
Proc. of the 5th Int. Conference of the Iranian Society of Operations Research, Tabriz, Iran, May 16-17, 2012

1

Fortnightly course scheduling problem: a case study

Mohammad Ranjbar
Department of Industrial Engineering, Faculty of Engineering,

Ferdowsi University of Mashhad
Mashhad, Iran

m_ranjbar@um.ac.ir

Salim Rostami
Department of Industrial Engineering, Faculty of Engineering,

Ferdowsi University of Mashhad
Mashhad, Iran

Salim.Rostami@stu-mail.um.ac.ir

Abstract

This paper studies a fortnightly university course timetabling
problem. In this research, the Industrial Engineering Department of
Ferdowsi University of Mashhad (Iran) is considered as the case
study for investigation. An integer linear programming model is
developed for the problem and is solved using ILOG CPLEX 12.1
solver. Also, a branch-and-bound algorithm is developed to find
optimal solutions in which both lecturers and students' preferences
are considered. Regarding to the limited size of the case study, the
computational results indicate that the developed algorithm is
efficient and is able to find noticeable solutions in a reasonable time.

1. INTRODUCTION
This study focuses on a particular field of scheduling problems
known as university course timetabling problem which has been
proved to be a NP-problem [1]. The general term of university
timetabling refers to both exam and course timetabling [4]. In exam
timetabling one of the goals is to spread the different exams to the
best possible extent for each individual student, while in course
timetabling the students want an as compact and uniform timetable as
possible. Also, recurring timetables (weekly, fortnightly, etc.) are
appreciated for course timetabling. The university course timetabling
is the procedure of assigning lectures, which are presented by
lecturers, into room-timeslots subject to a given set of constraints.
Constraints are usually classified into two categories: hard constraints
and soft constraints. An assignment that satisfies all hard constraints
is called a feasible timetable. The objective of the each timetabling
problem is to minimize the number of soft constraints violations in a
feasible timetable.
A large variety of heuristic algorithms based on Metaheuristics have
been applied to course timetabling problems. Examples of these
algorithms include genetic algorithm [7], simulated annealing [3],
Tabu search [5], particle swarm optimization [6] and so on.
In contrast of heuristic algorithms, the literature of exact solution
approaches in the context of timetabling is very limited because these
approaches cannot tackle large scale timetabling problems. Integer
programming approach is one of the most commonly used
approaches for the course time tabling problem (see, for instance,
[2]). In this paper, we study the fortnightly university course
timetabling problem (FUCTP) in Ferdowsi University of Mashhad. In
this problem, each lecture of a course is presented in a 120 minutes
timeslot where 100 minutes of that is used for teaching and other 20
minutes for relaxing. Each course may need 1 or 1.5 lectures per
week. Since it is not possible to assign half of a timeslot to a lecture,
the total frequency period of the timetable is set to two weeks in
which each course may need 2 or 3 lectures. Also, each semester
includes 16 weeks. In contrast of weekly timetables in which course
timetable is identical for all weeks, in fortnightly timetables, we have
odd and even weeks. For those course that need 2 lectures per two-

weeks, their corresponding timetables in odd and even weeks are
identical. In contrast, for the courses with 3 lectures per two-weeks,
the timetable for odd and even weeks are different such that each
course has a fixed lecture per week and an alternate lecture per two
weeks (either in odd or in even weeks). The faculty of Engineering of
Ferdowsi University includes seven departments where each
department has a given number of identical classes (identical capacity
and equipment). Also, each department can share its classes with
other departments where a central education office coordinates the
sharing. Thus, it is assumed that for each department, a minimum
number of identical classes are available in each timeslot but it may
be increased in various amounts in different timeslots. In this paper,
we focus on developing an optimal timetable for the department of
industrial Engineering which includes only undergraduate program.
For this department, at least two identical classes are available for
each timeslot.
A branch-and-bound (B&B) algorithm is developed to find solutions
which strictly satisfy hard constraints and minimizes the number of
soft constraint violations. Branch-and-bound is a general algorithm
for finding optimal solutions of various optimization problems,
especially in discrete and combinatorial optimization.

2. PROBLEM SESCRIPTION AND FORMULATION
We define the FUCTP as follows: there are n courses gathered in set
C which is divided into two subsets 퐶 and 퐶 in terms of number of
required lectures per two-weeks. Set 퐶 = {푐 : 푙 = 2} and 퐶 =
{푐 : 푙 = 3} where 푙 indicates the number of required lectures per
two-weeks for course 푐 . These two subsets are mutually exclusive
and jointly exhaustive. In another point of view, we divide all courses
into k families where each family 퐹 indicates a set of courses that are
usually attended by a group of students with identical entrance year.
Also, the families are mutually exclusive ∀푓, 푓 ′: 퐹 ⋂퐹 ′ = ∅ and
jointly exhaustive ⋃ 퐹 = 퐶 . All families are determined based on
the curriculum of the Ferdowsi University. It should be noticed that it
is possible that a student take courses from different families. There
are m professors gathered in set P and each professor 푝 must present
a subset of determined courses shown by푃퐶 . Each lecture of a course
should be assigned to a timeslot 푡푠 where t=1,…,60. Number of
timeslots has been determined based on the six timeslots in a working
day ([8-10], [10-12], [12-14], [14-16], [16-18] and [18-20]) and ten
working days in a two- week period. The union of timeslots
푡푠 () , … , 푡푠 constitute the day 퐷 .
It should be considered that each lecture of a course 푐 ∈ 푃퐶 can be
assigned to a timeslot of set 푃푇푆 , determined by professor 푝 . In
order to determine the optimal timeslot for each lecture of a course,
we consider preferences of students and professors, shown by sets
STSP and PTSP, respectively. As hard constraints, the courses of a
family should not overlap but there may be courses from different

Proc. of the 5th Int. Conference of the Iranian Society of Operations Research, Tabriz, Iran, May 16-17, 2012

2

families which are attended by a noticeable number of students. Thus,
we consider a cost, shown by표푐 ′, for overlapping of courses 푐 ∈ 퐹
and 푐 ′ ∈ 퐹 ′ where 푓 ≠ 푓 ′ . The overlapping costs are determined
based on the students' enrollment data. Also, in order to have a
compact program for both students and professors, we consider a cost
for each busy day, a day includes at least a lecture, shown by cbs and
cbp for students and professors, respectively. On the other hand, for

construction a uniform timetable we consider an upper bound for
maximum number of lectures in a day participated by a student
(푙푠) or presented by a professor (푙푝). Since some courses are
presented by professors coming from outside of the department, we
have assumed that the timetable of these courses is assigned already.
The parameters 푝푎 , 푝푎 and 푝푎 are defined to show
preassignments.

3. B&B ALGORITHM
The branching strategy of our developed B&B algorithm for the
FUCTP is as follows. Each node of the search tree corresponds to a
partial schedule in which corresponding timeslots of some courses
are determined. Each schedule S is represented by a vector 퐒 =
(퐶푇 , … , 퐶푇) where course timetable 퐶푇 is an ordered pair 휃 , 휃
if 푙 = 2 and an ordered triple 휃 , 휃 , 휃 if 푙 = 3 in which
휃 ∈ {푡|푡 = 1, … ,30}, 휃 = 휃 + 30 and 휃 ∈ {푡|푡 = 1, … ,60} . In
each node of the search tree, a 퐶푇 is determined. Thus, the set
offspring emanated from a node includes all possible values for
휃 and 휃 .
In order to determine which course must be considered in which level
of the search tree, we sort courses based on the non-decreasing order
of their flexibility degree (FD). The flexibility degree of each course
푐 ∈ 퐶 equals to the number of timeslots can be assigned to the only
lecture of this course in a week, determined by the 푃퐶 where 푐 ∈
푃퐶 . Also, for each course 푐 ∈ 퐶 , we define the flexibility degree as
the average of two following values: number of possible timeslots for
the fixed lecture in a week and number of possible timeslots for the
alternative lecture in two weeks. Since pre-assigned courses have
zero flexibility degree, we assume the lectures of these courses are
assigned to the corresponding timeslots before starting the B&B
algorithm. In each node, after the assignment of a course timetable,
flexibility degrees of all courses are updated. Assume a lecture of
course 푐 is assigned to the timeslot 푡푠 . In updating procedure, we
remove 푡푠 from possible timeslots of lecture 푐 ′ if one of the
following conditions is satisfied: I) Courses 푐 and 푐 ′ have an
identical family; II) Courses 푐 and 푐 ′ have an identical professor;
III) The number lectures assigned to 푡푠 equals to 푐푡푠 . Without loss
of generality, we assume 퐹퐷 ≤ ⋯ ≤ 퐹퐷 . Completion of a partial
schedule based on the nondecreasing order of courses' flexibility
degree prevents expansion of the search tree using reduction of
creation infeasible solutions' chance.
The first found feasible solution is consider as a lower bound (LB)
and is updated whenever a better solution is found. Also, regardless
to the hard constraints, we assign each unscheduled course c to the
timeslots results in the maximum value of (s + p)to construct an
upper bound (UB). Now, these values are added to the objective
function value of the partial schedule, calculated based on (1) based
on scheduled courses. The following dominance rule is used to
obstruct nodes result in infeasible or low quality solutions.
Dominance rule 1. In each node N, if UBLB, obstruct the node.

Dominance rule 2. Assume a course timetable is assigned in node N

and flexibility degrees are updated for all unscheduled courses. Now,

if for every two different courses 푐 and 푐 ′ we have 퐹퐷 = 퐹퐷 ′ = 1,

there is a common timeslot among their possible timeslots and one of

the following conditions is satisfied, the node N must be obstructed.

I) 푐 and 푐 ′ belongs to an identical family.

II) 푐 and 푐 ′ must be presented by a professor.

4. CONCLUSIONS

In this paper we study a case study of the FCUTP. We developed an
integer linear programming model and solved it using ILOG CPLEX
12.1. Also, we developed a B&B to find optimal solution. The
primary experimental results indicate the developed B&B algorithm
is more efficient than CPLEX and can find near optimal solutions in a
very short time.

REFERENCES
[1] V.A. Bardadym, Computer-aided school and university

timetabling: The new wave, In E. Burke & P. Ross (Eds.),
Practice and theory of automated timetabling, Lecture notes in
computer science,vol.1153, pp. 22–45, Berlin: Springer, 1996.

[2] N. Boland, B.D. Hughes, L.T.G. Merlot,P.J. Stuckey,New integer
linear programming approaches for course timetabling,
Computers & Operations Research, vol. 35, pp. 2209-2233,
2008.

[3] S. Ceschia, L. Di Gaspero, A. Schaef, Design, engineering, and
experimental analysis of a simulated annealing approach to the
post-enrolment course timetabling problem, Computers &
Operations Research, vol. 39, pp. 1615-1624, 2010.

[4] R. Lewis, A survey of metaheuristic-based techniques for
university timetabling problems, OR Spectrum, vol. 30, pp.
167–190, 2008.

[5] Z. Lü, J.K. Hao, Adaptive Tabu Search for course timetabling,
European Journal of Operational Research, vol. 200, pp. 235-
244, 2010.

[6] D.F. Shiau, A hybrid particle swarm optimization for a university
course scheduling problem with flexible preferences, Expert
Systems with Applications, vol. 38(1), pp. 235-248, 2011.

[7] Y.Z. Wang, Using genetic algorithm methods to solve course
scheduling problems, Expert Systems with Applications, vol.
25, pp. 39–50, 2003.

