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Numerical methods are not always convergent especially in higher velocities when shock waves are
involved. A comparison analysis is performed to study the supersonic flow over conical bodies of three
different cross sections circular, elliptic and squircle (square with rounded corners) shaped using
Perturbation techniques to find flow variables analytically. In order to find lift and drag forces the
pressure force on the body is found, the component along x is drag and the component along z is lift.
Three equations are obtained for lift to drag ratio of each cross section. The graphs for L/D show that
for a particular cross section an increase in angle of attack, increases L/D. Comparing L/D in the three
mentioned cross sections depicted that L/D is the greatest in squircle then in ellipse and the least in
circle. The results are efficient in design of flying objects.
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NOMENCLATURE

a,b semi-vertex of ellipse S entropy

Cp pressure coefficient u,v,w velocity components

D drag X,Y,Z Cartesian coordinate system
e =@ -bM)/@* +b%) z =0/5

F function Greek letters

|E pressure force o angle of attack

g, shock location coefficient B half shock angle

G, ,G,.G,; functions Y =cy /ey
H(0) function ) half angle cone
J constant P density

ks =M,.5 & perturbation parameter
L lift o =B/3

M Mach number & constant

N function Subscripts

n coefficient o zero-order perturba tion
n unit normal vector first-order perturbation
p pressure n N -order perturbation

R function ¢ free stream property

o
2
=

spherical coordinate system
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1. INTRODUCTION

The flow past conical bodies has been studied for
many different cases. A supersonic compressible three
dimensional solution is useful in design of supersonic
aircrafts, missiles, rockets and etc. Taylor-Maccoll [1]
have investigated the steady supersonic flow past a right
circular cone at zero angle of attack, they have reduced
the governing equations to a single second-order
nonlinear differential equation. Perturbation method is
widely applied to studies of flow on conical bodies.
Stone [2, 3] applied the power series expansion for a
small angle of attack and obtained a solution via
perturbation method. Sims [4] performed a numerical
integration for Stone’s solution.

Hypersonic flows over slender pointed nose elliptic
cones at zero incidence is studied by Hemdan [5]. The
flow is sought as a small perturbation from some basic
circular cone flow. The geometry of the cone cross
sections and surface velocities are expanded in Fourier
series, using the supersonic linearized conical flow
theory, the flow over slender pointed cones are
calculated by Mascitti [6]. The analysis is similar to that
of Doty and Rasmussen [7] and Rasmussen [8] for
obtaining solutions for flow past circular cones at small
angle of attack. The perturbation expansions which are
used are not uniformly valid adjacent to body in the thin
vortical layer, but it has been shown that pressure and
azimuthal velocity components are valid across the
vortical layer. First and second-order theory of
supersonic flow past bodies of revolution have also been
investigated by Van Dyke [9] and analytical solution for
supersonic flow on a conical body of rounded triangle
cross section via perturbation method has been done by
Shekhi et al. [10].

The most recent studies in this subject are numerical
investigation of supersonic flow for axisymmetric cones
by Gross and Fasel [11] and also transient analysis of
counterflowing jet over highly blunt cone in hypersonic
flow by Barzegar et al. [12].

In this paper considering the Stone’s perturbation
expansions and applying them to three conical bodies
with different cross sections as circle, ellipse and
squircle at small angle of attack, the solution is obtained
analytically. The purpose of the present work is to
compare the lift to drag ratio for different cross sections,
so calculating the flow variables for each case the
pressure force is determined by integrating pressure
around the body for an arbitrary length, then by
calculating the dot product of the pressure force in x-
direction and z-direction drag and lift forces are
obtained respectively. The results will be useful in
increasing the lift to drag ratio for aircrafts, satellites,
missiles and space vehicles by changing the shape of the
cross section or the angle of attack.

2. PROBLEM FORMULATION

Consider a supersonic flow over a conical body with
arbitrary cross section. Spherical coordinate system is
considered for this problem. Due to high Mach
numbers, thin boundary layer and decrease of viscous
effects, the governing equations become the Euler’s
equations.

It is assumed that the equation of the body is as
follows:

0. =5 —¢gcosng+0(e”) @)
0.=6 is a cone with circular cross section in spherical

coordinate system and semi-vertical angle of § .The
term — gcosNg is added to produce any arbitrary cross

section by changing the values of & and N, in which
& is a small parameter as a correction factor for cross
section to achieve a convex cross section. This
parameter is used as the perturbation factor in the
expansions for flow variables and N determines the
shape of cross section. Some of the most practical
shapes are obtained by n=1, n=2 and n=4 which
represent circle, ellipse and squircle cross sections
respectively. Hence, hereafter these numbers 1, 2 and 4
indicate the shape of cross section. Writing the
perturbation expansions the following relations are
obtained for each flow variable, regarding previous
studies in this field WO is assumed to be negligible [13].

u(@,,&) =U,(0) +eu,(0)cosng +0(s?) )
V(0,0,8) =V, (0)+e&v,(0) cosNp +0(e7) 3)
W(0,p,¢) = ew, (0)sinng +o(?) &)
P(0,0,8) = py(0) + &, (O) cosng +0(e”) ®)
p(0,0.)= py(0) +ep,(0)cosng +0(s?) (6)
S(0,¢,6) =5,(0) + s, () cosng +0(s?) (7

Substituting the perturbation expansions in the
Euler’s equations and separating zero-order and first-
order terms in £, two systems of equations are
obtained. Since there is no curvature along I,
derivatives with respect to r are zero, so the systems of
equations are simplified. To achieve a complete answer
for flow over a conical body at small angle of incidence
another perturbation expansion should be written for
flow variables in which ~ (angle of incidence) is the
perturbation factor,

u@,p,a) =u,(0)+au,(6) cosgo+0(a2) ®)
V(0,p,a) =V,(0)+av,(0)cosp+0(a’) )

W(0,p,a) = o, (0)sing+0o(a’) (10)



233 A.B. Rahimi / IJE TRANSACTIONS A: Basics Vol. 25, No. 3, (July 2012) 231-238

P(O,p,a) = p,(0)+ap,(0)cos g +o(a”) (11)
P(0.4,a) = py(0) +a p,(6)cosg+0(a’) (12)
s(0,p,a) =5,(0)+as, (9)cos¢+0(0¢2) (13)

in this case the equation of the body is

0, =5+acosp+0(a’) (14)

Substituting the perturbation expansions with respect
to a in the governing equations, separating zero-order
and first-order terms in & , two systems of equations
are obtained.

Superimposing the solutions for flow variables for
each cross section with the solution of flow over a
circular cone at small angle of incidence, a complete
answer for arbitrary cross section at a small angle of
incidence is obtained.

It is obvious that the systems of equations for zero-
order in & and & are similar to Equation (15).

2p,U, + (povo) + PV, cotd =0 (9

Voup —vg =0
apO 0

!
PoVoVo + PoUgV,y + 20 =

VySy =0
Sy = ln(poM iV)_ yInp,
l(ug +V§)+L&_l_%: 0
2 y=1py 2 (y-M:
The following system accounts for the first-order
terms in & (for n=1)and & (for n=24). Where U,

V, W are velocity components in I', 9, ¢ directions
respectively, [ the static pressure, p the density of
the fluid, s is the entropy and M_ is the Mach number
of the free stream.

Subscript (0) indicates solutions for the basic cone
(circular cross section with no angle of attack), subscript
n=1 denotes solutions for circular cone at none zero
angle of incidence and for this case ¢ is the perturbation
factor. Subscripts n=2,4 respectively indicate solutions

for ellipse and squircle cross sections and & is the
perturbation factor.

!

2(py +Uepy )+ (Vo +Vopy) + (16)
npw
+eotf(py, +V0pn)+%:0

vV Ug+vu, —2vy, =0
!

pO(VOVn) +an0V(;+V0(an0+UnpO)+
PN, + P, =0

Wr:+u—OWn+WnCOt9— - Py
v, sin@ pyV,
VS, +V,S,=0
Sn:h_y&
Po Po
| 2 Py y_ Pa
—(ug +vg )+ (uuy+v v, )=+ ———
2(0 0) (nO no)pn y-1p,
ro_r _
2 (y-1)M;

From the first system the following differential
equation with respect to U, is achieved,
U, +U, cot&+2u, =0 (17

The second system of equations leads to the
following differential equation with respect to un

2
u;’+u;cot9+un(2—#]= (18)
sin © 6
_n’F, H,(9)

y sin’é

The boundary conditions at the body surface are
described by the tangency condition.

Vy(8) =V,(8) =0 (19)

To solve the above differential equations two
boundary conditions are required for each equation,
from mass conservation across the shock and normal to
the shock, the velocity components at the shock are
achieved as the following, Equations (20) and (21) are
the boundary conditions at the shock for Equation (17)
according to the system of Equations (15),

Uy(B)=cosp (20)

Vo ()= —[1 *f) @)

u,(B)=5sin pl-g,(1-&))) (22)

u/(B)=-ogy 'o(ﬂ)+5§0005ﬂ(1—gl)—§1 sin 8 (23)

£ =1-— (24)
O

For small angles Equation (17) is solved as follows,

U _, 6 2y O

o =1 7t (1=-8)(B )ln(ﬂ) (25)

V(@ _ B

W 9{1 1-4%) e } (26)

1 M2 7%1 1 . a1 =

Po(e)—;(ex p(so)j [E(y—n(l—uo ~vi)+ MJ @7)
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1

M2
exp(SO ) . (28)

1 .oy 1
{5(71)(1“0 7V0)+ Mz}

£

Po (9) =

For small angles Equation (18) is also solved as
follows,
u,(2)

u(z)= rE =G, Z- GIZZ+GHR (29)
v vi(Z 1 drR
vi(2)= 1;):GH+G]2?+GBE (30)
Where
I S ol AP S O
G“_ZUZ ;/+1 g(;/+1 202) (€20
1 1 202 (l 91)
G =(— .]
e (32)
(I-g)Jd FJ
&= TNy (33)
3( V-1 2ZZ+1IH(/)
R=1- (34)
\/02 1 4z \/5271
Inwhich g =g +o2-1, Z=Z++2* 1.
202
T Do 1) (35)
20°[0* -1+ (7= 1)Ing]
T (o 2 (36)
(" -D)QRo " +y-1)
[ 70N -
o
0 B
75 775 39)
By use of the boundary condition:
v, (1)=0 (39)

Shock eccentricity caused by the angle of attack is
obtained as the following,

Ho'+D, (40)

={2+J +20°[3-
y+1

YIn(G)}/ {4+3 —2(c” +1)[1 +4—O-2]
y+1

J
(0'\/0'271
J _
— Ing
(a\/ﬁ) (o)}

P.(0) =Fipy(0) — py(0).[ U, (O, (0) +V (O, (6) ] (41)
To find lift to drag ratio calculations show that
o’lno?

P, (6) = pw[1+ k [ P D (42)
¢, ,, o’lnc’

Pl (43)
Co N[, 7 k Lo'na’ )| (1-9, a(h) u(5)

5 k2 ) e al(5) V.6 (44)

e, 0-g) 7, 2, blene-)

V.6 o 7+1 2 0o -1 (45)
(y—1)62|:ln02+L—1}

a(p) _ o’ (46)

a;(8) (6 =D@2c” +7-1)

;”; and ; fare shown in Figures (1) and (2) as the
following.

Comparisons of the pressure coefficient from our
study with the existing studies are depicted in the two
following Figures (3) and (4), which proves well. The
numerical results are Sim's results [4] and also a Fluent
CFD software has been used by present author to model
the three Dimensional cone.

a B
3
CPo
52 > F
1
o s 10 15 20
Ks
Figure 1 cp0/82 versus k;
a1 -
a.05 //‘
a
Po
PR EEE
30 fi
3.85
o s 10 15 20
Ks

Figure 2: cp,/d versus ks

A grid dependence study was conducted to arrive at
tetrahedral grid size for optimal accuracy and efficiency
for laminar and turbulent cases. For modeling of Reynolds
stress in momentum equation, RNG k- & turbulence model
has been used.
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12 1
10 —o— cp:numerical;
1 "
I __ _cpbasic cone,
g1 .
Cp I:l. _ . cpiperturbation:
o
5 | B

Figure 3. C, /8% vs. k s in numerical and analytic solution

129 —¥%— Cp( Numerical - Potential Flow)
10 & =— = CpO0 ( Pertubation)
A Cp(RNG Turbulence Model)
8 4
P
8 |6

Figure 4. Analytic solution and numerical solution (basic
cone)

3. CALCULATING LIFT AND DRAG FORCES

The pressure force on a finite-length cone is given by

F =—[[ p(6, Jnds (47)

=g, -0 0%s o) (48)
sin &

dS =rsind,drde +0(¢”) (49)

The equations for Lift and drag forces are as follow:

D=F-¢, = p,(&)aH* tan> 5 +0(s?) (50)

_ —_lcl 2 2., 2 2 2
L=F- = W ayM “p.7H  tan" S +0(a”,&”,q¢) (51)

L_ 1c,aM,’p,

D 45 P, (52)

4. RESULTS AND DISCUSSION

For comparing the lift to drag ratio in different cross
sections, first the relation between & and the shape of
cross section should be found.

In rectangle Cartesian coordinates, an elliptic cone is
represented by:

X2 yz

——+ 2 =1 53
a’z* b?z? (53)
where,

Cartesian to spherical transformers are
X=rsinfcos¢g (54)
y=rsinf@sing (55)
Z=rcos6 (56)

Substituting Equations (54-56) in Equation (53) the
following relations are obtained.

tan & =ﬂ (57)
JI+ecos2p
In which
tan9m=%=b 1-e (58)
o2 (59

In the left hand side of Equation (58), the Taylor
expansion about £=0 is written and in right hand side the
Fourier series are substituted. For different values of e
calculations shows that Fourier series coefficients
except for a, and a, are negligible, so the following
equation is achieved.

tan S — £(1 + tan’ §)cos2¢ = tan 6, (%+azcosz¢j (60)
where,

1 (= 1
—| ———=d
7TJ.’”1/1+6c052¢ ?
1 (= cos2p
a,=—| ————dop 62
: 71"[’”1/1+8C082(p 62)

On the other hand ag= | then for small angles and
comparing the two sides of Equation (60) the two
following relations are obtained.

o=bJl-e (63)

(61)

a, =

a, tand,

T b (l—e) (64)
It is obvious that for a circular cone, e=0.

o=b (65)
c=0 (66)
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In rectangle Cartesian coordinates, a cone with
squircle cross section is represented by

X4 4
Z_4+§_4= R* (67)

The Cartesian to Spherical Transformers are
substituted in the Cartesian equation of squircle,

V2R

tan @, = —
(3 +cosdp)’*

(68)
Using Equation (1) and Taylor Expansion about & =0
for the left hand side of Equation (68) and writing
Fourier series for the right hand side, the following
relation is obtained.

tand — g(1 + tan’ 5) cos 4¢ =%+a4 cos4¢ (69)
In comparison with a5, a4 the other coefficients of
the Fourier series are much smaller and hence
negligible.
Comparing the two sides of Equation (69) the
following relations are achieved.

a
tand =2 (70)
2
8,
P
a (71)
1+(22)°
(2)
In which
1= 2R
=l ———de (72)
77 (3+cosdp)’*
1 ¢ V2R
a, :—chos4(p—ydgo (73)
z (3+cosdp)’*

R is a constant and equals to the radius of a circle
tangent to the inner side of the squircle. The lift to drag
ratio versus Kk is shown the following figures, where

for small angle of attack.
kr? = Mmé‘ (74)

As the angle of attack increases, the lift to drag ratio
trends to a constant value for a greater value of ks and
the value of this constant increases with the increase in
angle of attack.

In Figures (5-7) comparing the lift to drag ratio it is
seen that increasing n from 1 to 4 causes an increase in
L/D, for an ellipse and a squircle which are tangent to
the inner side of a circle the lift to drag ratio
respectively increases and trends to a constant value
which is the greatest for a squircle. Also as it can be
seen from the figures and also in Equation (74) which
known as the hypersonic small disturbance parameter,

since semi vertical angle of cone is small, the values of
ks more than 5 is considered infinity.

As expected by decreasing the semi-vertical angle of
the cones as shown in Figure (7), the lift to drag ratio
has increases for all of the cross sections because the
flow encounters a more slender body.

1.4
1.2 e
,// T et eeeaa————————an
for e
1 N 0
_.','
I
L |os pf
— ¢
D 2 B Circle
0.6 - - - - Ellipse
— - — Squircle
0.4
0.2
o 5 10 15 20

Ky

Figure 5. lift to drag ratio versus ks, 0=4°, semi vertical angle
of tangent circular cone is 14.3°

2.9

2.5 ——

- — — - Ellipse

— - — Squircle

0.5

o 5 10 15 20
k5

Figure 6. lift to drag ratio versus ks 0=8°, semi vertical angle
of tangent circular cone is 14.3°

4.5
4 e e ———————— — . —
32 O
N
2.5
L 2 Es5 e Circle
Dlis - - - - Ellipse
1 — - — - Squircle
0.5
o M
° 2 4 6 8 10

Figure 7. lift to drag ration versus ks o=8° semi vertical
angle of tangent circular cone is 11.5°
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******** circle

******** ellipse

_— squircle
Figure 8. Positioning of cross sections for comparing lift to
drag ratio.

5. CONCLUSIONS

The perturbation method was applied to analytically
obtain flow variables over conical bodies of three
different cross sections, circle, ellipse and squircle. The
aim of the present work is to improve lift to drag ratio
by changing the cross section of the conical body. Using
Fourier series a relation between § and the shape of the
cross section of the body is obtained for each case.
These relations show that by changing the cross section
from a circle to an ellipse then to a squircle in a manner
that the ellipse and squircle is tangent to the inner side
of the circle and the ellipse lies between the other two
shapes, Figure (8), the lift to drag ratio increases. L/D
will also increment if the angle of attack increases. Also
as it can be seen from the figures and Equation (74)
known as the hypersonic small disturbance parameter,
since semi vertical angle of cone is small, the values of
k,more than 5 is considered infinity.

6. REFERENCES

10.

11.

12.

13.

Taylor, G. 1. and Maccoll, J. N., “The air pressure on cones
moving at high speeds”, Proceeding of the Royal Society of
London Series A, Vol. 139, (1933), 278-311.

Stone, A. H., "on supersonic flow past a slightly yawing cone",
Journal of Mathematics and Physics (1), Vol. 27, (1948), 67-
81.

Stone, A. H., "on supersonic flow past a slightly yawing cone",
Journal of Mathematics and Physics (1), Vol. 30, (1952), 220-
233.

Sims, J. L., "Tables for supersonic flow around right circular
cones at small angle of attack", NASA, SP-3007, 1964.
Hemdan, H. T., "Hypersonic flows over slender pointed-nose
elliptic cones at zero incidence", Journal of Acta Astronautica,
Vol. 45, No. 1, (1999), 1-10.

Mascitti, R., "Calculation of linearized supersonic flow over
slender cones of arbitrary cross section", NASA, TN D-6818,
1972.

Doty, R. T. and Rasmussen, M. L., "approximation for
hypersonic flow past an inclined cone", Journal of the
American Institute of Aeronautics and Astronautics (AIAA),
Vol. 11, No. 9, (1973).

Rasmussen, M. L., “Hypersonic Flow”, John Wiley & Sons,
Inc., New York, 1994.

Van Dyke, M. D., "First and second-order theory of supersonic
flow past bodies of revolution", Journal of Spacecraft and
Rockets, Vol. 40, No. 6, (2003), 1029-1047,

Shekhi, N. and Rahimi, A. B., "Analytical solution for
supersonic flow on a conical body of rounded triangle cross-
section via the perturbation method", The 7" ISME/WSEAS
International Conference, Moscow, Russia, 2009.

Gross A. and Fasel, H. F., "Numerical investigation of
supersonic flow over axisymmetric cones”, Mathematics and
Computers in Simulation, Vol. 81, Issue 1, (2010), 133-142.
Barzegar, M., Bishehsani, S., Hossienalipour, S. M. and Sedighi,
K., "Transient analysis of counterflowing jet over highly blunt
cone in hypersonic flow", Acta Astronautica, (2011).

Tsai, B. J. and Chou,Y. T., "Analyzing the longitudinal effect of
hypersonic flow past a conical cone via the perturbation
method", Journal of Applied Mathematical Modeling, Vol. 32,
No. 12, (2008), 2596-2620.



A. B. Rahimi / IJE TRANSACTIONS A: Basics Vol. 25, No. 3, (July 2012) 231-238 238

Comparison of Lift and Drag Forces for Some Conical Bodies in Supersonic Flow
Using Perturbation Techniques

A. B. Rahimi

Professor, Faculty of Engineering, Ferdowsi University of Mashhad, P. O. Box No. 91775-1111, Mashhad, Iran

ARTICLE INFO oSy
Article history: L5l _e ol pan Sl s Slar g b olmn O OF 53 8 SYL slacse 55 Lo pastas 5 (53048 Slialoms slas
Received 02 February 2010 e : [ - i : e g e o0
Received in revised form 07 February 2012 chie mhw an b Ko s e el G35 p e B5le Ol o 5 s cpl 0 LI ) 1 SKes LB
Accepted 19 April 2012 i

03,551 Gty Sl s 55 sy Sl 43,8 )3 asdllas 500 5,8 Sl S L e 5 (S (Sspld sl
0L G b Ly 5 1y sl 0asT sty g 13,55 e 13 eslinad 3550 ot D50 4 Ol SleS

Keywordls: S Sl alatly e 3l o |y G380 Z S 53 5 by S X S U3 550l adlge 3l Gy | S8
Conoeat Bodes” ol sz e e 51 Ui (ol gy 31 g ity oS gl ol e 51 Ly 4 85
Lift to Drag Ratio Ck.» aw Gl el ol a5l oo il e agly Rl L ol ul aS 3 58 e sdalie g, e Hlatl &S
st Cromcton et 8 S o i g G 1 € i
Perturbation Techniques S A bl 3550 0k Clm?l S e T CL‘-' USSR d‘-“" C]"" @ by OF (p S

LS

doi: 10.5829/idosi.ije.2012.25.03a.05




