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A B S T R A C T

Numerical methods are not always convergent especially in higher velocities when shock waves are 
involved. A comparison analysis is performed to study the supersonic flow over conical bodies of three 
different cross sections circular, elliptic and squircle (square with rounded corners) shaped using  
Perturbation techniques to find flow variables analytically. In order to find lift and drag forces the 
pressure force on the body is found, the component along x is drag and the component along z is lift. 
Three equations are obtained for lift to drag ratio of each cross section. The graphs for L/D show that 
for a particular cross section an increase in angle of attack, increases L/D. Comparing L/D in the three 
mentioned cross sections depicted that L/D is the greatest in squircle then in ellipse and the  least in 
circle. The results are efficient in design of flying objects. 
.
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NOMENCLATURE1

a, b semi-vertex of ellipse s entropy

pc pressure coefficient wvu ,, velocity components

D drag z,y,x Cartesian coordinate system

e )ba()ba( 2222  Z =  /

F function Greek letters

F


pressure force  angle of attack

1g shock location coefficient  half shock angle

131211 ,, GGG functions  vp cc

H(0) function  half angle cone

J constant  density

k = .M  perturbation parameter

L lift  δβ

M Mach number  constant

N function Subscripts

n coefficient o zero-order perturba tion

n


unit normal vector 1 first-order perturbation

p pressure n n -order perturbation

R function  free stream property

 ,,r spherical coordinate system
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Squircle Cross-section
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1. INTRODUCTION

The flow past conical bodies has been studied for 
many different cases. A supersonic compressible three 
dimensional solution is useful in design of supersonic 
aircrafts, missiles, rockets and etc. Taylor-Maccoll [1] 
have investigated the steady supersonic flow past a right 
circular cone at zero angle of attack, they have reduced 
the governing equations to a single second-order 
nonlinear differential equation. Perturbation method is 
widely applied to studies of flow on conical bodies. 
Stone [2, 3] applied the power series expansion for a 
small angle of attack and obtained a solution via 
perturbation method. Sims [4] performed a numerical 
integration for Stone’s solution.

Hypersonic flows over slender pointed nose elliptic 
cones at zero incidence is studied by Hemdan [5]. The 
flow is sought as a small perturbation from some basic 
circular cone flow. The geometry of the cone cross 
sections and surface velocities are expanded in Fourier 
series, using the supersonic linearized conical flow 
theory, the flow over slender pointed cones are 
calculated by Mascitti [6]. The analysis is similar to that 
of Doty and Rasmussen [7] and Rasmussen [8] for 
obtaining solutions for flow past circular cones at small 
angle of attack. The perturbation expansions which are 
used are not uniformly valid adjacent to body in the thin 
vortical layer, but it has been shown that pressure and 
azimuthal velocity components are valid across the 
vortical layer. First and second-order theory of 
supersonic flow past bodies of revolution have also been 
investigated by Van Dyke [9] and analytical solution for 
supersonic flow on a conical body of rounded triangle 
cross section via perturbation method has been done by 
Shekhi et al. [10]. 

The most recent studies in this subject are numerical 
investigation of supersonic flow for axisymmetric cones 
by Gross and Fasel [11] and also transient analysis of 
counterflowing jet over highly blunt cone in hypersonic 
flow by Barzegar et al. [12].

In this paper considering the Stone’s perturbation 
expansions and applying them to three conical bodies 
with different cross sections as circle, ellipse and 
squircle at small angle of attack, the solution is obtained 
analytically. The purpose of the present work is to 
compare the lift to drag ratio for different cross sections, 
so calculating the flow variables for each case the 
pressure force is determined by integrating pressure 
around the body for an arbitrary length, then by 
calculating the dot product of the pressure force in x-
direction and z-direction drag and lift forces are 
obtained respectively. The results will be useful in 
increasing the lift to drag ratio for aircrafts, satellites, 
missiles and space vehicles by changing the shape of the 
cross section or the angle of attack. 

2. PROBLEM FORMULATION

Consider a supersonic flow over a conical body with 
arbitrary cross section. Spherical coordinate system is 
considered for this problem. Due to high Mach 
numbers, thin boundary layer and decrease of viscous 
effects, the governing equations become the Euler’s 
equations. 

It is assumed that the equation of the body is as 
follows:

2cos ( )c n o       (1)

 c
is a cone with circular cross section in spherical 

coordinate system and semi-vertical angle of  .The 
term  ncos is added to produce any arbitrary cross 

section by changing the values of  and n , in which 
 is a small parameter as a correction factor for cross 
section to achieve a convex cross section. This
parameter is used as the perturbation factor in the 
expansions for flow variables and n determines the 
shape of cross section. Some of the most practical 
shapes are obtained by 1n , 2n and 4n which 
represent circle, ellipse and squircle cross sections 
respectively. Hence, hereafter these numbers 1, 2 and 4
indicate the shape of cross section. Writing the 
perturbation expansions the following relations are 
obtained for each flow variable, regarding previous 
studies in this field W0 is assumed to be negligible [13].

)(cos)()(),,( 2
0  onuuu n  (2)

)(cos)()(),,( 2
0  onvvv n  (3)

)(sin)(),,( 2 onww n  (4)

)(cos)()(),,( 2
0  onppp n  (5)

)(cos)()(),,( 2
0  onn  (6)

)(cos)()(),,( 2
0  onsss n  (7)

Substituting the perturbation expansions in the 
Euler’s equations and separating zero-order and first-
order terms in  , two systems of equations are 
obtained. Since there is no curvature along r , 
derivatives with respect to r are zero, so the systems of 
equations are simplified. To achieve a complete answer 
for flow over a conical body at small angle of incidence 
another perturbation expansion should be written for 
flow variables in which  (angle of incidence) is the 
perturbation factor, 

)(cos)()(),,( 2
20  ouuu  (8)

)(cos)()(),,( 2
20  ovvv  (9)

)(sin)(),,( 2
2  oww  (10)
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)(cos)()(),,( 2
20  oppp  (11)

2
0 2( , , ) ( ) ( )cos ( )p o            (12)

)(cos)()(),,( 2
20  osss  (13)

in this case the equation of the body is

)(cos 2 oc  (14)

Substituting the perturbation expansions with respect 
to  in the governing equations, separating zero-order 
and first-order terms in  , two systems of equations 
are obtained.

Superimposing the solutions for flow variables for 
each cross section with the solution of flow over a 
circular cone at small angle of incidence, a complete 
answer for arbitrary cross section at a small angle of 
incidence is obtained.

It is obvious that the systems of equations for zero-
order in  and are similar to Equation (15).
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The following system accounts for the first-order 
terms in  (for  1n ) and  (for 4,2n ). Where u , 

v , w are velocity components in r ,  ,  directions 

respectively, p the static pressure,  the density of 

the fluid, s is the entropy and 
M is the Mach number 

of the free stream. 
Subscript (0) indicates solutions for the basic cone 

(circular cross section with no angle of attack), subscript 
1n denotes solutions for circular cone at none zero 

angle of incidence and for this case  is the perturbation 
factor. Subscripts 4,2n respectively indicate solutions 

for ellipse and squircle cross sections and  is the 
perturbation factor.
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From the first system the following differential 

equation with respect to 0u is achieved,

02cot 0
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0
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0  uuu  (17)

The second system of equations leads to the 
following differential equation with respect to un
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The boundary conditions at the body surface are 
described by the tangency condition.

0)()( 10   vv (19)

To solve the above differential equations two 
boundary conditions are required for each equation, 
from mass conservation across the shock and normal to 
the shock, the velocity components at the shock are 
achieved as the following, Equations (20) and (21) are 
the boundary conditions at the shock for Equation (17) 
according to the system of Equations (15),
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For small angles Equation (17) is solved as follows,
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For small angles Equation (18) is also solved as 
follows,
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In which 12   , 12  zZZ . 
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By use of the boundary condition:

0)1(1 v (39)

Shock eccentricity caused by the angle of attack is 
obtained as the following,
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To find lift to drag ratio calculations show that 
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Comparisons of the pressure coefficient from our 

study with the existing studies are depicted in the two 
following Figures (3) and (4),  which proves well.  The 
numerical results are Sim's results [4] and also a Fluent 
CFD software has been used by present author to model 
the three Dimensional cone.

Figure 1. cp0/δ
2 versus kδ

Figure 2: cp1/δ versus kδ

A grid dependence study was conducted to arrive at 
tetrahedral grid size for optimal accuracy and efficiency 
for laminar and turbulent cases. For modeling of Reynolds 
stress in momentum equation, RNG k- turbulence model 
has been used.
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Figure 3. Cp /δ2 vs. k in numerical and analytic solution
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3. CALCULATING LIFT AND DRAG FORCES

The pressure force on a finite-length cone is given by
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The equations for Lift and drag forces are as follow:
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4. RESULTS AND DISCUSSION

For comparing the lift to drag ratio in different cross 
sections, first the relation between δ and the shape of 
cross section should be found. 

In rectangle Cartesian coordinates, an elliptic cone is 
represented by:
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Substituting Equations (54-56) in Equation (53) the 
following relations are obtained.
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In the left hand side of Equation (58), the Taylor 
expansion about ε=0 is written and in right hand side the 
Fourier series are substituted. For different values of e 
calculations shows that Fourier series coefficients 
except for a0 and a2 are negligible, so the following 
equation is achieved.
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On the other hand a0≈ 1 then for small angles and 
comparing the two sides of Equation (60) the two 
following relations are obtained.

eb  1 (63)

 eb

a m




11

tan
2

2 
 (64)

It is obvious that for a circular cone, 0e . 

b (65)

0 (66)

2
0


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k

2
0


pC
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In rectangle Cartesian coordinates, a cone with 
squircle cross section is represented by

4
4

4

4

4

R
z

y

z

x
 (67)

The Cartesian to Spherical Transformers are 
substituted in the Cartesian equation of squircle,

4
1

)4cos3(

2
tan







R
c (68)

Using Equation (1) and Taylor Expansion about 0
for the left hand side of Equation (68) and writing 
Fourier series for the right hand side, the following 
relation is obtained.

2 0
4tan (1 tan )cos4 cos4

2

a
a        (69)

In comparison with a0 , a4 the other coefficients of 
the Fourier series are much smaller and hence 
negligible.

Comparing the two sides of Equation (69) the 
following relations are achieved.

2
tan 0a

 (70)

20

4

)
2
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a

a




(71)

In which
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
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R
a

4
10

)4cos3(

21
(72)

 
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








d

R
a

4
14

)4cos3(

2
4cos

1
(73)

R is a constant and equals to the radius of a circle 
tangent to the inner side of the squircle. The lift to drag 
ratio versus k is shown the following figures, where 

for small angle of attack.

  Mk (74)

As the angle of attack increases, the lift to drag ratio
trends to a constant value for a greater value of k and 
the value of this constant increases with the increase in 
angle of attack.

In Figures (5-7) comparing the lift to drag ratio it is 
seen that increasing n from 1 to 4 causes an increase in 
L/D, for an ellipse and a squircle which are tangent to 
the inner side of a circle the lift to drag ratio 
respectively increases and trends to a constant value 
which is the greatest for a squircle. Also as it can be 
seen from the figures and also in Equation (74) which
known as the hypersonic small disturbance parameter, 

since semi vertical angle of cone is small, the values of 
k more than 5 is considered infinity. 

As expected by decreasing the semi-vertical angle of 
the cones as shown in Figure (7), the lift to drag ratio 
has increases for all of the cross sections because the 
flow encounters a more slender body.

Figure 5. lift to drag ratio versus k, α=4o, semi vertical angle 
of tangent circular cone is 14.3o

Figure 6. lift to drag ratio versus k, α=8o, semi vertical angle 
of tangent circular cone is 14.3o

Figure 7. lift to drag ration versus k, α=8o, semi vertical 
angle of tangent circular cone is 11.5o

L

D

k

L

D

k

L

D

k
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Figure 8. Positioning of cross sections for comparing lift to 
drag ratio.

5. CONCLUSIONS

The perturbation method was applied to analytically 
obtain flow variables over conical bodies of three 
different cross sections, circle, ellipse and squircle. The 
aim of the present work is to improve lift to drag ratio 
by changing the cross section of the conical body. Using 
Fourier series a relation between  and the shape of the 
cross section of the body is obtained for each case. 
These relations show that by changing the cross section 
from a circle to an ellipse then to a squircle in a manner 
that the ellipse and squircle is tangent to the inner side 
of the circle and the ellipse lies between the other two 
shapes, Figure (8), the lift to drag ratio increases. L/D 
will also increment if the angle of attack increases. Also 
as it can be seen from the figures and Equation (74) 
known as the hypersonic small disturbance parameter, 
since semi vertical angle of cone is small, the values of 

k more than 5 is considered infinity.
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  چکیده

باشند  اي همراه می هاي ضربه هاي بالاتر که در آن جریان همراه با موج خصوص در سرعت ههاي محاسبات عددي و ب روش

در این تجزیه و تحلیل جریان مافوق صوت بر روي اجسام مخروطی شکل با سه سطح مقطع  .قابلیت همگرائی را ندارند

دست آوردن  روش پرتوربیشن براي به. رد مورد مطالعه قرار گرفته استهاي گ متفاوت دایروي، بیضوي، و مربعی با گوشه

دست آوردن نیروهاي برا و پسا باید نیروي فشار بر  هجهت ب. گیرد کمیات جریان به صورت تحلیلی مورد استفاده قرار می

سه رابطه براي نسبت . شدبا نیروي برا می zنیروي پسا و در جهت   xمولفه این نیرو در جهت . دست آورد هروي جسم را ب

طور  ها براي سطوح مقطع متفاوت، همان از رسم این نسبت. آید دست می هنیروي برا به پسا براي سه سطح مقطع یاد شده ب

از مقایسه این نسبت براي سه سطح . یابد شود که این نسبت با افزایش زاویه حمله افزایش می رود، مشاهده می که انتظار می

هاي گرد و سپس سطح مقطع بیضوي و  شود که بزرگترین آن براي سطح مقطع مربعی با گوشه اهده میمقطع مذکور مش

این نتایج جهت بهینه سازي طراحی اجسام پرنده مورد استفاده قرار . باشد کمترین آن مربوط به سطح مقطع دایروي می

گیرند می
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