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ABSTRACT. We investigate the stability of orthogonally additive set-valued functional
equation
Flz+y)=F)+Fy) (zly)

in Hausdorff topology on closed convex subsets of a Banach space.

1. Introduction

A functional equation § is called stable if for any function f satisfying approx-
imately to the equation §, there is a true solution of § near to f. In 1940, S. M.
Ulam [24] proposed the first stability problem for group homomorphisms. Hyers [9]
gave the first significant partial solution to his problem for linear functions. Th. M.
Rassias [20] improved Hyers’ theorem by weakening the condition for the Cauchy
difference controlled by ||z|[P + ||y||?, p € [0,1). For some recent developments in
this area, we refer the reader to the articles [5, 6, 11, 12, 15, 19] and the references
therein.

In 1985, Rétz[21] gave a generalization of Birkhoff-James orthogonality [1, 10]
in vector spaces. He also investigated some properties of orthogonally additive
functional equation. This definition motivated some Mathematicians to discuss
about the orthogonal stability of functional equations (see e. g. [8, 13, 16, 22]). On
the other hand, set-valued mappings and their stability have been investigated by
some authors from different point of view [2, 7, 14, 17, 23].

In the next section, we prove the stability of set-valued orthogonal additive
functional equation

(1) Flz+y) =Fe)+Fy) (zLly).
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In fact, we will show if (X, 1) is an orthogonal space, Y is a Banach space and
F:X — CC(Y) is an even function such that

H(F@+y). Fa)+ Fly) <c (vyeXaLy),

for some € > 0. Then there exists a unique quadratic function Q : X — CC(Y)
such that

H(F(@), Q) < = (z € X).

In this case, we will show that there is a quadratic function ¢ : X — Y such that

q(z) € F(z) + % B(0,1) (z€X).

2. Main Results

Throughout the paper, unless otherwise stated, we will assume that X and Y
are topological vector spaces over R. If A, B C Y and A € R, we use the following
notions

A+B={a+b:ac A beB}, MM={la:a€ A}.

The following properties will often be used in the sequel:
For each A, B C Y and A, u > 0, we have

MA+B) =X+ 2B, (A+p)ACAA+ pA.
Moreover, if A is convex, (A + u)A = AA + pA.

Definition 2.1. Let Y be a normed space and A;, As C Y be non-empty closed
bounded sets. Then the Hausdorff distance between A; and A, is defined by

H(Aq, Az) :=inf{s >0: 4; C Ay +sB(0,1) and A2 C A; +sB(0,1)}.

It is known that H defines a metric on closed convex subsets of Y, which is called
Hausdorff metric topology[3, 4]. Moreover, if Y is a Banach space, (CC(Y), H), the
space of all non-empty compact convex subsets of Y with the Hausdorff metric
topology is a complete metric space [3].

In 1985, Rétz [21] introduced the following notion:

Definition 2.2. Let X be a real topological vector space of dimension > 2. A
binary relation 1. C X x X is called an orthogonal relation if the following properties
hold.

(1) L0, 0Lz for every x € X,
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(2) if z,y € X\ {0}, Ly, then  and y are linearly independent;
3) ifr,ye X, xly, arlpPy for all o, 8 € R,

(4) if P is a two dimensional subspace of X, € P, A € R™", then there exists
some y € P such that zlyand z+y L Az —y.

The space X with an orthogonal relation L is called an orthogonally space and
is denoted by (X, 1).

Definition 2.3. Let X and Z be two sets. A function @ : X — Z is called quadratic
if Qz +y) +Q(z —y) =2Q(x) +2Q(y) for all z,y € X.

We need to the following result due to Radstrém [18].

Lemma 2.4. Let A, B and C' be nonempty subsets of a topological vector space Y .
Suppose that B is closed and convex and C is bounded. If A+ C C B+ C, then
A C B. If moreover, A is closed and convex and A+ C = B+ C, then A = B.

Now, we are ready to state the main result of this paper.

Theorem 2.5. Let X be a topological vector space over R which is also an orthog-
onal space and let Y be a Banach space. Let F : X — CC(Y) be an even function
and for some € > 0,

(2.1) J—C(F(m +y), F(z) + F(y)) <ec (zyeX,zly).

Then there exists a unique quadratic and orthogonal additive function @ : X —
CC(Y) such that

H(F(z),Q(z)) < % (z € X).

Proof. We divide the proof into several steps.
Step 1.For each x € X,

(2.2) f]-f(F(Qx),4F(x)) < 7e.

Proof of step 1. By Definition 2.2, for each x € X, there is some y € X such that
z lyand x +y L x—y. Take some y € X with this property. Then
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Sincex+y Ly—x

On the other hand,

F(2x)

N 1N

and

4F(x)

N 1N 1N

A. K. Mirmostafaee and M. Mahdavi

, by interchanging the role of = and y, we see that

F(y) C F(z)+2eB(0,1).

Flz4+y+az—y) CF(x+y)+F(r—y)+eB(0,1)

2F(x) + 2F (y) + 3¢B(0,1)

4F(z) + 7¢B(0,1)

2F(x) + 2F (z) C 2F (x) + 2F(y) + 4¢B(0,1)
F(z)+ F(y) + F(z) + F(—y) + 4eB(0,1) ( since = L y)
F(z+y)+ F(z —y)+6eB(0,1) (since x +y Lz —y)

F(2z) + 7eB(0,1).

Therefore (2.2) holds.

Step 2. There is a
Q(2z) = 4Q(x) and
(2.3)

for each z € X.

unique orthogonal additive function Q : X — CC(Y) such that

3(F@), Q) < =

Proof of step 2. Replace x by 2"« in (2.2) and multiply both sides of the obtained

inequality by 4~ (+

J—C(4_("+1)F(2n+1m), 4_"F(2”x)) <

D) to obtain the following inequality

ST (n>0,z € X).
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It follows that for each n > m > 0, we have

—n (R ) A-T (9T g = ~(h 1) (ot gy 4k P (2ky
9{(4 F(2"z), 4™ F(2 )) < ;9{@ D p(2h ) 4R R(2 ))

(2.4) < Y g (@eX).

Since the right hand side of the above inequality tends to zero as n — oo,
{4 "F(2"x)} is a Cauchy sequence in (CC(Y),H). Completeness of CC(Y') with
respect to the Hausdorff metric topology insures that

Q(z) = lim 47"F(2"z) (xz € X)

n— oo

defines a function from X to CC(Y). Put m =0 in (2.4) to obtain

fH(Q(x),F(x)) — lim %(4%17(2%),15’(9;))

n— oo
(oo}
Te Te
k=0
Moreover, for every x € X, we have
Q(2r) = lim 4 "F(2" ')
n—oo
(2.6) = 4 lim 4~ DR = 4Q(x).

n— oo

If z 1 y, we have
3(Q) + Q). Qa+y))
= limy o0 9{(4%}«“(2%) 4R (M), 420 (@ + y))) < im0 4" = 0.

Hence @ is orthogonal additive. Suppose that Q' : X — CC(Y) satisfies the
following properties:

(i) %(Q’(m),F(m)) < It and
(il) Q'(2z) = 4Q'(x) for each z € X.

Then for each x € X, we have

%(Q’(m),@(x)) ~— lim J{(rﬂ@/@%),f%(g%))

n—oo
= lim 4—”%(@(2%) F(Q"x)) < lim 47—,
n—oo ’ T n—oo 3

Thus the uniqueness assertion of step 2 follows.
Step 3. The function Q : X — CC(Y) is quadratic.
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Proof of step 3. Let x,y € X. Then the following cases may happen.
(i) y = az, where a > 0. In this case, by property (4) of Definition 2.2, for each
r € X, there is some z € X such that x L z and x + z L ax — z. Therefore

Qr+y)+Qr—y) =Qr+ar)+Q(z —ax) = Q(r + 2+ ar — 2) + Q(ar — x).
It follows that
Q(z + ax) + Q(z — ar) + Q(22)

Qx4+ 2)+ Qax — 2) + Qlax — x + 22)
Q) +20Q(> )+Q(Oéx) +Q(z + 2 + 2 — ax)

Q(z) +2Q(2) + Qax) + Q(z + 2) + Q(z — ax)
2Q(z) +2Q(ax) +4Q(z)
2Q(z) +2Q(ax) + Q(22).

Thanks to Lemma 2.4, the result follows in this case.

(ii) y = ax, where o < 0. Let 8 = —a. Then 8 > 0. Hence,

Q@ +an)+ Qe —ar) = Q- Ba) + Q(x + Ba)
= 2Q(2) +2Q(8x) = 2Q(x) + 2Q(ax)

since @ is even.

(iii) « and y are linearly independent.

By Definition 2.2, there is some z in linear span of {z,y} such that L z. Let
y = ax + Bz. Then

Qlz+y)+Qx—y) = Qllz+ax)+pz]+ Q- (az+ 2)]
= Qz+ax)+ Q(B2) + Qz — ax) + Q(—p2)
= 2Q(z) +2Q(az) +2Q(Bz)
= 2Q(z) +2Q(az + B2) = 2Q(z) + 2Q(y).
This completes the proof of the theorem. O

Example 2.6. Let X be an inner product space and € > 0. Define F' : X — CC(R)
by F(z) = [0,]|z||> + ¢]. Tt is easy to see that F is [0, ]-orthogonal additive even
function. According to Theorem 2.5, there is a quadratic function @ : X — CC(R)
such that

iMﬂ@@@»s% (z € X).

Definition 2.7. Let X and Y be two sets. By a selection of a set-valued function
F: X — 2Y, we mean a single-valued mapping f : X — Y such that f(x) € F(x)
for each z € X.

Corollary 2.8. Under conditions of Theorem 2.5, there is a quadratic function
q: X — Y such that

q(z) € F(x) + % B(0,1) (xz€ X).
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Proof. Tt is known that if X is an abelian group with division by two and Y is
a topological vector space, then every subquadratic set-valued function @ : X —
CC(Y) admits a quadratic selection ¢ : X — Y [4, Theorem 35.2]. So the result
follows from Theorem 2.5. O

Acknowledgements. The authors would like to thank the two anonymous review-
ers for their helpful comments.
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