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a b s t r a c t

A fundamental challenge associated with research or new product development projects is identifying

that innovative activity that will deliver success. In such projects, it is typically the case that innovative

breakthroughs can be achieved by any of several possible alternative technologies, some of which may

fail due to the technological risks involved. In some cases, the project payoff is obtained as soon as any

single technology is completed successfully. We refer to such a project as alternative-technologies

project and in this paper we consider the alternative-technologies project scheduling problem. We

examine how to schedule alternative R&D activities in order to maximize the expected net present

value, when each technology has a cost and a probability of failure. Although a branch-and-bound

algorithm has been presented for this problem in the literature, we reformulate the problem and

develop a new and improved branch-and-bound algorithm. We show using computational results that

the new algorithm is much more efficient and outperforms the previous one.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The development of complex and innovative products is
characterized by much uncertainty. In order to deal with this
uncertainty, it has been suggested that research and development
(R&D) projects should pursue multiple alternative solutions for
developing the new products (see, for instance, [1] and [2]). The
scheduling of these attempts, hereafter referred to as alternatives,
is crucial for increasing the likelihood of successfully developing a
product, minimizing development time and obtaining revenues as
early as possible. Consider, for instance, a software development
firm that has the option to develop their web services using either
a traditional Java SPRING framework or the pioneering Ruby-on-
Rails framework. While both might achieve a similar function-
ality, the traditional Java SPRING framework will take longer to
develop, but is more likely to handle the expected volume of
users. A similar situation happens in the formulation, delivery and
packaging development phase of the pharmaceutical drug-devel-
opment process in which drug developers must devise a formula-
tion that ensures the proper drug delivery parameters. It is critical
to begin looking ahead to clinical trials at this phase of the drug
development process. Drug formulation and delivery may be
ll rights reserved.

r),
refined continuously until, and even after, the drug’s final
approval. Trials have different costs, durations and probability
of success, and optimal scheduling of these trials saves a notice-
able amount of money for the drug developer firm (see [3]).

In this paper, we focus on a single firm engaged in a single R&D
or new product development (NPD) project. The project can be
achieved by any one of several given alternatives. Each alternative
is characterized by a cost, a duration and a probability of technical
success (PTS). The successful completion of an alternative corre-
sponds to the completion of the project and obtaining the project
payoff. In other words, depending on the schedule and the
realized successes of alternatives, some alternatives of the project
will not be performed. Also, if in the time at which the success of
an alternative is realized, there are some other alternatives in
progress, they will be ignored. Since it is assumed that the cost of
each alternative is incurred at the beginning of alternative while
the project payoff will be obtained at the end of a successful
alternative, there is the downside risk of disregarding some in
progress alternatives. A serial schedule, in which alternatives are
not attempted simultaneously, is conservative in terms of costs
and minimizing the downside risk, but might result in the
maximum project duration. On the other extreme, simultaneously
developing all the potential alternative technologies, which could
lead to the minimum project duration and an earlier launch date,
carries a large downside risk and higher upfront costs (see, [4]
and [5]). Our goal is to analyze such trade-offs and to solve the
underlying optimization problem, which will be referred to as the
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Fig. 1. Example project.

Table 1
Project data.

Alternative Cost ($) Duration (months) PTS

1 �51 8 0.73

2 �31 6 0.62

3 �87 3 0.91

4 �28 7 0.57

5 �80 4 0.86
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Alternative-Technologies Project Scheduling Problem (ATPSP).
The goal of the problem is to determine optimal timing of the
alternatives such that the project’s expected net present value
(eNPV) is maximized. The most related problem to the ATPSP has
been proposed by Creemers et al. [6], who develop a dynamic
programming approach to solve a modular R&D project schedul-
ing problem (RDPSP). Although modular RDPSP and ATPSP both
try to use the advantages of alternative technologies, they differ in
their objectives. Unlike ATPSP in which the objective function
directly relates to the scheduling of alternatives, in modular
RDPSP, the objective function relates to alternatives only indir-
ectly, and mostly depends on the probability of success of each
module. In other words, a solution is feasible in modular RDPSP if
all of the modules succeed.

Planning and scheduling of NPD activities has been a challen-
ging subject of research in recent years. Dahan [7] examines the
trade-off between parallel and sequential scheduling in alterna-
tive prototype development. Granot and Zuckerman [8] examine
the sequencing of R&D projects with success or failure in
individual activities. Ding and Eliashberg [9] examine the ‘pipe-
line problem’: since NPD projects may fail in each stage, multiple
projects are started simultaneously in order to increase the
likelihood of having at least one successful product. Loch et al.
[10] discuss the importance of exploratory learning and the value
of partial information, thus highlighting the need for combined
parallel and sequential planning. Also, Sobel et al. [11] consider
the problem of scheduling projects with stochastic activity dura-
tion to maximize expected net present value.

De Reyck et al. [12] have presented a complete literature survey
on project scheduling with activity failures. Following the classifica-
tion introduced by De Reyck et al. [12], the project we consider in the
ATPSP can be classified as a single-module project. Also, De Reyck and
Leus [13] consider RDPSP in which project activities are interrelated
by finish to start precedence relations. In their model, however, the
project is successful only if all individual activities succeed. They
develop a specialized branch-and-bound (B&B) algorithm for the
RDPSP which includes two phases. In the first phase, a feasible
extension for set of precedence relations is generated and in the
second phase, each activity can be scheduled to end at the earliest of
the start times of its successors in the extended set of precedence
relations. Although there are similarities between ATPSP and RDPSP,
the project success is achieved in the ATPSP if one alternative
succeeds while this achievement is obtained in the RDPSP when no
activity fails. Intuitively, we perceive that the number of situations in
which the project is terminated in the ATPSP is much greater than in
the RDPSP, and we conjecture that the ATPSP is harder to solve than
the RDPSP. If we want to apply the B&B algorithm developed by De
Reyck and Leus [13] for the RDPSP to the ATPSP, the second phase of
this algorithm cannot be used because in the ATPSP, all intermediate
alternative cash flows are not negative and, hence, in the optimal
solution of this problem each alternative is not necessarily ended at
the earliest of the start times of its successors. In other words, for the
second phase, a new search methodology is required to find the
optimal start time of each alternative.

Ranjbar [14] developed a two-phase solution procedure for the
ATPSP which consists of a B&B algorithm that uses a recursive
search procedure, developed by Vanhouck [15], as a subroutine to
obtain an optimal solution. He presents each solution of the
ATPSP as a sequence of start and finish events, and searches in
the space of possible sequences for the optimal solution. The
weakness point of his work was that the size of sequence is twice
the size of alternatives; thus, his procedure is able to solve
projects including at most eight alternatives in a reasonable time.

The contributions of this article are threefold: (1) we reformulate
the ATPSP as a non-linear integer programming model; (2) we prove
a property, referred to as the concurrency property, for the optimal
solution of the ATPSP; and (3) we construct a new and improved
B&B algorithm based on the concurrency property for the ATPSP.

The remainder of this paper is organized as follows. We
illustrate an example in Section 2. The problem modeling and
properties are presented in Section 3. In Section 4, we present the
B&B algorithm. Computational results are discussed in Section 5.
Finally, conclusions are given in Section 6.
2. An example

As an example, we consider a project with five alternative
technologies for achieving a given breakthrough. The alternatives
are represented by the nodes in Fig. 1, finish-to-start precedence
constraints between the technologies are depicted by directed arcs.
Other project data are given in Table 1. In this example, we
assume a discount rate of 5% per month and a project payoff,
achieved in case of technological success, is $2770. Also, we
assume the project deadline is 29 months.

For scheduling these alternatives, several choices can be made. If
we try to obtain the project payoff as soon as possible, we can execute
the alternatives according to the early-start schedule determined by
the Critical Path Method (CPM). This schedule, depicted in Fig. 2(a),
results in an eNPV of $2058.96. In this schedule, if alternative 5 is
successful, the firm must still pay the expenses associated with
alternatives 1 and 2, which are planned to start prior to completion
of alternative 5, since the discovery of success or failure of the
alternatives takes place only at the end of the alternative.

Another option is to schedule the alternatives carrying tech-
nical risk in series, thereby avoiding unnecessary costs when an
alternative succeeds. One such series schedule is depicted in
Fig. 2(b); this schedule results in an eNPV of $2083.61. Finally, a
schedule allowing for a partial overlap of alternatives is shown in
Fig. 2(c), yielding an eNPV of $2104.16, which can be shown to be
optimal. Finding such a schedule is the objective of the algorithms
that will be presented in this paper.

For each of the three foregoing schedules, the cumulative
distribution function of the project’s NPV is depicted in Fig. 3.
For this project we observe that, while the downside is the most
limited in the serial schedule, the CPM schedule has the lowest
variance and the optimal schedule has the highest eNPV.
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Fig. 2. Three possible schedules for the example project. (a) CPM early-start schedule, (b) Serial schedule and (c) Optimal schedule.
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Fig. 3. The cumulative distribution functions of the project’s NPV for each of the

three schedules for the example project.

Table 2
Parameters.

Parameter Definition

N Set of alternatives, N¼{1,2,y,n}

ci Cost of alternative iAN, a non-positive integer; incurred at the

start of the alternative

C End-of-project positive payoff, integer

di Duration of alternative iAN, a positive integer

pi PTS of alternative iAN

r Continuous discount rate

A (Strict) partial order on N, an irreflexive and transitive relation

imposing the constraints siþdirsj for all (i,j)AA

d The project deadline
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3. Problem modeling and properties

3.1. Definitions and problem modeling

We focus on a firm that is engaged in an NPD project and tries
to maximize its project’s eNPV by determining which alternative
technologies to pursue and when. The development will end as
soon as an alternative is successful, at which time the project
terminates and the firm obtains the project payoff. Each alter-
native includes two time events: start event and finish event. The
alternatives are executed without preemption from start to finish,
and the alternative’s outcome, which can be either success or
failure, is revealed at the finish. Consequently, each start event
will only occur if all alternatives with earlier finish events have
had a negative outcome. We do not consider resource constraints
and duration uncertainty and view the PTS of each of the
alternatives as independent. The model’s parameters are defined
in Table 2.

Precedence constraints imposed by A might represent repeti-
tive testing or trials, and also allow to model fallback options:
alternative plans devised by management in the event the
primary option falters (see [16]).

A schedule s is feasible if it respects the constraints imposed
by A. The objective is to maximize the project’s eNPV, and so each
alternative’s cost is weighted by the probability of joint failure of
the already finished alternatives. We represent each schedule by a
vector of start times s¼(s1,s2,y,sn) where si is a non-negative
integer and indicates the start time of alternative i. We also
consider f¼(f1,f2,y,fn) as the vector of finish times where fi¼siþdi

indicates the finish time of alternative i.
The problem ATPSP can now be formulated as the following

non-linear integer programming model.

maxgðsÞ ¼
Xn

i ¼ 1
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In the objective function gðsÞ which indicates eNPV of schedule s,
FBA(si) indicates the set of alternatives which are finished before or
at start time of alternative i. Also, FB(fi) shows the set of alternatives
which are finished before finish time of alternative i. In addition,
NUF show the set of non-unique finish times such that every tANUF
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Fig. 4. Overall sketch of an optimal solution of ATPSP.
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is identical to the finish time of at least two alternatives. The set of
alternatives which are finished at tANUF are shown by FA(t). In
addition, FB(t) shows the set of alternatives which are finished
before time instant t. Objective function includes three main terms
in which exp(.) shows exponential function. The first term indicates
the expected costs in which

Q
jA FBAðsiÞ

ð1�pjÞ indicates the probabil-

ity of joint failure of all alternatives finished before or at the start
time of alternative i. We assume that if in a schedule for two
alternatives i,jAN, we have fj¼si, then alternative i will be started if
alternative j has been failed. The summation of two other terms in
the objective function indicates the expected revenue. The second
term displays the expected revenue for the alternatives whose finish
times belong to NUF. In this formula, (1�

Q
kAFAðtÞð1�pkÞ) shows the

probability of succeeding at least one of the alternatives finished at
time instant t. Moreover,

Q
jA FBðtÞð1�pjÞ indicates the probability of

joint failure of all alternatives finished prior to the time instant t.
Finally, the last term specifies the expected revenue for the alter-
natives with unique finish times. In this formula,

Q
jA FBðsiþdiÞ

ð1�pjÞ

represents the probability of joint failure of all alternatives finished
prior to the completion time of alternative i.

The first constraint of the model indicates the finish-to-start
precedence relations among alternatives imposed by set A. The
second constraint implies that all alternatives must be finished
before or at the given deadline. If this constraint is not considered,
some alternatives may be finished at infinite. The last constraint
shows that all start times are non-negative integers (Zþ indicates
the set of non-negative integers).

The ATPSP can be shown to be NP-hard (Theorem 1 in [12]),
even with unit durations and r¼0. Consequently, an exact
algorithm with better than exponential time complexity is unli-
kely to exist. A number of sub-problems with r¼0 can be
distinguished, however, that can be solved in polynomial time.
One example is the case A¼|, for which Price [17] shows that a
serial schedule executing the activities in non-decreasing order of
ci/pi is optimal. Other special cases (generalizing the result of
Price) are surveyed by De Reyck and Leus [13].

3.2. An overall view of the solution approach

In this section, we draw an overall view of the solution
approach. A detailed description of our solution approach is
provided in Section 4.

Our solution algorithm is a depth-first B&B approach but in a
primary phase, we try to reduce the size of the problem and
facilitate the solution algorithm using a preprocessing procedure.
The optimal schedule of each ATPSP divides alternatives into two
subsets, i.e., favorable (F) and unfavorable (U). The former
category consists of alternatives that have no negative impact
on the objective function g(s) while the alternatives of latter
category have negative impact. Generally, there is a time interval
in which no alternative is in progress, referred to as a ‘‘gap’’,
between these two sets of alternatives in the optimal schedule.
The preprocessing procedure tries to determine that each alter-
native is favorable or unfavorable but unfortunately, it cannot
decide about all alternatives. In other words, the output of the
preprocessing procedure partitions all alternatives into three
categories: favorable, unfavorable and undecided. The effective-
ness of the preprocessing procedure depends on the number of
alternatives determined to be favorable or unfavorable. After this
primary phase, the size of the problem is reduced by removing
unfavorable alternatives. Also, the size of the solution space of the
new problem inversely depends on the number of favorable
alternatives.

Our B&B algorithm relies on the concurrency property of the
ATPSP that was conjectured by De Reyck et al. [12]. In a given
schedule, we call an alternative iAN concurrent if its start event or
its finish event is concurrent with at least another (start or finish)
event. If all alternatives of a given schedule are concurrent, then
the concurrency property is satisfied for the schedule and it is
called concurrent schedule. We prove that there is at least one
optimal concurrent schedule for each instance of the ATPSP.

Theorem 1. For each instance of the ATPSP, there is a concurrent
optimal schedule.

Proof. Appendix A.

In our B&B algorithm, we limit ourselves to enumerating only

concurrent schedules. This algorithm adds alternatives one-by-

one to a partial schedule until a complete schedule is obtained.

For each new (non-scheduled) alternative, it considers different

start times subject to precedence relations. Each start time of a

new alternative is determined based upon concurrency of the

start time or the finish time of the alternative with available

events in the partial schedule. Since there is a gap between sets F

and U, for favorable (unfavorable) alternatives we consider only

possible start times before (after) the gap while for undecided

alternatives both cases must be examined. We consider two

different variations of B&B algorithm, F-B&B and FB-B&B. The

F-B&B algorithm assumes that all alternatives are favorable, while

FB-B&B does not. The F-B&B is faster in average than the FB-B&B

and works based on forward scheduling while the FB-B&B works

based upon forward-backward scheduling.
3.3. Preprocessing

In the preprocessing procedure, we try to determine as many
elements of the sets F and U as possible. In order to better
understand the concept of favorable and unfavorable alternatives,
we draw the overall sketch of an optimal schedule as shown in
Fig. 4. In the optimal schedule of ATPSP, a set of alternatives (F)
such that at least one of them is started at time instant t¼0 is
executed. Assume the latest finished alternative from this set
completes at time instant t1. In each time interval [t,tþ1] where
0rtrt1�1, at least one of the favorable alternatives is scheduled
to be executed. The earliest start time among alternatives of set U

is shown by t2 where t24t1 and the latest finish time among
these alternatives is t¼d. Also, in each time interval [t,tþ1] where
t2rtrd�1, at least one of the unfavorable alternatives is
scheduled. Thus, each unfavorable alternative is scheduled to be
started after all favorable alternatives and the gap between F and
U. Obviously, if t2¼d, then U¼| and all alternatives will be
favorable. Similarly, if t1¼0, then F¼| and all alternatives will
be unfavorable. Since unfavorable alternatives have a negative
impact on the objective function, for the risk aversion firms, it is
not recommended to carry them out in practice. For the risk
seeking firms which are interested in testing all of their chances
of obtaining the project payoff, the set of unfavorable alternatives
must be scheduled optimally.
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5. If ≥ 0, then let = ⋃ .
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Fig. 5. Pseudo-code of the preprocessing procedure.
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Fig. 6. An optimal schedule including gap.

Table 3
Implementation of the preprocessing procedure.

i eNPVi LBHPred
i

UBHSuc
i

1 1304.45 �48.71 1355.34

2 �31.00 �31.00 1607.15

3 2082.59 �93.44 1607.19

4 �28.00 �53.78 �0.03

5 1870.38 �78.10 1950.30
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It is easily concluded that if alternative iAU, then all successors
(direct and indirect) of alternative i, referred to as Suc(i), must be
members of U as well. Similarly, if an alternative iAF, then all
predecessors (direct and indirect) of alternative i, referred to as
Pred(i), must be included in F.

In order to describe the preprocessing procedure, we first need
to define the expected net present value for a single alternative
iAN as eNPVi¼ciþpi Cexp(�rdi). It is not possible to easily judge
about the non-negative or negative impact of a single alternative i

by considering only either eNPViZ0 or eNPVio0. For instance, if
eNPViZ0 but all members of Pred(i) have negative expected net
present value, then inclusion of alternative i and consequently
Pred(i) in the schedule may have an overall negative impact on
the objective function. Also, if eNPVio0 but all members of Suc(i)
have positive expected net present value, then inclusion of
alternative i along with some alternatives of Suc(i) in the schedule
may have in overall a non-negative impact on the objective
function. In this confusing situation, in order to determine
whether an alternative is favorable or unfavorable, a good idea
is to use lower bound and upper bound of impacts of each
alternative. We know that if an alternative i and all of its
successors are unfavorable while all of its predecessors are
favorable, then there is a gap between alternative i and Pred(i).
Likewise, if an alternative i and all of its predecessors are
favorable while all of its successors are unfavorable, then there
is a gap between alternative i and Suc(i). In each of the two
foregoing situations, we call alternative i as a head alternative.
The union of a head alternative i and Suc(i)(Pred(i)) constitutes a
set shown by HSuc

i ðH
Pred
i Þ. Assume UBHSuc

i
ðLBHPred

i
Þ indicates the

upper (lower) bound of impact of HSuc
i ðH

Pred
i Þ on the objective

function of a feasible schedule. If we consider esi, lsi, efi and lfi as
the earliest start time, the latest start time, the earliest finish time
and the latest finish time of alternative iAN, where all of them are
computed based on the critical path method, we have

UBHSuc
i
¼
X

kAHSuc
i

expð�r lskð ÞÞck

Y
j:ef j r lsk

ð1�pjÞ

0
@

þCexpð�rðef kÞÞpk

Y
jAPredðkÞ

ð1�pjÞ

1
A and

LBHPred
i
¼

X
kAHPred

i

expð�rðeskÞÞck

Y
jAPred kð Þ

ð1�pjÞ

0
@

þCexpð�rðlf kÞÞpk

Y
j:ef j r lf k

ð1�pjÞ

1
A:

Now, we use these bounds to decide about alternatives as
follows. For each alternative iAN, if UBHSuc

i
o0, then all alterna-

tives of HSuc
i are candidates to be unfavorable. The relation

UBHSuc
i
o0 means that alternatives of the set HSuc

i together will
have an overall negative impact in each feasible schedule but we
cannot consider all of them as unfavorable alternatives. This
discrepancy arises because members of set HSuc

i may have
predecessors with positive impacts on the objective function
while these impacts are not considered in calculation of UBHSuc

i
.

For instance, assume there is an alternative kAHSuc
i where ka i

and LBHPred
k

Z0. In this case, we cannot decide that alternative k is
favorable or unfavorable. Similarly, for each alternative iAN, if
LBHPred

i
Z0, then all alternatives of HPred

i are candidates to be
favorable alternatives. We consider the alternatives which have
membership of both sets F and U as undecided alternatives and
remove them from both sets. Certainly, when we remove an
alternative from F (U), we have to remove all of its successors
(predecessors) as well. The pseudo-code of the preprocessing is
described in Fig. 5.

Since UBHSuc
i

and LBHPred
i

are dependent on the latest start times

or the latest finish times of some alternatives, the project deadline
affects the effectiveness of the preprocessing procedure. Compu-
tational results demonstrate that the preprocessing procedure is
more effective when the deadline is tighter. In other words, when
the deadline is tighter, the number of undecided alternatives will
be decreased. On the other hand, in order to separate favorable

and unfavorable alternatives, we must have d4
Pn

i ¼ 1 di. Thus,

we set d¼ 1þSn
i ¼ 1di.

Consider the example project but assume p2¼p4¼0.00. The

optimal schedule of this new instance with eNPV¼2065.82 is

depicted in Fig. 6 in which there is a gap between alternatives

1 and 4. In other words, alternative 4 is unfavorable while other

ones are favorable. This schedule implies that even if alternatives 1,

2, 3 and 5 fail, alternative 4 should not be executed because it will
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surely fail (p4¼0.00). Even if p440 but eNPV4o0, a risk aversion
firm would prefer to not execute alternative 4 because it has a
negative impact on its eNPV. Of course, if p440 but eNPV4o0, it is
recommended to a risk-seeking firm to start alternative 4 as late as
possible in order to reduce its negative impact.

For each alternative iAN, eNPVi, LBHPred
i

and UBHSuc
i

are displayed
in Table 3. If we follow steps 1 to 11 of the preprocessing
procedure, we find F¼{1,2,3,5} and U¼{1,2,3,4,5} but steps 12
to 14 result in F¼| and U¼{4}.

It should be mentioned here that in a special case in which for
every alternative iAN, we know eNPViZ0, the preprocessing
procedure is not required because all alternatives are favorable.
For this case, we have designed a faster version of B&B algorithm
that will be described in Section 4.1.1.
0      4 8 10  time
1

5
2

4. Branch-and-bound algorithm

In our B&B algorithm, each node of the search tree corresponds
to a partial schedule s where set E(s) indicates the set of different
events in this schedule. Each event eAE(s) corresponds to a time
instant at which at least one alternative is started or finished.
0      4 8 14             time
1

5
2

0      2 4 8 time
1

5
2

Fig. 8. Illustration of the branching strategy for the F-B&B.
4.1. The branching strategy

4.1.1. The branching strategy of F-B&B

Assume all alternatives are favorable. In this case, in the root
node, set E(s) is initialized as E(s)¼{0}. For each node n which
corresponds to a partial schedule s, we consider a set of eligible
alternatives ELn including alternatives all of whose predecessors
are scheduled already. For each alternative iAELn, we consider a
set of possible start times based upon available time events in E(s)
and precedence constraints. In other words, regarding to the
precedence constraints, branches of node n are created by con-
sidering the start time or the finish time of each alternative iAELn
equal to each event eAE(s). For this purpose, the possible start
times and finish times of each alternative i are calculated as
{tAE(s)9esirtr lsi} and {tAE(s)9efirtr lfi}, respectively. Since
each alternative is added to a partial schedule when all of its
predecessors are already scheduled, in each node, the earliest
start times and consequently the earliest finish times of alter-
natives may be updated while the latest start times and the latest
finish times will not be updated. For example, consider the partial
schedule depicted in Fig. 7 including alternatives 1 and 5. In the
node corresponding to this partial schedule, we have EL¼{2,4}
and E(s)¼{0,4,8}. The offspring of this node are depicted in Fig. 8.

Since alternative 1 is the predecessor of alternative 4, alter-
native 4 can be started only at time instant t¼8 (Fig. 8(a)). There
is not any event in E(s) that can be considered as the finish time of
alternative 4. Also, there are three events in E(s) that can be
considered as the start time of alternative 2, i.e., t¼0, 4 and 8
(Fig. 7(b–d)). In addition, there is only one event in E(s) that can
be considered as the finish time of alternative 2, i.e., t¼8
(Fig. 8(e)).

Property 1. The complexity order of F-B&B algorithm is O((2n)!/2n).
0 4 8 time

1
5

Fig. 7. A Partial schedule.
Proof. In F-B&B algorithm, when k (kon) alternatives have been

scheduled, there are at most 2kþ1 different start times for kþ1th

alternative which is selected from (n�k) remaining alternatives
and the maximum number of possible schedules is 1ðnÞ �
3ðn�1Þ � 5ðn�2Þ � � � � ð2n� 1Þð1Þ ¼ n!� 1� 3� � � �� ð2n�1Þ ¼ n!�

ðð2nÞ!=2n
� n!Þ ¼ ð2nÞ!=2n. &

4.1.2. The branching strategy of FB-B&B

If the F-B&B algorithm is applied to an instance of the ATPSP in
which there is unfavorable alternatives that are not determined
by the preprocessing procedure, the obtained solution is not
optimal. In order to find the optimal solution in such instances,
we use FB-B&B algorithm in which E(s) is initialized as E(s)¼{0,d}.
We also redefine ELn as the set of alternatives whose all pre-
decessors or all successors are already scheduled. Also, regarding
to finish-to-start precedence relations, for each alternative iAELn,
we consider a set of possible start times based upon available
events in E(s). In FB-B&B algorithm, both earliest start times and
latest start times of alternatives and consequently, the earliest
finish times and the latest finish times may be updated in
each node.

For example, consider again the node corresponding to the
partial schedule depicted in Fig. 7. If FB-B&B is applied, in addition
of offspring shown in Fig. 8, two other offspring, shown in Fig. 9,
are generated.

Property 2. The complexity order of FB-B&B algorithm is
O((n!)22n).
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Fig. 10. Illustration of the dominance rule.
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Fig. 9. Illustration of the branching strategy of FB-B&B.
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Proof. In FB-B&B algorithm, when k (kon) alternatives have
been scheduled, there are at most 2kþ2 different start times for
kþ1th alternative which is selected from (n�k) remaining alter-
natives and the maximum number of possible schedules is
2(n)�4(n�1)�6(n�2) � � � �2(n)(1)¼(n!)22n. &

4.2. The bounding strategy

In this section, we develop three dominance rules to fathom
unvalued nodes. The first and the second dominance rules
prevent duplication of schedules while the third one fathoms
low quality schedules. When an alternative is added to a partial
schedule, the set of events E(s) may be updated by the addition of
a new event e0. If it happens, event e is called the parent of event e0

and event e0 is called the child of event e. For example, consider
Fig. 7 as a partial schedule involving alternatives 1 and 5. If the
alternative 4 is added to this partial schedule as it was shown in
Fig. 8(a), the event e¼8 is the parent of event e0 ¼ 15. Now consider
Fig. 8(e) in which e0 ¼ 2 is the child of e0 ¼8. In this figure, if we
assume d2¼8 and f2¼8, then the set of events will not be updated
and hence, the only child of event e¼8 is event e0 ¼ 4.

Dominance rule 1: Consider a schedule s and event eAE(s). If Ce

indicates the set of children of e, all members of Ce should be
added to s in increasing order of index number of their corre-
sponding alternatives.

Proof. Assume we follow dominance rule 1 and we obtain
schedule s as the best found schedule. Also, suppose a better
schedule s0 (g(s0)4g(s)) does still exist. If schedule s0 is not
concurrent, we can easily create concurrent schedule s00 with
g(s00)Zg(s0) from schedule s0 by shifting some alternatives to the
right or to the left. On the other hand, if all members of Ce are
added to each partial schedule in increasing order of index
number of their corresponding alternatives, obviously all con-
current schedules, such as optimal schedule, are investigated. It
should be noticed that different permutations of all events
occurring in a time instant result in an identical value of the
objective function. Thus, if schedule s00 is optimal, then
gðs00Þ ¼ gðsÞ,otherwise g(s00)og(s) and consequently g(s0)rg(s)
that is a contradiction by the first assumption. Also, if schedule
s0 is concurrent, the contradiction is proved due to this fact that
different permutations of all events occurring in a time instant
result in an identical value of the objective function. &

For example, consider the partial schedule of Fig. 8(d).

Obviously, the first alternative added to this partial schedule

has been alternative 1. Thus, the first added event to E has been

e¼8. If we consider event e¼8 as a parent, its children are e0 ¼4

and e00 ¼14, corresponding to the alternatives 5 and 2, respec-

tively. There are two different paths in the search tree from the
node corresponding to the partial schedule involving only alter-

native 1 towards the node corresponding to the partial schedule

depicted in Fig. 8(d). In the first path, alternative 2 is added before

alternative 5 to the partial schedule while in the second path,

alternative 5 is added earlier than alternative 2 to the partial

schedule. The dominance rule 1 allows only the former path be

extended in the search tree and fathoms the latter one.

Dominance rule 2: In each partial schedule s, if event e has been

created before event e0 (which is not necessarily the child of e), all

members of Ce must be added to s before any member of Ce0.
Proof. Dominance rule 2 is proved similarly to dominance rule 1.
It suffices to notice that if we consider two different time instants
in a solution of ATPSP where each one corresponds to a set of
events, different permutations of all of these events result in an
identical value of the objective function. &

For example, consider the partial schedule depicted in Fig. 10(a). In

order to obtain the complete schedule shown in Fig. 10(b), there are

different paths in the search tree. Based upon dominance rule 1,

alternative 3 must be added before alternative 4 but, there are three

different paths yet. In the first path, alternatives 3, 4 and 5 are added

in order of 3, 4 and 5 while in the second and the third paths they

are added to the partial schedule in order of 3, 5, 4 and 5, 3, 4,

respectively. According to dominance rule 1, alternative 1 is added

before alternative 2, hence, event e¼8 is created before event e0 ¼6.

Now, on the basis of dominance rule 2, children of e must be created

before children of e0. In other words, from the above three mentioned

paths, only the first path is investigated and two other ones are

fathomed.
For each node n, consider SAn and RAn as the set of scheduled

alternatives and the set of remaining alternatives of a partial schedule,

respectively. Also, UBn indicates the upper bound of the partial

schedule corresponding to node n and is calculated as follows.

UBn ¼
X

iASAn

expð�rsiÞci

Y
jA SAn\FBAðsiÞð Þ

ð1�pjÞ
Y

kARAn&ef k r si

ð1�pkÞ

0
@

1
A

þ
X

iARAn

expð�rðlsiÞÞci

Y
jASAn&f j r lsi
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@

1
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þC
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In order to have a more efficient upper bound, we update

earliest start times, earliest finish times, latest start times and

latest finish times in each node of the search tree. If we consider

LB as the lower bound of the optimal solution (the best found

solution so far), initialized by a schedule in which all alternatives

are started at their earliest possible start times, the dominance

rule 3 is described as follows.

Dominance rule 3: In each node n of the search tree, if UBnrLB,

then fathom node n.

5. Computational performance

We have performed a series of computational experiments
using randomly generated test sets in order to examine the
performance of F-B&B and FB-B&B and analyze the effects of
different parameter choices.

5.1. Experimental setup

All coding was done in the Visual Cþþ 6.0 environment and all
experiments were run on a PC Pentium IV 3 GHz processor with
1024 MB of internal memory. We have generated a test set using
the random network generator RanGen (Demeulemeester et al.
[18]), including 60 test instances. We choose n¼6, 8, 10, 12 and
OS¼ 0:4, 0:6 and 0:8, where OS is the order strength, the number
Table 4
Average TTotal (in seconds) for F-B&B, FB-B&B and O-B&B.

N

6 8 10 12

OS 0.4 F-B&B 0.003 0.269 16.512 1162.850

FB-B&B 0.028 2.384 143.909 6267.659

O-B&B 0.078 27.147 7529.770 –

0.6 F-B&B 0.000 0.041 0.956 35.441

FB-B&B 0.003 0.309 7.194 177.750

O-B&B 0.012 1.794 251.062 –

0.8 F-B&B 0.000 0.000 0.013 0.422

FB-B&B 0.003 0.013 0.153 3.053

O-B&B 0.003 0.035 1.119 53.791

Table 5
Average percent deviation from optimal solution for different values of n in the limite

Time limit

1 10

n n

6 8 10 12 6 8

F-B&B 0.00 0.00 0.78 2.35 0.00 0.00

FB-B&B 0.00 0.17 2.44 3.35 0.00 0.00

O-B&B 0.00 0.97 3.68 3.98 0.00 0.55
of precedence-related activity pairs divided by the theoretically
maximum number of such pairs in the network (Mastor [19]). For
each combination of n and OS we generate five test instances,
varying the alternatives’ duration, cost and PTS: durations and
costs are realizations of (independent) discrete uniform random
variables on the intervals [1;10] and ½�100;�10�, respectively,
and the PTS-values are, unless stated otherwise, with uniform
probability chosen from [50%;100%]. We refer to the ratio of
project payoff to sum of the alternatives cost, C=

P
iANci as the

payoff-to-cost (PTC) index, which is a characteristic of a given
project. Unless mentioned otherwise, we set PTC¼5 and r¼0.05.

5.2. Detailed comparison

In order to compare the performance of the F-B&B and FB-B&B
algorithms with old B&B developed by Ranjbar [14] (referred to as
O-B&B), we take the average total CPU run time, shown as TTotal,
as the comparison criterion. Table 4 shows the average TTotal in
seconds for F-B&B, FB-B&B and O-B&B for different numbers of
alternatives and different values of OS. The empty cells of Table 4
indicate that O-B&B could not be finished in 5 hours. It should be
noticed that the ATPSP is very hard and numerous feasible
solutions are available for each instance of this problem, espe-
cially when OS is small. When the OS is decreased, the number of
precedence relations (the size of set A) is reduced and conse-
quently, the number of possible start times for each alternative
will be increased. Thus, the ATPSP for small values of OS and large
values of n is really an intractable problem. On the other hand,
existence of more than 12 alternatives for execution of an R&D
project usually does not usually happen in practice.

It should be mentioned that we applied FB-B&B without
preprocessing procedure because it has a negative effect on the
average TTotal. We will elaborate more on the impact of the
preprocessing procedure in Section 5.3.2.

For F-B&B and FB-B&B, in average we obtained TTotal¼101.38
seconds and TTotal¼550.20 seconds, respectively. Also, for O-B&B,
if we ignore test problems with n¼12 and OS¼0.4 or 0.6 which
could not be solved in 5 hours, in average we have TTotal¼786.48
seconds. Although F-B&B is the fastest algorithm, it should be
noticed that this algorithm could not find the optimal solution for
two out of 60 test instances because in the optimal solutions of
these two test instances, some alternatives have been unfavor-
able. For these two test instances, the average percent deviation
of the obtained solutions from the corresponding optimal solu-
tions is 1.24%. Of course, if PTC is decreased, the number of
unfavorable alternatives will be increased and consequently, the
average percent deviation between the best solutions found by
F-B&B and the optimal solutions will be increased.

Moreover, we run each B&B algorithm for limited CPU times:
1, 10 and 100 seconds. In each case, the average percent deviation
from optimal solutions for different values of n is reported in
Table 5. Table 6 is constructed similar to Table 5 but in which
different values of OS are considered. Since all of the optimal
d CPU times.

100

n

10 12 6 8 10 12

0.05 1.94 0.00 0.00 0.00 0.73

0.59 2.32 0.00 0.00 0.05 1.86

2.75 3.48 0.00 0.00 1.32 3.11



0.730.8

Average percent deviation
from optimal solutions 

Table 6
Average percent deviation from optimal solution for different values of OS in the

limited CPU times.

Time limit

1 10 100

OS OS OS

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

F-B&B 0.61 0.00 0.00 0.42 0.00 0.00 0.18 0.00 0.00

FB-B&B 0.83 0.00 0.00 0.56 0.00 0.00 0.42 0.00 0.00

O-B&B 1.37 0.00 0.00 1.12 0.00 0.00 0.81 0.00 0.00
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solutions were positive, we did not face with the problem of
‘‘division by zero’’. Also, in the case that each of the B&B
algorithms could not find any solution in the given CPU time
limit, the eNPV of the initial solution in which all alternatives are
started at their earliest start time is considered.

The results of Tables 5 and 6 indicate that F-B&B has again the
best performance in the limited CPU run time.

We know that in the optimal solution there is a gap between
favorable and unfavorable alternatives, and the unfavorable
alternatives are scheduled on the right side of the gap. On the
other hand, the F-B&B algorithm considers all alternatives as
favorable and schedules them in left side. Thus, the best obtained
solution of the F-B&B algorithm may not be optimal and its
deviation from the optimal solution will be increased when the
number of unfavorable alternatives is increased.
0.080.06
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Fig. 12. Impact of the preprocessing.
5.3. Impact of components

5.3.1. Impact of the upper bound

In order to evaluate impact of the developed upper bound, we
run both F-B&B and FB-B&B without upper bound for 10 seconds
over all test instances. The results show that for n¼8 and 10, the
average percent deviation from optimal solutions increases in
both F-B&B and FB-B&B algorithm and consequently, the upper
bound has positive impact on the performance of the B&B
algorithm. We predict this increment will be observed also for
n410.

Consider the difference between the average percent deviation
from optimal when upper bound is excluded from the algorithm
and the case that the upper bound is included. Based on the
results illustrated in Fig. 11, this difference criterion is in average
0.22% for F-B&B algorithm and 0.45% for the FB-B&B algorithm. It
implies that the upper bound has more impact on the FB-B&B
algorithm rather than the F-B&B algorithm.
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n

Fig. 11. Impact of the upper.
5.3.2. Impact of the preprocessing procedure

The preprocessing procedure may have negative effect on the
performance of FB-B&B if number of favorable and unfavorable
alternatives determined by this procedure is not noticeable. For
the generated test instances, the preprocessing procedure deter-
mines that 2.2% and 0.0% of alternatives belongs to the sets F and
U, respectively, while on the basis of optimal solutions, 94.5% of
these alternatives are favorable. In this situation, the preproces-
sing procedure is not worthwhile because it results in an increase
in CPU run time, without helping to solve the problem.

In order to show a case in which the preprocessing procedure
has positive effect, we consider PTC¼50 instead of PTC¼5. Now,
the preprocessing procedure determines that 11.68% and 0.0% of
alternatives belong to the sets F and U, respectively, while based
upon optimal solutions, 95.8% of these alternatives are favorable.
We run FB-B&B with and without preprocessing procedure for
10 seconds over this new test set. The average percent deviation
from optimal solutions for different values of n is depicted in
Fig. 12. The results show that when the preprocessing procedure
is included in the FB-B&B algorithm the average percent deviation
from optimal solution is 0.17% while when it is excluded the
average percent deviation will be 0.20%.
6. Conclusions

In this paper, we reformulated the ATPSP as a non-linear
integer programming model and proved that there is an optimal
concurrent schedule for each instance of the ATPSP. Also, we
developed a new branch-and-bound algorithm for the problem
which relies on the concurrency property. The computational
results indicate that the F-B&B algorithm is faster than FB-B&B
and O-B&B algorithms but is not able to find optimal solutions in
the case there are unfavorable alternatives. Also, for PTC¼5, the
preprocessing procedure was not efficient but becomes more
effective as PTC increases. In addition, the developed upper bound
has positive impact on the performance of the B&B algorithms
especially for larger test instances.

Since exact algorithms are not able to solve large scale
instances of the ATPSP, as a future research opportunity, we
recommend to develop heuristic or metaheuristic algorithms for
the problem. We also suggest to develop the setting of this
problem to more practical assumptions like stochastic durations
for alternatives (see Creemers et al. [6]) or resource constraints.



Table 7
Different situations for g(s0)�g(s) in case (a).

Case number D1 Other conditions FBA0ðs0iÞ NUF0 FA0 FB0 g(s0)�g(s)

a-1) si� lebsi – FBA(si) NUF FA FB I

a-2) fi� lebfi )jAN : f j ¼ lebf i FBA(si) NUF FA FB I

a-3) fi� lebfi (jAN : f j ¼ lebf i, f j=2NUF FBA(si) NUF [ lebf i FA0(lebfi)¼{i,j} FB0(lebfi)¼FB(fi)\{j} I

a-4) fi� lebfi (jAN : f j ¼ lebf i, f j ANUF FBA(si) NUF FA0ðlebf iÞ ¼ FAðlebf iÞ [ i FB0(lebfi)¼FB(fi)\{j:fj¼ lebfi} I

Table 8
Different situations for g(s0)�g(s) in case (b).

Case number D2 Other conditions FBA0ðs0iÞ NUF0 FA0 FB0 g(s0)�g(s)

b-1) eeasi�si )jAN : f j ¼ eeasi FBA(si) NUF FA FB II

b-2) eeasi�si (jAN:fj¼eeasi FBAðsiÞ [ FAðeeasiÞ NUF FA FB II0

b-3) eeafi� fi )jAN : f j ¼ eeaf i FBA(si) NUF FA FB II

b-4) eeafi� fi (jAN : f j ¼ eeaf i ,f j=2NUF FBA(si) NUF [ eeaf i FA0(eeafi)¼{i,j} FB0(eeafi)¼FB(eeafi)\{i} II

b-5) eeafi� fi (jAN : f j ¼ eeaf i ,f j ANUF FBA(si) NUF FA0ðeeaf iÞ ¼ FAðeeaf iÞ [ i FB0(eeafi)¼FB(eeafi)\{i} II
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Appendix A
Theorem 1. For each instance of the ATPSP, there is a concurrent
optimal schedule.

Proof. Consider an optimal solution s¼(s1,..,si,..,sn) of the ATPSP
in which alternative iAN is not concurrent. We show that the
solution s0 ¼ ðs01,::,s0i,::,s

0
nÞ with g(s0)Zg(s) can be found in which

8jAN, ja i : s0j ¼ sj and alternative i is concurrent. For this purpose,

we define the conditional expected net present value for each

alternative iAN as CeNPVi ¼ ciþCpiexpð�rdiÞ
Q

jA FBSFi
ð1�pjÞ in

which FBSFi¼{jAN9sio fjo fi} indicates the set of alternatives that
are finished between start time and finish time of alternative i.
The term of conditional is used because we have assumed all

alternatives jAFBSFi have been failed. Consider lebsi, eeasi, lebf i

and eeafi as the latest event (time instant) before the start time of
alternative i, the earliest event after the start time of alternative i,
the latest event before the finish time of alternative i and the
earliest event after the finish time of alternative i, respectively. In
this proof, we consider two general cases: (a) CeNPViZ0 and (b)
CeNPVio0. In case (a), we show that solution s0 is created by
shifting alternative i to the left while in case (b) the solution s0 is
created by shifting alternative i to the right. In each case, due to
the changes created in sets FBA sið Þ, NUF, FA(t) and FB(t), different
conditions are formed for calculation of gðs0Þ. We use notations

FBA0ðs0iÞ, NUF 0, FA0(t), FB0(t) to show the sets contributed in

calculation of g(s0).

Case (a) CeNPViZ0
In this case, we construct solution s0 from solution s using

shifting alternative i to the left by the amount of D1 ¼minfsi�

lebsi, f i�lebf ig. Four different situations in case (a) are listed in
Table 7. In the following, we interpret, for instance, the case (a-3) of
Table 7. The notation FBA(si) in column FBA0ðs0iÞ implies that the set
of alternatives finished at or before alternative i in schedule s0 is
identical to FBA(si). Also, NUF 0 ¼NUF [ flebf ig means set of non-
unique finish times in schedule s0 consists of time instant t¼ lebfi
and set of non-unique finish times in schedule s. In addition,
FA0(lebfi)¼{i,j} means that the set of alternatives which are finished
at t¼ lebfi, are {i,j} while set FA0 for each of the other time instants
tANUF0 is identical to set FA for the same time instant. Moreover,
FB0(lebfi)¼FB(fi)\{j} denotes the set of alternatives finished before
t¼ lebfi in schedule s0 equals to the set of alternatives finished before
t¼ fi in schedule s except alternative j where fj¼ lebfi. Elementary
algebra then shows that the value of g(s0)�g(s) results an identical
value, shown as (I), in all four cases (a-1) to (a-4).

I¼ gðs0Þ�gðsÞ ¼ expð�rsiÞðexpðrD1Þ�1Þ
Y

jAFBAðsiÞ

ð1�pjÞ

0
@

1
A

� ciþCpiexpð�rdiÞ
Y

jA FBSFi

ð1�pjÞ

0
@

1
A

Since exp(�rsi)Z0, exp rD1ð Þ�1Z0,
Q

jA FBAðsiÞ
ð1�pjÞZ0 and

we have assumed ciþCpi expð�rdiÞ
Q

jAFBSFi
ð1�pjÞ ¼ CeNPViZ0,

thus IZ0.
Case (b) CeNPVio0
In this case, we construct solution s0 from solution s using

shifting alternative i to the right by the amount of
D2 ¼minfeeasi�si, eeaf i�f ig. Similar to case (a), we have five
different situations in case (b), shown by (b-1) to (b-5) and listed
in Table 8. In all cases except case (b-2), elementary algebra
shows that the value of g(s0)�g(s) results an identical value,
shown as (II).

II¼ gðs0Þ�gðsÞ ¼ expð�rsiÞðexpð�rD2Þ�1Þ
Y

jA FBA sið Þ

ð1�pjÞ

0
@

1
A

� ciþCpiexpð�rdiÞ
Y

jAFBSFi

ð1�pjÞ

0
@

1
A

Since exp(�rsi)Z0, expð�rD1Þ�1r0,
Q

jAFBAðsiÞ
ð1�pjÞZ0 and

we have assume ciþCpiexpð�rdiÞ
Q

jAFBSFi
ð1�pjÞ ¼ CeNPVir0,

thus IIZ0. For the case (b-2), the value of g(s0)�g(s) is shown

as II0.

II0 ¼ gðs0Þ�gðsÞ ¼ expð�rsiÞ
Y

jAFBA sið Þ

ð1�pjÞ

0
@

1
A
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� ci expð�rD2Þ
Y

jAFAðeeasiÞ

ð1�pjÞ�1

0
@

1
A

0
@

þCpiexpð�rdiÞðexpð�rD2Þ�1Þ
Y

jAFBSFi

ð1�pjÞ

1
A

Since,
Q

jAFAðeeasiÞ
ð1�pjÞr1 and consequently expð�rD2ÞQ
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