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Abstract. In the present work, compressible flow of argon gas in the famous problem of 
Couette flow in micro/nano-scale is considered and numerically analyzed using the direct 
simulation Monte Carlo (DSMC) method. The effects of compressibility and rarefaction on 
entropy and entropy generation in terms of viscous dissipation and thermal diffusion are 
studied in a wide range of Mach and Knudsen numbers and the observed physics are discussed. 
In this regard, we computed entropy by using its kinetic theory formulation in a microscopic 
way while the entropy generation distribution is achieved by applying a semi-microscopic 
approach and thoroughly free from equilibrium assumptions. The results of our simulations 
demonstrated that the entropy profiles are in accordance with the temperature profiles. It is also 
illustrated that the increase of Mach number will result in non-uniform entropy profiles with 
increase in the vicinity of the central regions of the channel. Moreover, generation of entropy 
in all regions of the domain stages clear growth. By contrast, increasing the Knudsen number 
has inverse effects such as: uniform entropy profiles and a falling off in entropy generation 
amount throughout the channel.  

1. Introduction 
In recent years, prediction of rarefied gas flows and heat transfer behaviour attracted attention due to 
the wide application of micro/nano electromechanical system (MEMS/NEMS) devices such as 
micro/nano- valve, micro/nano- turbine, micro/nano- pump and micro/nano- nozzle. Moreover, many 
experimental, numerical and theoretical studies have been conducted in the field [1-6]. Rarefied shear-
driven flows such as Couette are encountered in micro-motor, comb mechanism, and micro-bearing. 
To measure the degree of rarefaction the Knudsen number (Kn) is defined as the ratio of mean free 
path of gas molecules to the characteristic length of the geometry (Kn=/L). When the Knudsen 
number is sufficiently large, the gas rarefaction is the main parameter to evaluate these systems. 
In this study we consider the entropy and entropy generation of the well known problem of planar 
Couette flow, i.e., a gas confined between two infinite parallel plates which are at the same 
temperature but moving relative to each other. The advantage of studying Couette flow is that despite 
it is a relatively simple problem it includes many features found in more complex rarefied gas 
dynamics problems. The micro/nano-Couette flow has been widely applied in existing literature for 
different purposes. Some of the sample works can be found in [7-14]. Meanwhile, entropy and entropy 
generation concepts are wildly used in the literature for different important purposes such as: 
evaluating a system’s irreversibility, optimizing a thermodynamic system or as a means of examining 
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continuum breakdown in rarefied fluids. For example: Reitebuch and Weiss [15] employed a new 
min-max principle for the entropy production to determine more boundary conditions. They used 26 
field equations derived by the moment method to describe the stationary plane Couette flow for dense 
and rarefied gases. Their new boundary conditions results in a heat flux in the direction of the flow 
which agrees with molecular dynamics results. Ansumali and Karlin [16] implemented the lattice 
Boltzmann method based on the H theorem (entropic lattice Boltzmann method) for a one-dimensional 
benchmark shock tube problem. Results of their simulation demonstrate significant improvement of 
stability, as compared to realizations without explicit entropic estimations. Schrock et al. [17-19] 
expanded upon the concept of entropy generation as a means of examining the breakdown of the 
continuum fluid equations in regions of non-equilibrium. They compared the DSMC result with those 
obtained by numerically integrating the NS equations in normal shock waves. They have shown that 
significant non-equilibrium may exist upstream of any indication of such phenomena in the NS data in 
the case of the normal shock. They also stated that any breakdown parameter based on the continuum 
data will fail to capture the initial onset of the shock front. Carr [20] introduced a new method for 
calculating entropy generation using the DSMC method to investigate the limits of the continuum 
constitutive relations. He compared continuum results with the DSMC solution for the hypersonic 
flow over two axisymmetric geometries and showed that the kinetic method predicts a larger shock 
region than the continuum method. Erbay et al. [21] investigated the effects of aspect ratio, Reynolds 
number (Re), Prandtl number (Pr), Brinkman number (Br), and the motion of the lower plate on the 
entropy generation during the simultaneously developing flow in a parallel-plates channel. They 
showed that entropy generation has its highest value at channel with the smallest aspect ratio at 
counter motion of the lower plate while the highest Re, Pr and Br/Ω values considered in the problem. 
Ozlap [22] numerically investigated entropy generation for laminar fully developed, forced convection 
in a micro-pipe. The simulations were concentrated on the impact of wall roughness based viscous 
dissipation on the heat transfer behaviour and the resulting overall and radial entropy generation. In 
another work, Ozlap [23] investigated entropy generation for wide ranges of pipe diameter 

( 0.5 1d mm  ), wall heat flux ( " 21000 2000 w/mq   ) and Reynolds number ( Re 1 2000  ). He 
concludes that the cross-sectional total entropy generation is computed to be most influenced by pipe 
diameter at high wall heat flux and low Reynolds numbers. Ozlap [24] also studied the integrated 
effects of surface roughness, heat flux, and Reynolds number on the first and second law 
characteristics of laminar-transitional flow in a micropipe and showed that the frictional entropy is 
minor and the major portion of the total entropy generation is thermal based. Chigullapalli et al. [25] 
formulated and applied a discrete version of the Boltzmann’s H-theorem for analysis of non-
equilibrium onset and accuracy of the numerical modelling of rarefied gas flows. They illustrated the 
use of entropy considerations in rarefied flow simulations for the normal shock, the Riemann and the 
two-dimensional shock tube problems. They stated that the entropy generation rate based on the 
kinetic theory is shown to be a powerful indicator of the onset of non-equilibrium, accuracy of 
numerical solution as well as the compatibility of boundary conditions for both steady and unsteady 
problems. Leite and Santos [26] investigated effect of the step back-face height on the thermal non-
equilibrium in backward-facing steps in a rarefied hypersonic flow using DSMC. They showed that 
entropy generation regions are related to the thermal non-equilibrium regions in the flow field. Parlak 
et al. [27] studied steady-laminar flow of water in adiabatic microtubes experimentally and 
analytically. Through employing the second law analysis, they showed that the flow characteristics in 
the smooth microtubes distinguish substantially from the conventional theory for flow in larger tubes 
with respect to viscous heating/dissipation, temperature rise of flow, total entropy generation rate and 
lost work. 

It is observed that there is a great deal of papers dealing with the entropy generation analysis in 
high Knudsen number simulations; however, the entropy and entropy generation analysis of the 
micro/nano-Couette flow is not implemented by DSMC method yet. The present work is following the 
previous works by authors regarding DSMC simulations [28-30] and second law analysis [31-33]. 
Here, the compressible micro/nano-Couette flow is studied with a special focus on entropy and 
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entropy generation profiles. Compressibility and rarefaction effects in a wide range of Mach and 
Knudsen numbers are investigated. The results are then discussed and justified to obtain a better 
knowledge of the system behaviour regarding the second law analysis. 

2. Numerical analysis 

2.1. Problem statement 
Planar Couette flow involves a gas trapped between two infinite plate at / 2y h  moving relative to 

each other in opposite directions with a constant velocity wU and maintained at the same constant 

temperature, wT . The flow is driven by the shear stress of the moving plates and depends on the y 
coordinate only. Therefore the flow is considered steady, one dimensional and compressible. The flow 
velocity generated by shear is assumed to have only an x component varying only in the y direction. 
Temperature profiles are parabolic and are generated by the viscous dissipation. The amount of heat 
flux in y direction is zero in the center of the channel and increases towards the plates. The shear stress 
in the domain is constant. Also the external forces are assumed to be absent. A schematic of the 
problem is depicted in Fig. 1. 

-Uw

Uw

x

y

Tw

Tw

Figure 1. Schematic of the problem 
 
2.2. DSMC method 
The Boltzmann equation describes the gas flow behaviour in all the regimes. The DSMC method is 
proved to be the most accurate numerical tool to solve the Boltzmann equation based on direct 
statistical simulation of the molecular processes described by the kinetic theory [34]. In fact, DSMC 
simulates particle behaviour in a manner consistent with what is described by the Boltzmann equation. 
The algorithm includes four primary steps: moving the particles, indexing them, collision simulation, 
and sampling the flow-field. The primary principle of DSMC is to decouple the motion and collision 
of particles during one time step. The implementation of DSMC needs breaking down the 
computational domain into a collection of grid cells. The cells are divided into subcells in each 
direction. The subcells are then utilized to facilitate the selection of collision pairs. After fulfilling all 
molecular movements, the collision between molecules are simulated in each cell separately in a 
statistical manner. Accurate DSMC solution requires some constraints on the cell size, time step and 
number of particles. The random selection of the particles from a cell for binary collisions requires 
that the cell size to be a small fraction of the gas mean free path. The decoupling between the particles 
movement and collisions is correct if the time step is a small fraction of the mean collision time. 
Number of particles per cell should to be high enough, around 20, to avoid repeated binary collisions 
between the same particles. The following procedure is used to solve a stationary problem with 
DSMC. In the entire computational domain, an arbitrary initial state of gas particles is specified and 
the desired boundary conditions are imposed at time zero. Particles movement and binary collisions 
are performed separately. After achieving steady flow condition, sampling of molecular properties 
within each cell is fulfilled during sufficient time period to avoid statistical scattering. All 
thermodynamic parameters such as temperature, velocity, density and pressure are then determined 
from this time-averaged data. More details on DSMC algorithm are given in Refs. [34-35]. In the 
current study, a modified version of Bird’s DSMC2D program is applied and periodic boundary 
conditions are imposed for left and right boundaries such that one-dimensional Couette flow is 
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simulated. Variable hard sphere (VHS) collision model is used and the collision pair is chosen based 
on the no time counter (NTC) method. We use diffuse reflection model with the full thermal 
accommodation coefficient for the walls and set the time step and cell dimensions equal to 10-13(s) and 
10-8(m), respectively. These values are set in such a way that they do not exceed one third of collision 
time and mean free path, respectively.  

3. Results and discussion 

3.1. Entropy 
The second law of thermodynamics states that entropy of an isolated system always increases or 
remains constant. The second thermodynamic law appears to establish the direction that the heat flux 
will occur, say, the direction will be that one where s > 0. Because such a process acts to reduce the 
initial state of the order of the system, entropy is in conjunction with disorder or randomness 
especially in microscopic interpretation of entropy in statistical mechanics. We can also deal with 
entropy as of thermal energy dispersal. The relation of entropy as a measure of disorder is Boltzmann 
relation for the entropy [36]: 

lnBS k  (1)
where kB is the Boltzmann constant, equal to 1.38065×10−23 (J/K) and Ω the number of possible 
microstates in the system called degeneracy or statistical multiplicity of the gas, respectively. In fact, 
entropy is a logarithmic measure of the density of microstate which characterizes all molecular details 
about the system such as molecular position and velocity. It can be stated as a summation over all 
microstates that a system can be in:  

ln( )B i iS k f f  (2) 

In the above equation, fi is the probability that the system is in the ith microstate. 
Here, because of the availability of the data in the DSMC solver, we use a velocity distribution 
function in order to calculate entropy. It is assumed that the velocity distribution could be separated 
into a product of the component distributions, that is: 

( ) ( ) ( ) ( )x x y y z zf f c f c f cc (3)

The velocity spectrum is divided into bins and the number of molecules associated with each bin is 
counted to form the above distribution function. Entropy is then calculated based on the above 
procedure and Eq. (2). For detailed information regarding implementing the method see Ref. [17, 18] 

3.1.1. Compressibility effects 

The wall Mach number, Mw, is defined as the ratio of Uw to the parameter /B Wk T m  and is 

specified by varying driving velocity of both plates Uw. Here, γ and m are specific heat ratio of gas and 
molecular mass, respectively. p  

Figure 2 illustrates the variation of temperature in the domain with wall Mach variation. The 
temperature profiles show that as Mw increases, the temperature difference between the plates and 
center of channel becomes larger due to higher viscous dissipation. Thus, compressibility effects 
become significant. The growth of temperature jump at the walls by increasing the Mach number is 
quite obvious in Fig. 2. The magnitude of the temperature jump at Mw=1.2 is almost 20% of the wall 
temperature.  

Compressibility effects on entropy profiles are illustrated in Fig. 3. Comparison of Figs. 2 and 3 
reveals that these two quantities follow a same trend, i.e., a parabolic profile with the maximum value 
at the center of the channel. This is because the heat is a disordered form of energy and flows with the 
entropy. Consequently, entropy or molecular chaos increases in the regions of higher temperature. 
This extremum swells as Mach increases. This is due to the existence of higher molecular chaos as a 
result of the greater number of microstates in the middle of the channel. In fact, existence of less 
number of molecules leads to smaller amount of intermolecular collisions. Hence, the molecules are 
not able to balance their energy level as it is in near-wall regions. It is also apparent that the plates’ 
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movement in the x direction organizes adjacent molecules to the plates in such a way that the 
implications are less entropy (disorder) in the vicinity of the walls. As this velocity increases, the order 
of molecules near the plates is more obvious resulting in less entropy compared to the disorder at the 
channel center.  
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Figure 2. Compressibility effects on non-
dimensional temperature profiles (Kn=0.1) 

Figure 3. Compressibility effects on non-
dimensional entropy profiles (Kn=0.1) 

3.1.2. Rarefaction effects 
Rarefaction effects gain importance with the reduction in the geometry size, since the sizes of the 
geometries become comparable to the mean free path of the gas molecules. These effects are specified 
through the Knudsen number. Now, the plates’ velocity is kept constant (Uw=250 m/s) and the 
corresponding wall Mach numbers is 0.81.  

Due to the similarities between entropy and temperature profiles discussed in the previous section, 
first and foremost, temperature variations with Knudsen number are investigated. Figure 5 illustrates 
the temperature profiles at different Knudsen numbers. As the Knudsen number increases, temperature 
in the domain and also temperature jump at the plates becomes more significant, but the curvature of 
temperature profiles reduces. In a constant wall Mach number flow, the amount of wall kinetic energy 
is constant. As the flow becomes more rarefied, this constant kinetic energy will be saved in smaller 
number of the molecules and shows itself in term of temperature rise. However, in a dense gas this 
amount of constant energy is distributed in larger number of molecules and the temperature rise is 
smaller than what is observed in rarefied gases. Also for small Knudsen numbers and close to the 
continuum regime, only near surface molecules collide with the walls and in the middle of channel 
only the intermolecular collisions happen. For larger Knudsen numbers, as the gas becomes more 
rarefied, molecules in the middle of channel have the same chance for molecular-surface collision and 
transferring heat from/to the walls. Consequently, the maximum curvature in Fig. 4 is observed in the 
Kn=0.01 and by increase of the Knudsen number the temperature in the domain becomes uniform. 

Figure 5 shows rarefaction effects on entropy profiles. It can be seen from the graph that the 
curvature in the entropy diagrams subsides as the Knudsen number increases. This is because of 
occupation of the domain by the Knudsen layer, a kinetic boundary layer on the order of one mean 
free path, for more rarefied flows. We can also see that the trend is quite similar to the observed trends 
in temperature profiles. Therefore, as a general conclusion we could state that the more rarefied flow, 
more uniform entropy profiles are observed. The justification for this conclusion is the more uniform 
distribution of the molecules in the domain for rarefied flows rather than dense gases. Therefore, the 
distribution of energy in molecules is more balanced.  
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Figure 4. Rarefaction effects on non-dimensional 
temperature profiles (MW=0.81) 

Figure 5. Rarefaction effects on non-dimensional 
entropy profiles (MW=0.81) 

3.2. Entropy generation 
Studies of Schrock et al. [17-19] state that because entropy generation represents non-equilibrium it 
can be employed as a similar parameter to the Knudsen number. Therefore it will predict the 
continuum breakdown onset. They also showed that breakdown parameters based upon continuum 
data may fail to capture the initial non-equilibrium effects. Their investigation showed that it is 
necessary to develop a formulation for entropy generation based on kinetic theory and without 
inherent assumptions of equilibrium built in to be able to measure the small perturbations from non-
equilibrium observed in the NS equations. Therefore, they proposed expressions for entropy and 
entropy generation in terms of the distribution functions of velocity, rotational energy, and vibrational 
energy. The DSMC method was applied in their work to generate these distribution functions. A 
theoretically accurate but computationally expensive and difficult method due to the necessity of 
sorting particles to create the distribution functions was employed in their work. For this reason, a 
different approach for calculating entropy generation proposed by Carr [20] has been used here, 
eliminating the need to sort particles into distribution functions. In this method a constitutive relation 
valid in equilibrium is applied. However, by replacing the parameters which are calculated by the 
DSMC solution, the final relation for entropy generation will be free from assumptions of equilibrium. 

.

2

ij i i
gen

j i

u q T
S

T x T x

  
 

 
(4)

In the above equation ij  and iq  are the shear stress and heat flux, respectively. Because of the 

equilibrium assumptions made in the constitutive relations for the shear stress and heat flux in the NS 
equation, the corresponding relations for these quantities in the kinetic theory will be used: 

' '( )ij i j ijc c     τ p (5)

where   '
ic and '

jc are the components of 'c , the velocity of molecule relative to stream velocity, i.e., 

thermal velocity and p is the scalar pressure defined as: 
' '

ij i jp c c p (6)

The heat flux vector is defined as: 

21
' ' '

2 intc n  q c c (7)

where, int is the internal energy of a single molecule.  
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Finally, the entropy generation derivation for the one-dimensional Couette flow according to [20] 
becomes: 

.

2

2 2 2 2

ij i i
gen

j i

xy yx y yy yxx x x

u q T
S

T x T x

q qq qu T u T v T v T

T x T x T y T x T x T y T y T y



  

 
 

 

       
       

       

 (8)

Where, both i and j are representative of x and y, sequentially. Since there is no velocity and 
temperature gradients in x direction the final expression for entropy generation yields: 

.

2
2xy y

gen

qu T
S

T y T y

  
 

 
 (9)

In the above equation the first term is called the generation of entropy due to viscous dissipation 
shown by S  and the second due to thermal diffusion represented by DS .  

3.2.1. Compressibility effects 
Owing to the fact that entropy generation can be treated as a means of quantifying non-equilibrium, 
first density variation are investigated to look for similarities in these quantities. Figure 6 illustrates the 
normalized density profiles for different Mach numbers. It is clear from the graph that as the Mach 
increases the density profiles deviate from the uniform distribution. It is also observed that the amount 
of density is in its minimum at the center of the channel for all Mach numbers. 

Figure 7 shows the compressibility effects on the entropy generation profiles. The figure shows that 
more entropy is generated in near wall regions where the Knudsen layer is formed. Here the flow is 
less rarefied than the center of the channel. It is also observed that for higher wall Mach numbers 
production of entropy in whole regions of the domain increases which is the result of viscous heating, 
caused by the more kinetic energy absorbed from the wall moving in higher speeds. 
In Figs. 8 and 9 each term of Eq. (9) is plotted separately. The comparison of these two figures shows 
that the generated entropy in the domain is mainly influenced by the viscous dissipation term, 
S  rather than thermal diffusion term, DS . However, the latter is the main cause for non-uniform 

entropy generation profiles due to large temperature gradients in the vicinity of the walls.  
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Figure 6. Compressibility effects on non-
dimensional density profiles (Kn=0.1) 

Figure 7. Compressibility effects on non-
dimensional entropy generation profiles (Kn=0.1) 
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Figure 8. Compressibility effects on non-
dimensional viscous dissipation term of the 

entropy generation profiles (Kn=0.1) 

Figure 9. Compressibility effects on non-
dimensional thermal diffusion term of the entropy 

generation profiles (Kn=0.1) 

3.2.2. Rarefaction effects 
Variation of non-dimensional density profiles for different Knudsen numbers is plotted in Fig. 10.  It is 
obvious that increase in the Knudsen number leads to decrease in density. Also the non-dimensional 
density profiles tend to uniform profiles in more rarefied simulations as a result of development of the 
Knudsen layer in the entire domain. 

 In Fig. 11 the profiles of entropy generation for different Knudsen numbers confirms the expected 
trends in density profiles. The figure reveals that in a more rarefied flow less entropy is generated. It is 
also observed that for smaller Knudsen numbers ( 0.5Kn  ) the distribution of entropy generation is 
non-uniform in the domain. However, as the Knudsen number increases higher percentage of the 
channel area is occupied by the Knudsen layer resulting in uniform profiles of entropy generation.  
Figures 12 and 13 show how the generation of entropy is distributed in the viscous dissipation and 
thermal diffusion terms. It can be concluded that this parameter is mainly a result of the viscous 
dissipation term than thermal diffusion. This effect is greater in dense gases rather than in rarefied 
gases. Also it is apparent from Fig. 13 that the thermal diffusion is the cause of non-uniform profiles 
of entropy generation.  
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Figure 10. Rarefaction effects on non-
dimensional density profiles (MW=0.81) 

Figure 11. Rarefaction effects on non-
dimensional entropy generation profiles 

(MW=0.81) 
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Figure 12. Rarefaction effects on non-
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Figure 13. Rarefaction effects on non-
dimensional thermal diffusion term of the entropy 

generation profiles (MW=0.81) 

4. Concluding remarks 
Simulating the rarefied flow of argon gas in the famous problem of Couette flow, compressibility and 
rarefaction effects on entropy and entropy generation profiles are investigated using the DSMC 
method. The main concluding remarks of the present work include: 
 
  Investigation of compressibility effects shows that increase of wall Mach number results in 

non-uniform entropy profiles with a peak in the center of the channel and more generation of 
entropy in whole regions of the channel because of the viscous heating. The results also reveal 
that entropy and temperature profiles are following an identical trend. 

  Investigation of rarefaction effects shows that increase of Knudsen number results in more 
uniform entropy profiles. 

  Considering the entropy generation profiles along with density profiles, it can be perceived  
that this quantity can be properly applied in quantifying non-equilibrium phenomena not only 
in hypersonic flows as stated in the existing literature, but also in low Reynolds micro/nano 
flows. 

  It is shown that in the micro-Couette flow the generation of entropy is mainly due to viscous 
dissipation term observed in the final derived equation. However, the issue that causes more 
non-uniform profiles is the thermal diffusion term.  
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