
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 35(3) (2012), 627–632

Equivalence Classes of Linear Mappings on B(M )

S. HEJAZIAN AND T. AGHASIZADEH

Department of Pure Mathematics, Ferdowsi University of Mashhad,
P.O.Box 1159, Mashhad 91775, Iran

hejazian@um.ac.ir, to ag99@stu.um.ac.ir

Abstract. Let M be a Hilbert C∗-module over the C∗-algebra A , B(M ) the C∗-algebra
of all adjointable operators on M , L (B(M )) the algebra of all linear operators on B(M ).
For a property P on B(M ) and φ1,φ2 ∈L (B(M )) we say that φ1∼P

φ2, whenever for
every T ∈ B(M ), φ1(T ) has property P if and only if φ2(T ) has this property. Each
property P produces an equivalence relation on L (B(M )). If I denotes the identity
map on B(M ) it is clear that φ∼

P
I means that φ preserves and reflects property P . We

are going to study the equivalence classes with respect to different properties such as being
A -Fredholm, semi-A -Fredholm, compact and generalized invertible.
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1. Introduction

A (right) Hilbert C*-module over the C*-algebra A is a right A -module M equipped with
an A -valued inner product 〈,〉 : M ×M →A satisfying the following properties:

(i) 〈x,x〉> 0 for all x ∈M and 〈x,x〉= 0 iff x = 0;
(ii) 〈x,y〉= 〈y,x〉∗ for all x,y ∈M ;

(iii) 〈x,y〉 is A -linear in the second variable;
(iv) M is complete with respect to the norm ‖ x ‖=‖ 〈x,x〉 ‖ 1

2 .
It is clear that each Hilbert space is a Hilbert C∗-module over C and if A is a C∗-algebra
then every closed right ideal J of A is a Hilbert C∗-module over A with respect to the
inner product 〈a,b〉= a∗b (a,b ∈J ). The reader may find the details on relevant theory of
Hilbert C∗-modules in [6, 8, 11].

Let M be a Hilbert C∗-module over the C∗-algebra A . Throughout the paper B(M )
denotes the C∗-algebra of all adjointable operators on M , see [6, 8, 11]. For each x,y ∈M
we define the operator θx,y by θx,y(z) = x〈y,z〉 (z ∈M ). Operators of this form are called
elementary operators. Each finite linear combination of elementary operators is said to
be a finite rank operator. The closed linear span of the set {θx,y : x,y ∈M } is denoted
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by K (M ). The elements of K (M ) are called compact operators. It is easy to see that
K (M ) is a closed ideal of B(M ), see [8, Section 2.2]. Compact operators acting on
Hilbert modules are not compact operators in the usual sense when they are considered
as operators from one Banach space to another, but it must be emphasized that the two
concepts coincide when M is assumed to be a Hilbert space. We recall that in the case of
Hilbert C∗-modules (even infinite dimensional) it may happen that K (M ) = B(M ) [11,
p. 244]. The Calkin algebra C (M ) on M is the quotient C∗-algebra B(M )/K (M ). Let
I denote the identity operator on M . An operator T ∈B(M ) is said to be an A -Fredholm
operator if for some S ∈B(M ) both I− ST and I−T S are in K (M ) [4]. An operator
T ∈ B(M ) is said to be a semi-A -Fredholm operator if there is S ∈ B(M ) such that
either I− ST or I− T S is in K (M ). Obviously each A -Fredholm operator is semi-A -
Fredholm and if K (M ) = B(M ) then each operator in B(M ) is A -Fredholm. Now let
π : B(M )→ C (M ) be the canonical quotient map. Then it is clear that T ∈B(M ) is
A -Fredholm (resp. semi A -Fredholm ) if and only if π(T ) is invertible (resp. right or left
invertible) in the Calkin algebra C (M ). The sets of A -Fredholm operators and semi-A -
Fredholm operators on M are denoted by FR(M ) and S F (M ), respectively.

Although in the case of Hilbert spaces this definition of a Fredholm or semi-Fredholm
operator implies closeness of range [7, Section 1.4], but the reader must be careful that
an A -Fredholm operator or a semi-A -Fredholm operator does not have a closed range in
general. The reader may refer to [4, 8, 11] for more about A -Fredholm operators. A brief
discussion on semi-A -Fredholm operators may be found in [1].

An operator T ∈B(M ) is called generalized invertible if there is C ∈B(M ) such that
TCT = T . The set of generalized invertible operators in B(M ) is denoted by G (M ). It is
proved in [1] that T ∈ G (M ) if and only if Im(T ) is closed, where Im(T ) denotes the range
of T . Let

R(M ) = {T ∈B(M ) : ∀A ∈B(M )\G (M ), ∃λ ∈ C s.t. A+λT ∈ G (M )\{0}}.

When H is a Hilbert space then R(H ) = S F (H ) [5]. In the case of Hilbert C∗-modules
we do not have this equality in general, but in certain cases we have a relation between these
two sets. In [1] it is shown that for the standard Hilbert C∗-module HA , where A is a unital
C∗-algebra, every self-adjoint element of R(HA ) is a semi-A -Fredholm operator but the
converse is not true in general.

A linear map φ : B(M )→B(M ) is said to be surjective up to compact operators if
for every T ∈B(M ) there exists S ∈B(M ) such that T −φ(S) ∈K (M ) or equivalently
B(M ) = Im(φ)+K (M ).

Let L (B(M )) be the set of all linear maps on B(M ) and P be a property on B(M ).
For φ1,φ2 ∈ L (B(M )) we say that φ1 ∼P

φ2, whenever for every T ∈ B(M ), φ1(T )
has property P if and only if φ2(T ) has this property. Let I denote the identity element of
L (B(M )) and φ ∈L (B(M )) then φ ∼

P
I means that φ preserves and reflects property

P , that is for T ∈B(M )), φ(T ) has property P if and only if T has this property. It is
easy to see that each property P produces an equivalence relation on L (B(M )).

Throughout this paper we use the following notations for some specific properties:

(i) “g” is the property of “being generalized invertible”;
(ii) “k” is the property of “being compact”;

(iii) “ f r” is the property of “being A -Fredholm”;
(iv) “s f ” is the property of “being semi-A -Fredholm”;
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(v) “r” is the property of “belonging to R(M )”.
When H is a Hilbert space, the linear mappings on B(H ) which preserve and reflect Fred-
holm, semi-Fredholm or generalized invertible operators have been studied in [9, 10]. In [1]
the case φ ∼s f I has been considered in the case of Hilbert C∗-modules and some char-
acterizations are obtained in certain cases. Also, the relation between equivalence classes
with respect to different properties on B(H ) are discussed in [2]. In the next two sections
we are going to prove some results concerning equivalence classes in B(M ) with respect
to the above properties.

2. Equivalence classes in the general case

The same reasoning as in [9, Lemma 2.2] and [10, Lemma 2.2] proves the following lemma
in the case of Hilbert modules.

Lemma 2.1. Let K ∈B(M ). Then the following are equivalent
(i) K is compact;

(ii) for every B ∈FR(M ) we have B+K ∈FR(M );
(iii) for every B ∈S F (M ) we have B+K ∈S F (M ).

Theorem 2.1. If the linear maps φ1,φ2 : B(M )→B(M ) are surjective up to compact
operators then

(i) φ1 ∼ f r φ2⇒ φ1 ∼k φ2;
(ii) φ1 ∼s f φ2⇒ φ1 ∼k φ2.

Proof. (i) Suppose that φ1(T ) is compact. Let S be an arbitrary A -Fredholm operator. Since
φ2 is surjective up to compact operators, there exist A ∈B(M ) and K ∈K (M ) such that
φ2(A) = S +K. By the hypothesis φ1(A) is A -Fredholm and since φ1(T ) is compact so by
Lemma 2.1, φ1(T +A) ∈FR(M ). Thus φ2(T +A) = φ2(T )+S +K is also A -Fredholm
and Lemma 2.1 implies that φ2(T ) is compact.

(ii) Let φ1(T ) be compact and let S be an arbitrary semi-A -Fredholm operator. There
exist A ∈B(M ) and K ∈K (M ) such that φ2(A) = S +K. We have φ1 ∼s f φ2 so φ1(A) ∈
S F (M ). Since φ1(T ) is compact, Lemma 2.1 implies that φ1(T +A)∈S F (M ). There-
fore φ2(T +A) = φ2(T )+S+K is also semi-A -Fredholm and again by Lemma 2.1, φ2(T )
is compact.

As a consequence if φ ∈L (B(M )) is surjective up to compact operators and if it pre-
serves and reflects A -Fredholm or semi-A -Fredholm operators then φ(K (M ))=K (M ).

Let F (H ) denote the ideal of all finite rank operators on a Hilbert space H . In [2]
it is proved that if φ1,φ2 ∈ L (B(H )) are surjective up to finite rank operators, that is
B(H ) = Im(φ j) + F (H ), j = 1,2 then φ1∼gφ2 implies that φ1∼s f φ2. In the case of
Hilbert C∗-modules we do not have any proof for the same result but we have the next
theorem.

Theorem 2.2. If φ1,φ2 : B(M )→B(M ) are surjective linear mappings then φ1 ∼g φ2⇒
φ1 ∼r φ2.

Proof. Suppose that φ1(T ) ∈R(M ) and consider an operator A ∈B(M )\G (M ). Since
φ2 is surjective there exists an operator B ∈B(M ) such that φ2(B) = A. We have φ1(T ) ∈
R(M ), so there exists α ∈ C such that αφ1(T ) + φ1(B) is generalized invertible. Since
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φ1 ∼g φ2, αφ2(T ) + φ2(B) is also in G (M ). Note that αφ2(T ) + φ2(B) 6= 0, otherwise
Im(φ2(T )) = Im(φ2(B)) which is not closed. Therefore φ2(T ) ∈R(M ).

3. Equivalence classes in the case of standard Hilbert C∗-modules

Before proving the next results we need some preliminaries. Let A be a C∗-algebra and
consider

HA := {(xk) ∈
∞

∏
1

A |∑xk
∗xk converges in norm in A }.

It is easy to see that HA with pointwise addition, module operation defined by

(xk)a := (xka),

and the inner product
〈(xk),(yk)〉 := ∑xk

∗xk,

for (xk) ∈HA ,a ∈ A becomes a Hilbert C∗-module which is called the standard Hilbert
C∗-module over A , see [11] for more details.

A Hilbert A -module N is called finitely generated if there is a finite subset {x1, ....,xn}
of N such that N equals the linear span (over C, and A ) of this set. These modules
sometimes are similar to finite dimensional Hilbert spaces.

We recall that a closed submodule N of a Hilbert C∗-module M is said to be comple-
mented if M = N ⊕N ⊥ where N ⊥ = {x ∈M |〈x,y〉 = 0 ∀y ∈N }. The following
theorem is [6, Theorem 3.2].

Theorem 3.1. If T ∈B(M ) has a closed range then both Im(T ) and Ker(T ) are comple-
mented. More precisely, M = Ker(T )⊕ (Ker(T ))⊥ = Im(T )⊕ (Im(T ))⊥.

Remark 3.1. Suppose M is a Hilbert C∗-module over A and A ∈ B(M ) has a closed
range. Then by [11, Theorem 15.3.8], |A| and A∗ have closed ranges and A has a polar de-
composition A =V |A|, where V is a partial isometry satisfying Ker(V ) = Ker(A), Ker(V ∗) =
Ker(A∗) = Im(A)⊥, Im(V ) = Im(A), Im(V ∗) = Im(A∗) = Ker(A)⊥. Let P = I −V ∗V ,
Q = I−VV ∗, then P and Q are projections onto Ker(V ) = Ker(A) and Ker(V ∗) = Im(A)⊥,
respectively. Furthermore, |A|+P is invertible.

Let LA(T ) = AT and RA(T ) = TA for all A,T ∈ B(M ). The next two results, in
the case of standard Hilbert C∗-modules, provide some sufficient conditions under which
φ1∼s f φ2 and φ1∼ f rφ2 .

Theorem 3.2. Let A be a unital C∗-algebra and φ1,φ2 ∈L (B(HA )). Suppose that φ1 is
surjective, φ2 is surjective up to compact operators and φ1∼g φ2. If there exists A∈B(HA )
such that φ2 = LAφ1 or φ2 = RAφ1 then A is an A -Fredholm operator with a closed range,
and moreover φ1 ∼s f φ2 and φ1 ∼ f r φ2.

Proof. Suppose that φ2 = LAφ1. Let I denote the identity operator on HA . Since φ1 is
surjective there exists T ∈B(HA ) such that φ1(T ) = I. Thus φ2(T ) = A and the range of A
is closed, because φ1 ∼g φ2. Since φ2 is surjective up to compact operators, I = Aφ1(T )+K
for some T ∈ B(HA ) and some compact operator K. Thus π(A) has a right inverse in
C (HA ). We show that Ker(A) is finitely generated. If Ker(A) is not finitely generated then
it is not algebraically finitely generated. Therefore B(Ker(A)) is an infinite dimensional C∗-
algebra and hence it contains an element S which is not generalized invertible [3, Theorem
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7]. By Theorem 3.1, HA = Ker(A)⊕Ker(A)⊥ and we may extend S to S̃ on HA by
S̃(Ker(A))⊥ = {0}. Clearly Im(S̃) = Im(S) is not closed. By surjectivity of φ1 there exists
U ∈B(HA ) such that φ1(U) = S̃. We have φ2(U) = 0 and this contradicts φ1 ∼g φ2. It
follows that Ker(A) is finitely generated. We show that π(A) has a left inverse in C (HA ).
Consider P to be the projection onto Ker(A). Then P is a compact operator [11, Remark
15.4.3]. Let A = V |A| be the polar decomposition of A. If W = (|A|+ P)−1 then W = W ∗

and (|A|+ P)W = I, so I − |A|W is compact. Multiplying by V on the left implies that
V −AW and hence V ∗−WA∗ are compact. This shows that W−1V ∗V −A∗V and therefore
I−A∗VW are in K (HA ). Now, since π(A) has a left and a right inverse in C (HA ), it is
an invertible element of C (HA ) and thus A is an A -Fredholm operator. Finally, if φ2(T ) =
φ1(T )A (T ∈ B(HA )), then the result follows by considering the same reasoning for
φ2(T )∗ = A∗φ1(T )∗ to show that A∗ and hence A is an A -Fredholm operator with a closed
range. The last assertion is now obvious.

Remark 3.2. We recall from [4] that a Hilbert C∗-module M over a C∗-algebra A is said
to be A -finite rank if the identity operator on M is compact. By [4, Proposition 2.3] if A
is unital then each A -finite rank module is finitely generated.

Theorem 3.3. Let A be a unital C∗-algebra and φ1,φ2 ∈L (B(HA )) be surjective up to
compact operators. If φ1 ∼k φ2 and there exist A,B ∈ G (HA ) such that φ2 = LARBφ1 then
A, B are A -Fredholm operators and we have φ1 ∼s f φ2, φ1 ∼ f r φ2.

Proof. Let I be the identity element in B(HA ) and φ2(T ) = LARBφ1(T ). Since φ2 is sur-
jective up to compact operators, I = Aφ1(T )B+K for some T ∈B(HA ) and K ∈K (HA ).
Thus A has a right inverse in the Calkin algebra C (HA ).

We show that Ker(A) is finitely generated. If not, by Remark 3.2 the projection P onto
Ker(A) which is the identity operator on Ker(A) is not compact. Since φ1 is surjective up to
compact operators φ1(S) = P +W for some S ∈B(HA ) and W ∈K (HA ). So φ1 �k φ2
because φ1(S) = P+W but φ2(S) = AWB+APB = AWB. Thus Ker(A) is finitely generated.
By the same argument as in the proof of Theorem 3.2, π(A) has a left inverse in C (HA )
and it follows that π(A) is invertible in C (HA ) and A is an A -Fredholm operator. Now
consider φ2(T )∗ = B∗φ1(T )∗A∗. By the same argument, we have B∗ and hence B is an
A -Fredholm operator.

It is clear that each counter example in the case of Hilbert spaces works in the case of
Hilbert C∗-modules, see [2] for some examples. Here we are going to show that some
of the results which hold in the case of Hilbert spaces are not true in the case of Hilbert
C∗-modules.

Example 3.1. Let H be a Hilbert space and λ : B(H ) → F (H ) a linear mapping.
Suppose that A,B are Fredholm operators on H and φ1,φ2 ∈ L (B(H )) are related as
φ2 = LARBφ1 + λ , then it is easy to see that φ1 ∼g φ2. We show that this is not true in the
case of Hilbert C∗-modules.

Consider A = C[0,1] as the Hilbert A -module over itself. Then K (M ) = B(M ) [11,
p. 244], and each operator in B(M ) is an A -Fredholm operator. Now let h(x) =

√
x

(x ∈ [0,1]), and define θh,h : A → A by θh,h( f ) = h〈h, f 〉. Then θh,h( f )(x) = x f (x) ( f ∈
A ,x ∈ [0,1]), and Im(θh,h) = { f ∈C[0,1] : f (0) = 0}. To see the latter equality note that if
f ∈C[0,1] and f (0) = 0 then there exists a sequence {pn} of polynomials which converges
uniformly to f on [0,1] and pn(0) = 0 for all n ∈ N. Thus for each n ∈ N there exists a
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polynomial qn such that pn(x) = xqn(x) (x ∈ [0,1]) and this shows that f ∈ Im(θh,h). The
reverse inclusion is obvious. We have

√
x ∈ Im(θh,h) \ Im(θh,h) since it is not of the form

x f (x) for some continuous function f on [0,1] and it follows that Im(θh,h) is not closed.
Now take φ1 = I and φ2 = Lθh,h then φ1(I) = I, φ2(I) = θh,h and obviously φ1 �g φ2.

The above example also shows that φ1 ∼ f r φ2 does not imply that φ1 ∼g φ2.
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