, v) = (PN , v), ∀v ∈ VN .

Then the problem (5.6) can be equivalently written as: Find uN
∈ VN such that

uN
= PNGuN . (5.7)

The following theorem shows the L2 error approximation of a function with its orthogonal projection and the proof can
be found in [21,22].

Theorem 5.1. For an orthogonal Daubechies wavelet system of degree n with the scaling function φ(x) and the scaling vector α,
assume α has finite length. If f (x) ∈ Cn

0 (R), then

∥f (x) − Pj(f )(x)∥L2 ≤ C2−jn, (5.8)

where C depends only on f (x) and the scaling vector α.

Let eN := u − uN be the error corresponding to the wavelet-Galerkin solution uN of (5.1). Applying the mean value
theorem for the kernel function K implies that there exist a function ξ , whose value ξ(x) at x is between u(x) and uN(x),
such that

K(x, t, u) − K(x, t, uN) = Ku(x, t, ξ)eN(x). (5.9)

set

(G′v)(x) :=

 x

0
Ku(x, t, u(t))v(t)dt,

(G′

Nv)(x) :=

 x

0
Ku(x, t, ξ(t))v(t)dt.

(5.10)

Then we have the following lemma similar to Lemma 2.2 in [23].
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Fig. 2. Graphs of en , for Example 6.1, with n = 5 (left), n = 7 (right).

Lemma 5.1. We have

lim
N→∞

∥G′

N − G′
∥L2(I)→L2(I) = 0,

where

∥A∥L2(I)→L2(I) := sup
v∈L2(I)

∥Av∥L2(I)

∥v∥L2(I)
.

Assuming (I − G′)−1 always exist and is bounded on C(I) and L2(I), we get the following global convergence result for the
problem (5.1).

Theorem 5.2. In (5.1), assume that f ∈ C r(I) and K ∈ C r(D × R) such that the VIE in (5.1) possess a unique solution u ∈ C r(I).
Then the error eN satisfies

∥eN∥L2(I) ≤ C2−Nr .

Proof. The proof of this theorem is completely similar to the proof of Theorem 2.1 in [23] and is omitted here. �

6. Numerical results

In this section we provide some numerical examples to show the efficiency of the wavelet-Galerkin method in solving
VIEs. We apply Daubechies wavelets of genus 3, i.e. L = 6. We emphasize that the connection coefficients Γk(x) and Ω

k,l
i,j are

evaluated just once and we use them in each example to construct the corresponding linear system (3.19).

Example 6.1. Consider the following VIE of the second kind

u(x) = −2x + 4 sin(x2)(sin 2x − cos 2x) + (sin 2x + cos 2x)(1 + 2x cos(x2)) +

 x

0
(2x2 − 8) sin(xt)u(t)dt. (6.1)

The exact solution of this equation is u(x) = sin(2x)+cos(2x). In Fig. 2 we have plotted the error graph of en = u(x)−un(x),
where un(x) =

2n−1
i=2−L uiφn,i(x) is the approximate solution obtained by applying wavelet-Galerkin method.

Example 6.2. Consider the following VIE

u(x) =
1

cos(x2)
− xex tan(x2) +

 x

0

(1 + x2) cos(xt)
cos(x2)

u(t)dt, (6.2)

with exact solution u(x) = ex. The error graph is shown in Fig. 3.

7. Conclusion

The wavelet-Galerkin method based on Daubechies wavelets has been applied for solving linear VIEs of the second kind.
In this approach some new connection coefficients have been introduced which need to be evaluated just once and this
leads to a reduction in the cost of the calculations. The numerical results show the efficiency of this method.
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Fig. 3. Graphs of en , for Example 6.2, with n = 5 (left), n = 7 (right).
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