
KYUNGPOOK Math. J. 53(2013), 639-646

http://dx.doi.org/10.5666/KMJ.2013.53.4.646

Approximately Orthogonal Additive Set-valued Mappings

Alireza Kamel Mirmostafaee∗ and Mostafa Mahdavi
Center of Excellence in Analysis on Algebraic Structures, Department of pure Math-
ematics, School of Mathematical Sciences, Ferdowsi University of Mashhad 91775,
Iran
e-mail: mirmostafaei@um.ac.ir and m_mahdavi1387@yahoo.com

Abstract. We investigate the stability of orthogonally additive set-valued functional
equation

F (x+ y) = F (x) + F (y) (x ⊥ y)

in Hausdorff topology on closed convex subsets of a Banach space.

1. Introduction

A functional equation F is called stable if for any function f satisfying approx-
imately to the equation F, there is a true solution of F near to f . In 1940, S. M.
Ulam [24] proposed the first stability problem for group homomorphisms. Hyers [9]
gave the first significant partial solution to his problem for linear functions. Th. M.
Rassias [20] improved Hyers’ theorem by weakening the condition for the Cauchy
difference controlled by ||x||p + ||y||p, p ∈ [0, 1). For some recent developments in
this area, we refer the reader to the articles [5, 6, 11, 12, 15, 19] and the references
therein.

In 1985, Rätz[21] gave a generalization of Birkhoff-James orthogonality [1, 10]
in vector spaces. He also investigated some properties of orthogonally additive
functional equation. This definition motivated some Mathematicians to discuss
about the orthogonal stability of functional equations (see e. g. [8, 13, 16, 22]). On
the other hand, set-valued mappings and their stability have been investigated by
some authors from different point of view [2, 7, 14, 17, 23].

In the next section, we prove the stability of set-valued orthogonal additive
functional equation

(1) F (x+ y) = F (x) + F (y) (x ⊥ y).
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In fact, we will show if (X,⊥) is an orthogonal space, Y is a Banach space and
F : X → CC(Y ) is an even function such that

H
(
F (x+ y), F (x) + F (y)

)
≤ ε (x, y ∈ X,x ⊥ y),

for some ε > 0. Then there exists a unique quadratic function Q : X → CC(Y )
such that

H(F (x), Q(x)) ≤ 7ε

4
(x ∈ X).

In this case, we will show that there is a quadratic function q : X → Y such that

q(x) ∈ F (x) +
7ε

3
B(0, 1) (x ∈ X).

2. Main Results

Throughout the paper, unless otherwise stated, we will assume that X and Y
are topological vector spaces over R. If A,B ⊂ Y and λ ∈ R, we use the following
notions

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A}.

The following properties will often be used in the sequel:
For each A,B ⊂ Y and λ, µ ≥ 0, we have

λ(A+B) = λA+ λB, (λ+ µ)A ⊆ λA+ µA.

Moreover, if A is convex, (λ+ µ)A = λA+ µA.

Definition 2.1. Let Y be a normed space and A1, A2 ⊆ Y be non-empty closed
bounded sets. Then the Hausdorff distance between A1 and A2 is defined by

H(A1, A2) := inf{s > 0 : A1 ⊆ A2 + sB(0, 1) and A2 ⊆ A1 + sB(0, 1)}.

It is known thatH defines a metric on closed convex subsets of Y , which is called
Hausdorff metric topology[3, 4]. Moreover, if Y is a Banach space, (CC(Y ),H), the
space of all non-empty compact convex subsets of Y with the Hausdorff metric
topology is a complete metric space [3].

In 1985, Rätz [21] introduced the following notion:

Definition 2.2. Let X be a real topological vector space of dimension ≥ 2. A
binary relation ⊥⊂ X×X is called an orthogonal relation if the following properties
hold.

(1) x⊥0, 0⊥x for every x ∈ X,
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(2) if x, y ∈ X \ {0}, x⊥y, then x and y are linearly independent;

(3) if x, y ∈ X, x⊥y, αx⊥βy for all α, β ∈ R,

(4) if P is a two dimensional subspace of X, x ∈ P , λ ∈ R+, then there exists
some y ∈ P such that x⊥y and x+ y ⊥ λx− y.

The space X with an orthogonal relation ⊥ is called an orthogonally space and
is denoted by (X,⊥).

Definition 2.3. LetX and Z be two sets. A function Q : X → Z is called quadratic
if Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) for all x, y ∈ X.

We need to the following result due to R̊adström [18].

Lemma 2.4. Let A,B and C be nonempty subsets of a topological vector space Y .
Suppose that B is closed and convex and C is bounded. If A + C ⊆ B + C, then
A ⊆ B. If moreover, A is closed and convex and A+ C = B + C, then A = B.

Now, we are ready to state the main result of this paper.

Theorem 2.5. Let X be a topological vector space over R which is also an orthog-
onal space and let Y be a Banach space. Let F : X → CC(Y ) be an even function
and for some ε > 0,

(2.1) H
(
F (x+ y), F (x) + F (y)

)
≤ ε (x, y ∈ X,x ⊥ y).

Then there exists a unique quadratic and orthogonal additive function Q : X →
CC(Y ) such that

H(F (x), Q(x)) ≤ 7ε

3
(x ∈ X).

Proof. We divide the proof into several steps.
Step 1.For each x ∈ X,

(2.2) H
(
F (2x), 4F (x)

)
≤ 7ε.

Proof of step 1. By Definition 2.2, for each x ∈ X, there is some y ∈ X such that
x ⊥ y and x+ y ⊥ x− y. Take some y ∈ X with this property. Then
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F (x) = F
(x+ y

2
+

x− y

2

)
⊆ F

(x+ y

2

)
+ F

(x− y

2

)
+ εB(0, 1)

= F
(x+ y

2

)
+ F

(y − x

2

)
+ εB(0, 1) (∵ F is even)

⊆ F
(x+ y

2
+

y − x

2

)
+ 2εB(0, 1)

= F (y) + 2εB(0, 1).

Since x+ y ⊥ y − x, by interchanging the role of x and y, we see that

F (y) ⊆ F (x) + 2εB(0, 1).

On the other hand,

F (2x) = F (x+ y + x− y) ⊆ F (x+ y) + F (x− y) + εB(0, 1)

⊆ 2F (x) + 2F (y) + 3εB(0, 1)

⊆ 4F (x) + 7εB(0, 1)

and

4F (x) = 2F (x) + 2F (x) ⊆ 2F (x) + 2F (y) + 4εB(0, 1)

⊆ F (x) + F (y) + F (x) + F (−y) + 4εB(0, 1) ( since x ⊥ y)

⊆ F (x+ y) + F (x− y) + 6εB(0, 1) ( since x+ y ⊥ x− y)

⊆ F (2x) + 7εB(0, 1).

Therefore (2.2) holds.
Step 2. There is a unique orthogonal additive function Q : X → CC(Y ) such that

Q(2x) = 4Q(x) and

(2.3) H
(
F (x), Q(x)

)
≤ 7ε

3

for each x ∈ X.

Proof of step 2. Replace x by 2nx in (2.2) and multiply both sides of the obtained
inequality by 4−(n+1) to obtain the following inequality

H
(
4−(n+1)F (2n+1x), 4−nF (2nx)

)
≤ 7ε

4n+1
(n ≥ 0, x ∈ X).
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It follows that for each n > m ≥ 0, we have

H
(
4−nF (2nx), 4−mF (2mx)

)
≤

n−1∑
k=m

H
(
4−(k+1)F (2k+1x), 4−kF (2kx)

)
≤

n−1∑
k=m

7ε

4k+1
(x ∈ X).(2.4)

Since the right hand side of the above inequality tends to zero as n → ∞,
{4−nF (2nx)} is a Cauchy sequence in (CC(Y ),H). Completeness of CC(Y ) with
respect to the Hausdorff metric topology insures that

Q(x) = lim
n→∞

4−nF (2nx) (x ∈ X)

defines a function from X to CC(Y ). Put m = 0 in (2.4) to obtain

H
(
Q(x), F (x)

)
= lim

n→∞
H
(
4−nF (2nx), F (x)

)
≤

∞∑
k=0

7ε

4k+1
=

7ε

3
(x ∈ X).(2.5)

Moreover, for every x ∈ X, we have

Q(2x) = lim
n→∞

4−nF (2n+1x)

= 4 lim
n→∞

4−(n+1)F (2n+1x) = 4Q(x).(2.6)

If x ⊥ y, we have

H
(
Q(x) +Q(y), Q(x+ y)

)
= limn→∞ H

(
4−nF (2nx) + 4−nF (2ny), 4−nF (2n(x+ y))

)
≤ limn→∞ 4−nε = 0.

Hence Q is orthogonal additive. Suppose that Q′ : X → CC(Y ) satisfies the
following properties:

(i) H
(
Q′(x), F (x)

)
≤ 7ε

3 and

(ii) Q′(2x) = 4Q′(x) for each x ∈ X.

Then for each x ∈ X, we have

H
(
Q′(x), Q(x)

)
= lim

n→∞
H
(
4−nQ′(2nx), 4−nF (2nx)

)
= lim

n→∞
4−nH

(
Q′(2nx), F (2nx)

)
≤ lim

n→∞
4−n 7ε

3
= 0.

Thus the uniqueness assertion of step 2 follows.
Step 3. The function Q : X → CC(Y ) is quadratic.
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Proof of step 3. Let x, y ∈ X. Then the following cases may happen.
(i) y = αx, where α ≥ 0. In this case, by property (4) of Definition 2.2, for each
x ∈ X, there is some z ∈ X such that x ⊥ z and x+ z ⊥ αx− z. Therefore

Q(x+ y) +Q(x− y) = Q(x+ αx) +Q(x− αx) = Q(x+ z + αx− z) +Q(αx− x).

It follows that

Q(x+ αx) +Q(x− αx) +Q(2z) = Q(x+ z) +Q(αx− z) +Q(αx− x+ 2z)
= Q(x) + 2Q(z) +Q(αx) +Q(x+ z + z − αx)
= Q(x) + 2Q(z) +Q(αx) +Q(x+ z) +Q(z − αx)
= 2Q(x) + 2Q(αx) + 4Q(z)
= 2Q(x) + 2Q(αx) +Q(2z).

Thanks to Lemma 2.4, the result follows in this case.
(ii) y = αx, where α < 0. Let β = −α. Then β > 0. Hence,

Q(x+ αx) +Q(x− αx) = Q(x− βx) +Q(x+ βx)

= 2Q(x) + 2Q(βx) = 2Q(x) + 2Q(αx)

since Q is even.
(iii) x and y are linearly independent.
By Definition 2.2, there is some z in linear span of {x, y} such that x ⊥ z. Let
y = αx+ βz. Then

Q(x+ y) +Q(x− y) = Q[(x+ αx) + βz] +Q[x− (αx+ βz)]

= Q(x+ αx) +Q(βz) +Q(x− αx) +Q(−βz)

= 2Q(x) + 2Q(αx) + 2Q(βz)

= 2Q(x) + 2Q(αx+ βz) = 2Q(x) + 2Q(y).

This completes the proof of the theorem.

Example 2.6. Let X be an inner product space and ε > 0. Define F : X → CC(R)
by F (x) = [0, ||x||2 + ε]. It is easy to see that F is [0, ε]-orthogonal additive even
function. According to Theorem 2.5, there is a quadratic function Q : X → CC(R)
such that

H(F (x), Q(x)) ≤ 7ε

3
(x ∈ X).

Definition 2.7. Let X and Y be two sets. By a selection of a set-valued function
F : X → 2Y , we mean a single-valued mapping f : X → Y such that f(x) ∈ F (x)
for each x ∈ X.

Corollary 2.8. Under conditions of Theorem 2.5, there is a quadratic function
q : X → Y such that

q(x) ∈ F (x) +
7ε

3
B(0, 1) (x ∈ X).
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Proof. It is known that if X is an abelian group with division by two and Y is
a topological vector space, then every subquadratic set-valued function Q : X →
CC(Y ) admits a quadratic selection q : X → Y [4, Theorem 35.2]. So the result
follows from Theorem 2.5.

Acknowledgements. The authors would like to thank the two anonymous review-
ers for their helpful comments.
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