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Abstract: Let X be a Banach space. We define the concept of a bi-parameter semigroup

on X and its first and second generators. We also study bi-parameter semigroups on Banach

algebras. A relation between uniformly continuous bi-parameter semigroups and σ-derivations is

also established. It is proved that if {αt,s}t,s�0 is a uniformly continuous bi-parameter semigroup

on a Banach algebra X , whose first and second generators are d and σ, respectively, and if d is

also a σ-derivation then dn(ab) = (d + σ)n(a) � (d + σ)n(b) and αt,0(ab) = αt,1(a) � αt,1(b) for

all a, b ∈ X .
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1. introduction

Let X be a Banach space and let L(X ) denote the Banach space of all bounded linear

operators on X . A family {αt}t�0 in B(X ) is called a uniformly (resp. strongly) continuous

one-parameter semigroup on X , if

(i) α0 is the identity mapping I on X ;

(ii) αt+t′ = αtαt′ for all t, t
′ ∈ R

+;

(iii) limt↓0 αt = I uniformly (resp. strongly) on X .

Namely, α is a representation of the semigroup (R+,+) into B(X ) which is continuous

with respect to the uniform (resp. strong) operator topology on B(X ). When {αt}t�0 is
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a one-parameter semigroup on X , the infinitesimal generator δ of α is defined by

δ(x) = lim
t↓0

1

t
(αt(x)− x),

whenever the limit exists and the domain D(δ) of δ is the set of all x ∈ X for which

this limit exists. If {αt}t�0 is strongly continuous then D(δ) is a dense linear subspace

of X and δ is a closed linear operator on this domain and if the semigroup {αt}t�0 is

uniformly continuous, δ is an everywhere defined bounded linear operator on X , see [12]

for details. For example, let X be the Banach space (algebra) of all bounded uniformly

continuous functions on R with the supremum norm. For each t ∈ R
+, consider the

linear mapping on X defined by (αt(f))(h) = f(t+h), (f ∈ X ). It is easy to see that the

family {αt}t∈R+ is a one-parameter semigroup satisfying ‖ αt ‖≤ 1 and (δ(f))(h) = f ′(h)
if f ∈ D(δ). Obviously D(δ) is the linear subspace of X consisting of those f in X which

are differentiable with f ′ ∈ X . This example shows that the infinitesimal generator of

this one-parameter semigroup, can be obtained by taking derivative when it exists.

It is easy to see that if δ is a bounded linear operator on a Banach space X , then

αt = exp(tδ) (t � 0) is a uniformly and hence strongly continuous one-parameter semi-

group of operators on X . In fact every uniformly continuous one-parameter semigroup is

necessarily of this form for some bounded linear operator δ (see [12], Theorems I.2, I.3

and Corollary I.4).

If {αt}t�0 is a uniformly continuous one-parameter semigroup of homomorphisms

on a Banach algebra X , then its infinitesimal generator δ satisfies the Leibniz’s rule

δ(xy) = δ(x)y + xδ(y) for all x, y ∈ X . Such a linear mapping is called a derivation.

Also, if δ is a bounded derivation on X then αt = exp(tδ) (t � 0) forms a uniformly

continuous one-parameter semigroup of homomorphisms on X , see [12, Theorems 1.2, 1.3

and Corollary 1.4] and also [1, Proposition 18.7]. The theory of one-parameter semigroups

on operator algebras and their infinitesimal generators have been largely motivated by

models of quantum statistical mechanics. The reader is referred to [4, 5, 13] for more

details.

Let X be a Banach algebra and let σ be a linear mapping on X . A linear map-

ping d : X → X is called a σ-derivation if it satisfies the generalized Leibniz rule

d(xy) = d(x)σ(y) + σ(x)d(y) for all x, y ∈ X . For example, if ρ is a homomorphism and

σ = ρ
2
then ρ is a σ-derivation. Moreover, when σ is an automorphism we can consider

δ = dσ−1 and find out that δ is an ordinary derivation. This shows that the theory of σ-

derivations combines the two subjects of derivations and homomorphisms. σ-derivations

are investigated by many physicists and mathematicians. Automatic continuity, inner-

ness, approximately innerness and amenability are the most important subjects which

are studied in the theory of derivations and σ-derivations, see [6, 7, 8, 9, 10, 11].

When δ is a derivation on a Banach algebra X , using the parameter t we can consider

αt = exp(tδ) and construct the one parameter semigroup {αt}t�0 of homomorphisms on

X . It seems that when we are dealing with a σ-derivation d, we need to consider two

parameters t and s corresponding to d and σ, respectively. In what follows we define a

uniformly (resp. strongly) bi-parameter semigroup of operators and its first and second



Electronic Journal of Theoretical Physics 9, No. 26 (2012) 173–182 175

generators. We will show that each uniformly continuous bi-parameter semigroup of

operators on a Banach space X is of the form αt,s = exp(t(d + sσ)) (t, s � 0), where d

and σ are bounded linear operators on X . We will also give a relation between uniformly

continuous bi-parameter semigroups on Banach algebras and σ-derivations.

2. Bi-parameter Semigroups

We start with the definition of a bi-parameter semigroup.

Definition 2..1. Let X be a Banach space. A family {αt,s}t,s�0 of bounded linear op-

erators on X is called a uniformly (resp. strongly) continuous bi-parameter semigroup

if

(i) for each fixed s � 0, the family {αt,s}t�0 is a uniformly (resp. strongly) continuous

one parameter semigroup with infinitesimal generator δs;

(ii) for each s � 0, D(δs) = D(δ0);

(iii) for s > 0, the value

1

s
(lim
t↓0

1

t
(αt,s(x)− x)− lim

t↓0
1

t
(αt,0(x)− x)) =

1

s
(δs(x)− δ0(x))

is independent of s for all x ∈ D(δ0).

Take d = δ0 and D = D(δ0). Note that for x ∈ D and s > 0, σ(x) := 1
s
(δs(x)− δ0(x)) is

the average growth of δs in the interval [0, s] at x, which by definition is independent of

the choice of s. Obviously σ is a linear mapping on D and δs = d+ sσ. The operators d

and σ, defined on D, are said to be the first and second generators of the bi-parameter

semigroup {αt,s}t,s�0
, respectively. The ordered pair (d, σ) is simply called the generator

of {αt,s}t,s�0
.

If d, σ are bounded linear operators on X then as in the case of one-parameter semi-

groups [12], we examine αt,s = exp(t(d+ sσ)) = exp(tδs) and get the following result.

Proposition 2..2. If {αt,s}t,s�0
is a uniformly continuous bi-parameter semigroup, then

its first and second generators are bounded. Conversely, if d and σ are two bounded linear

operators on a Banach space X then αt,s = exp(t(d + sσ)) is a uniformly continuous bi-

parameter semigroup whose generator is (d, σ).

It is clear that the first and second generators of a uniformly continuous bi-parameter

semigroup are unique. Also, if d and σ are bounded linear operators then αt,s =

exp (t(d+ sσ)) is a uniformly continuous bi-parameter semigroup with generator (d, σ).

Is this semigroup unique? The answer is affirmative as we see below.

Proposition 2..3. Let {αt,s}t,s�0 and {βt,s}t,s�0 be two uniformly continuous bi-parameter

semigroups with the same generator (d, σ). Then αt,s = βt,s, for every t, s � 0.
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Proof 2..4. Fix s � 0, then {αt,s}t�0 and {βt,s}t�0 are one parameter semigroups with

infinitesimal generator δs. So αt,s = βt,s for all t � 0. Since s is arbitrary we have the

result.

Corollary 2..5. Uniformly continuous bi-parameter semigroups are of the form exp (t(d+ sσ))

for bounded linear operators d and σ.

3. σ-Derivations and Bi-parameter Semigroups

Let d, σ be linear operators on a linear space X . We construct a family of linear mappings

{Qn,k} (n ∈ N, 0 � k � 2n − 1), called the binary family corresponding to (d, σ), as

follows.

Write the positive integer k in base 2 with exactly n digits, and put the operator

d in place of 1’s and σ in place of 0’s. For example, 7 = (111)2, 11 = (01011)2,

Q3,7 = ddd = d3 and Q5,11 = σdσdd = σdσd2 (cf. [9]).

The following lemma is stated and proved in [9, Lemma ...]. We give the proof, for

the sake of convenience.

Lemma 3..1. Let n ∈ N and let k ∈ {0, ..., 2n − 1}. Then
(i) dQn,k = Qn+1,2n+k;

(ii) σQn,k = Qn+1,k.

Proof 3..2. Suppose that k = (cn . . . c2c1)2 where cj ∈ {0, 1} for j = 1, ..., n, be the

representation of k in the base 2 with n digits. Then

(i) dQn,k = Qn+1,(1cn...c2c1)2 = Qn+1,k+2n ,

(ii) σQn,k = Qn+1,(0cn...c2c1)2 = Qn+1,k.

Lemma 3..3. If n ∈ N and k ∈ {0, ..., 2n − 1}. Then

(d+ σ)n =
2n−1∑
k=0

Qn,k.

Proof 3..4. We prove the assertion by induction on n. For n = 1 the result is clear.
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Now suppose that it is true for n. By Lemma 3..1, we obtain

(d+ σ)n+1 = (d+ σ)(d+ σ)n

= (d+ σ)(
2n−1∑
k=0

Qn,k)

=
2n−1∑
k=0

dQn,k +
2n−1∑
k=0

σQn,k

=
2n−1∑
k=0

Qn+1,2n+k +
2n−1∑
k=0

Qn+1,k

=
2n+1−1∑
k=2n

Qn+1,k +
2n−1∑
k=0

Qn+1,k

=
2n+1−1∑
k=0

Qn+1,k.

Definition 3..5. Let X be a Banach space and let {αt,s}t,s�0 be a uniformly continuous

bi-parameter semigroup of bounded linear operators on X with generator (d, σ), that is

αt,s = exp(t(d+ sσ)). Take δs = d+ sσ (s � 0). Take

Y = {
∞∑
n=0

rnt
nδs

n : rn ∈ C, t, s � 0, and the series is convergent in norm of L(X )},

H = {T (a) : T ∈ Y and a ∈ X}.
Let n,m be nonnegative integers and r, w ∈ C. We define a mapping � : H×H → X as

follows

rtn(d+ sσ)n(a) � wtm(d+ sσ)m(b)

=

⎧⎪⎪⎨
⎪⎪⎩

0 n �= m or r �= w

rtnsn
2n−1∑
k=0

Qn,k(a)Qn,2n−1−k(b) n = m, r = w

and for ri, wi ∈ C

∞∑
i=0

rit
i(d+ sσ)i(a) �

∞∑
i=0

wit
i(d+ sσ)i(b)

=
∞∑
i=0

(
rit

i(d+ sσ)i(a) � wit
i(d+ sσ)i(b)

)

whenever the limit exists; otherwise we define

∞∑
i=1

rit
i(d+ sσ)i(a) �

∞∑
i=1

wit
i(d+ sσ)i(b) = 0.



178 Electronic Journal of Theoretical Physics 9, No. 26 (2012) 173–182

In particular,

αt,s(a) � αt,s(b) =
∞∑
n=0

(
tn(d+ sσ)n

n!
(a) �

tn(d+ sσ)n

n!
(b)). (1)

Since d and σ are bounded operators, the series in (1) converges.

Lemma 3..6. Let {αt,s}t,s�0 be a uniformly continuous bi-parameter semigroup with

generator (d, σ). Then

αt,1(a) � αt,1(b)− ab = (αt,1(a)− a) � (αt,1(b)− b). (2)

Proof 3..7. By definition of �, we have

αt,1(a) � αt,1(b)− ab

=
∞∑
n=0

tn(d+ σ)n

n!
(a) �

tn(d+ σ)n

n!
(b)− ab

= ab+ t(d+ σ)(a) � t(d+ σ)(b) +
t(d+ σ)2

2!
(a) �

t(d+ σ)2

2!
(b) + · · · − ab

= t(d+ σ)(a) � t(d+ σ)(b) +
t(d+ σ)2

2!
(a) �

t(d+ σ)2

2!
(b) + · · · .

On the other hand

(αt,1(a)− a) � (αt,1(b)− b)

=
∞∑
n=1

tn(d+ σ)n

n!
(a) �

∞∑
n=1

tn(d+ σ)n

n!
(b)

= t(d+ σ)(a) � t(d+ σ)(b) +
t(d+ σ)2

2!
(a) �

t(d+ σ)2

2!
(b) + · · · .

Thus we have the equality in (2).

Lemma 3..8. Let {αt,s}t,s�0 be a uniformly continuous bi-parameter semigroup with

generator (d, σ). If σ = I, the identity mapping, then

αt,1(a) � αt,1(b) = αt,0(a) · αt,0(b).
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Proof 3..9. We have

αt,1(a) � αt,1(b) = expt(d+I)(a) � expt(d+I)(b)

=
( ∞∑

n=1

tn(d+ I)n

n!
(a)

)
�
( ∞∑

n=1

tn(d+ I)n

n!
(b)

)

=
∞∑
n=1

(tn(d+ I)n

n!
(a) � (

tn(d+ I)n

n!
(b)

)

=
∞∑
n=1

(tn(∑n
k=0

(
n
k

)
dk(a)

)
n!

)
�
(tn(∑n

k=0

(
n
k

)
dk(b)

)
n!

)

=
∞∑
n=1

n∑
k=0

tn
(
n
k

)
dk(a)dn−k(b)
n!

=
∞∑
n=1

n∑
k=0

tkdk(a)

k!

tn−kdn−k(b)
(n− k)!

=
( ∞∑

n=1

tndn(a)

n!

) · (
∞∑
n=1

tndn(b)

n!

)

= αt,0(a) · αt,0(b).

Taking idea from the relation between uniformly continuous one parameter semigroups

and derivations, we now are ready to state a relation between uniformly continuous bi-

parameter semigroups and σ-derivations.

Theorem 3..10. Let {αt,s}t,s�0 be a uniformly continuous bi-parameter semigroup with

generator are (d, σ). If d is also a σ-derivation then

(i) dn(ab) = (d+ σ)n(a) � (d+ σ)n(b);

(ii) αt,0(ab) = αt,1(a) � αt,1(b).

In particular, if σ = I and d is a derivation then

αt,0(ab) = αt,0(a) · αt,0(b), (3)

i.e., αt,0 is a homomorphism.

Proof 3..11. We prove (i) by induction. For n = 1 the result is obvious. Now suppose
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it is true for n. From Definition 3..5 and Lemmas 3..1, 3..3 we have

dn+1(ab) = d
(
dn(ab)

)

= d
(
(d+ σ)n(a) � (d+ σ)n(b)

)

= d
( 2n−1∑

k=0

Qn,k(a)Qn,2n−1−k(b)
)

=
2n−1∑
k=0

(
dQn,k(a)σQn,2n−1−k(b) + σQn,k(a)dQn,2n−1−k(b)

)

=
2n−1∑
k=0

(
Qn+1,k+2n(a)Qn+1,2n−1−k(b) +Qn+1,k(a)Qn+1,2n−1−k+2n(b)

)

=
2n−1∑
k=0

(
Qn+1,k+2n(a)Qn+1,2n+1−1−(k+2n)(b)

)
+

2n−1∑
k=0

(
Qn+1,k(a)Qn+1,2n−1−k+2n(b)

)

=
2n+1−1∑
k=2n

(
Qn+1,k(a)Qn+1,2n+1−1−k(b)

)
+

2n−1∑
k=0

(
Qn+1,k(a)Qn+1,2n−1−k+2n(b)

)

=
2n+1−1∑
k=0

Qn+1,k(a)Qn+1,2n+1−1−k(b)

=
( 2n+1−1∑

k=0

Qn+1,k(a)
)
�
( 2n+1−1∑

k=0

Qn+1,k(b)
)

= (d+ σ)n+1(a) � (d+ σ)n+1(b).

The assertion (ii) follows by (i) and the definition of �.

Theorem 3..12. Let {αt,s}t,s�0 be a uniformly continuous bi-parameter semigroup with

generator (d, σ). If

αt,0(ab) = αt,1(a) � αt,1(b),

then d is a σ-derivation. In particular, if σ = I then d is a derivation.

Proof 3..13. By assumption and the definition of � we have

d(ab) = lim
t→0

αt,0(ab)− ab

t

= lim
t→0

αt,1(a) � αt,1(b)− ab

t

= lim
t→0

(αt,1(a)− a) � (αt,1(b)− b)

t

= lim
t→0

α(t,1)(a)− a

t
� lim

t→0

α(t,1)(b)− b

t
=

(
d(a) + σ(a)

)
�
(
d(b) + σ(b)

)

= d(a)σ(b) + σ(a)d(b).
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