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Due to lacking internal material length scale parameters, conventional strain-based mechanics 
theories fail to predict such a size dependent phenomenon. Recently, higher-order continuum theo-
ries have been developed to predict these size dependencies, in which constitutive equations intro-
duce additional material length scale parameters in addition to classical constants. 

The classical couple stress theory is one of the higher-order continuum theories, originated by 
Mindlin12, Mindlin and Tiersten13, and Toupin14, in which contains two additional material length 
scale parameters besides the classical constants for an isotropic elastic material. Recently, the clas-
sical couple stress theory has been modified, in which only one additional material length scale pa-
rameter is involved and the couple stress tensor is symmetric.15 The theory had been employed to 
study the mechanical and dynamical behavior of microbeams.16-17 

The Mindlin’s theory has been extended and reformulated and renamed as the strain gradient 
theory, in which the strain gradient tensor is decomposed into two independent parts: the stretch 
gradient tensor and the rotation gradient tensor, while the former tensor is not included in the couple 
stress theory.18-19 This theory contains seven (five additional and two classical) constants. The mod-
ified strain gradient elasticity theory is another higher-order continuum theory, which contains a 
new additional equilibrium equation besides the classical equilibrium equations and also five elastic 
constants (two classical and three non-classical) for isotropic linear elastic materials.20 The theory 
has been applied to analyze the static and dynamic problems of micro scale Bernoulli-Euler and and 
Timoshenko beams.21-22 

The literature about the vibration and structural instability of micropipes conveying fluid 
based on higher order continuum theories are limited. More recently, microstructure-dependent 
Bernoulli-Euler and Timoshenko beam models have been developed to study the dynamic behav-
iours of micropipes containing internal fluid using the modified couple stress theory.23-24 Also,  a 
microstructure-dependent Bernoulli-Euler beam model has been presented based on the strain gra-
dient theory to explore the size effect in the micropipes conveying fluid.25 It was found that the size 
effect on the natural frequencies and the critical flow velocities was significant when the outside 
diameter of the micropipe became comparable with the material length scale parameter. 

The objective of the present paper is to develop, for the first time, a microstructure-dependent 
Timoshenko beam model for the micropipes conveying fluid using the strain gradient theory. The 
rest of the paper is organized as follows. In Section 2, the equations of motion are deduced from the 
Hamilton principle. In Section 3, the vibration and instability structure of pinned-pinned micropipes 
containing fluid are investigated. Finally, the paper concludes with a summary in Section 4. 

2. Analytical model 

Consider a circular micropipe of length L , outside diameter D , inside diameter d , external 
cross-sectional area pA , mass per unit length pm , conveying incompressible fluid of mass per unit 

length fm , internal cross-sectional flow area fA  flowing axially with velocity V . The Cartesian 

axes for a micropipe analysis are established. The x -axis is coincident with the centroidal axis of 
the micropipe. 

The strain gradient elasticity theory for micropipes will be reviewed first.20,22 Compared to the 
modified couple stress theory, the strain gradient elasticity theory introduces additional dilatation 
gradient vector and the deviatoric stretch gradient tensor in addition to the symmetric rotation gra-
dient tensor. These tensors can be specified by two classical material constants for isotropic linear 
elastic materials and three independent material length scale parameters. The strain energy U  in a 
linear elastic isotropic material occupying region   (with a volume element  ) can be written by: 

  (1) (1)1

2 ij ij i i ijk ijk ij ijU p m d      


    . (1) 
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in which the components of the strain tensor, the dilatation gradient vector, the deviatoric stretch 

gradient tensor, and the symmetric rotation gradient tensor respectively represented by ij , i , (1)
ijk , 

ij  are defined as 

 

   

   

   

(1)

1 1
, , ,

2 2
1 1

2
3 15

2 2 .

ij i j j i i i mm ij ipq p qj jpq p qi

ijk i jk j ki k ij ij k mm m mk

jk i mm m mi ki j mm m mj

u u e e     

      

     

         

         

        

 (2) 

where in these relations, i is the differential operator, iu  represents the components of the dis-

placement vector, ij  is the Knocker delta and ipqe  is the permutation symbol. In the above and in 

subsequent equations, the index notation will be used with repeated indices denoting summation 
from 1 to 3. 

The stress measures: the classical stress tensor, ij , and the higher-order stresses, ip , (1)
ijk , 

and, ijm  are the work-conjugates to ij , i , (1)
ijk , ij  respectively, given by 

 2 (1) 2 (1) 2
0 1 22 , 2 , 2 , 2ij ij mm ij i i ijk ijk ij ijk G p l G l G m l G            . (3) 

where k  is bulk module, G  is shear module and 0l , 1l , 2l  appeared in higher order stresses, repre-

sent the additional independent material length scale parameters related to the dilatation gradients, 
deviatoric stretch gradients and symmetric rotation gradients, respectively. 

The displacement field at any point based on the Timoshenko beam theory can be described 
by 

    , , 0, ,u z x t v w w x t    . (4) 

where u , v , and w  are the components of the displacement vector of a point ( x , y , z ) on a pipe 
cross-section in the x -, y - and z -directions, respectively;   ( x , t ) is the rotation angle (about the 
y -axis) of the cross-section with respect to z -axis. 

The strain energy of a deformed micropipe is given by22 

      2 2 22 2
1 2 3 4 50

1
2

2

L
U k k k w k w k w dx                     . (5) 

where 

 

2 2 2
1 0 1 2 0

2 2
3 2 4 1 5

4
2 , ( 2 ) 2 ,

5

1 8
, , .

4 15

p

p p s p

k I l G l G k I k G l GA

k l GA k l GA k K GA

      
 

  

 (6) 

and I  is the inertia moment of the pipe. The prime represents partial derivative with respect to x . 
The correction factor sK  for a circular micropipe is approximately given by24 

 
  

    

22

22 2

6 1 1

7 6 1 20 12
sK

 

   

 


   
. (7) 

where /d D   and   is Poisson ratio. 
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The total kinetic energy of the micropipe and the internal fluid may be written as26 

        2 2 2 2

0 0

1 1

2 2

L L

p fT m z w dx m z V w Vw dx                  . (8) 

The over dot denotes partial derivative with respect to the time t . 
Now, the statement of Hamilton principle for a supported fluid-conveying micropipe, in the 

absence of dissipative forces can be written as26 

  2

1

0
t

t
T U dt   . (9) 

Finally, substituting Eqs. (5-8) into Eq. (9), after considerable manipulation, the equations of 
motion are obtained as 

 
       

       

2 (4)
3 4 3 4 5

(4)
1 3 4 2 3 4 5

2 2 0,

2 4 0.

p f f f

p f

m m w m Vw m V w k k w k k k w

J J k k k w k k k k w

 

   

             

           

 


 (10) 

where pJ  and fJ  are the mass moment of inertia per unit length for micropipe and fluid, respec-

tively. 
For a pinned-pined micropipe the boundary conditions are given by 

        0, , 0, 0, , 0w t w L t t L t
x x

  
   

 
. (11) 

It should be noted that when the material length scale parameters 0l  and  1l  become zero, the pre-

sent strain gradient model will reduce to the modified couple stress model. Furthermore, if all the 
material length scale parameters 0l , 1l  and 2l  vanish, the size effect is suppressed and the present 

strain gradient model will reduce to the classical model. 

3. Results and discussion 

To illustrate the newly derived solutions of a pinned–pinned fluid-conveying micropipe, some 
numerical examples have been performed. The differential quadrature method will be used to solve 
Eqs. (10) and (11).27 The validity of the present analysis is confirmed by comparing the present re-
sults with those given in the literature. In addition, the size effect and the Poisson effect on the natu-
ral frequency and the structural instability of the micropipe conveying fluid are investigated.  

3.1 Validation 
To check the accuracy and applicability of the present analysis, the results obtained from the 

present analysis are compared with those obtained from the previous results. The beam considered 
here is taken to be made of epoxy with the rectangular cross-section. The material properties of the 
microbeam are chosen to be: Young’s modulus E  = 1.44 GPa, mass density   = 1220 kg/m3, Pois-
son ratio   = 0.38 and material length scale parameter l  = 17.6 μm.22 For comparison convenience, 
it is assumed that all three material length scale parameters are the same, i.e., 0 1 2l l l l   . Also, 

the cross-sectional properties are taken to be /b h  = 2 and /L h  = 20, where b  and h  are the width 
and the thickness of the beam, respectively.22 Figure 1 shows the comparison of the results. An ex-
cellent agreement of the results is observed in Fig. 1. It can be concluded that the present analysis is 
an appropriate method to predict the natural frequency. 
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Figure 1. Comparison of the present natural frequency results with previous results. 

3.2 Size effect 
Figure 2 show the dimensionless natural frequency of the pinned-pinned micropipe with re-

spect to the fluid flow velocity based on the present strain gradient model, the modified couple 
stress model and the classical model, for four values of outside diameter of the micropipe  D  = 20, 
50, 100 and 200 μm, respectively. The dimensionless natural frequency is defined as 

     4Im /p fm m L EI  , where   is the circular frequency. The micropipe here is taken to be 

made of epoxy. The Young’s modulus E  = 1.44 GPa, mass density of micropipe p  = 1220 kg/m3, 

mass density of fluid f  = 1000 kg/m3, Poisson ratio   = 0.38, material length scale parameter l  = 

17.6 μm, /d D   = 0.8 and aspect ratio /L D  = 20 are considered in the analysis.24 

For D  = 20 μm, when V  = 0, the dimensionless natural frequency predicted by present strain 
gradient model is approximately 2.35 times greater than that predicted by the classical model and 
the dimensionless natural frequency predicted by the modified couple stress model is approximately 
1.56 times greater than that predicted by the classical model. On the other hand, for D  = 200 μm 
and V  = 0, the ratios of dimensionless natural frequencies predicted by the two non-classical mod-
els to that predicted by the classical model are reduced to 1.02 and 1.007, respectively. Therefore, 
the difference between the three models results are large when the outside diameter is comparable 
with the material length scale parameter (i.e. /D l   1), but it decreases when the outside diameter 
increases, indicating that the size effect becomes negligible for large outside diameters. Further-
more, it is obvious that the dimensionless natural frequency predicted by the present strain gradient 
model is always greater than that predicted by the modified couple stress model and the dimension-
less natural frequencies predicted by the two non-classical models are always greater than that pre-
dicted by the classical model. The reason is the strain gradient model contains two additional mate-
rial length scale parameters in comparison with the modified couple stress model and the classical 
model has no material length scale parameter. 

From Fig. 2, it is found that the dimensionless natural frequency decreases as the flow veloci-
ty increases. When the dimensionless natural frequency becomes zero, the micropipe loses its sta-
bility via divergence (buckling). The flow velocity at which the micropipe becomes unstable is 
called the critical flow velocity ( crV ). To show the size effect on the critical flow velocity, the var-

iation of the critical flow velocity with the outside diameter is plotted in Fig. 3a. As shown in 
Fig. 3a, for both cases of   = 0.0 and   = 0.38, the differences in critical flow velocity for the three 
models are large when the outside diameter is small (e.g., D  < 100 μm), where as they are decreas-
ing or even diminishing with the outside diameter increasing. This indicates that the size effect is 
prominent only when the outside diameter is as small as the material length scale parameter. More-
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over, the critical flow velocity predicted by the modified couple stress model is always smaller than 
that predicted by the present strain gradient model, while larger than that predicted by the classical 
model with the outside diameter varying. It is noted that the critical flow velocity with   = 0.0 is 
always smaller than that with   = 0.38 for the classical model. However, it is not true when D  < 
44 μm for the present model and D  < 23 μm for the modified couple stress model. Therefore, Pois-
son effect on the critical flow velocity is complicated and will be discussed below. 
 

 
 

Figure 2. The nondimensional natural frequencies based on the strain gradient model, modified couple stress 
model and classical model, as functions of the flow velocity, for a pinned-pinned micropipe with (a) D = 20 

μm, (b) 50 μm, (c) 100 μm and (d) 200 μm. 
 

From Figs. 2-3, it can be seen that the results predicted by the modified couple stress model 
and the classical model in the present study are in good agreement with the previous results,24 
which further demonstrates the validity of the current model. 

3.3 Poisson effect 
The variation of critical flow velocity predicted by the present strain gradient model and the 

other two reduced models with respect to the Poisson ratio is shown in Fig. 3b, for two cases of 
outside diameter D  = 20 μm and D  = 50 μm. Figure 3b illustrates that the critical flow velocity 
predicted by the classical model increases gradually with Poisson ratio increasing. However, the 
critical flow velocity predicted by the present strain gradient model decreases firstly and then in-
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creases as the Poisson ratio increases which is quite different from that predicted by the classical 
model. Furthermore, the critical flow velocity predicted by the modified couple stress model exhib-
its the same behaviour as that predicted by the present model. This variable behaviour may be 
called as a minimum ‘‘extreme point’’ phenomenon, which is the result of the existence of the ma-
terial length scale parameters in the micro scale Timoshenko models. Therefore, both the present 
model and the modified couple stress model have minimum extreme points for different outside 
diameters while the classical model exhibits a monotonically increasing behaviour with Poisson 
ratio increasing as shown in Fig. 3b, indicating having no extreme point. 

 

 
Figure 3. The critical flow velocity based on three different models varying with the, (a) outside diameter for 

  = 0.0 and 0.38, (b) Poisson ratio for D  = 20 and 50 μm. 

4. Conclusion 

In this paper, a microstructure-dependent Timoshenko beam model was developed to study 
the vibration and structural instability of micropipes conveying fluid using strain gradient theory. 
The governing equations were derived based on Hamilton principle. The present model involved 
three material length scale parameters to predict the size effect. After discretization via differential 
quadrature method, the numerical results were obtained for a simply-supported micropipe.  

Results showed that the size effect was significant when the outside diameter of the micropipe 
became as small as the material length scale parameters, while diminished or even vanished for 
large outside diameters. Furthermore, it was observed that both natural frequencies and critical flow 
velocities predicted by the present model were not only larger than those predicted by the classical 
model but also larger than those predicted by the modified couple stress model. The reason is the 
inclusion of the additional dilatation gradient tensor and the deviatoric stretch gradient tensor in the 
former model. The Poisson effect on the critical flow velocity was also studied. It was found that 
the results obtained by the two non-classical models had the minimum extreme points with Poisson 
ratio varying but those obtained by the classical model had no extreme point. In the other word, the 
critical flow velocities predicted by the non-classical models decreased firstly and then increased 
but those predicted by the classical model increased monotonically with Poisson ratio increasing.  

Finally, we hope that the present article will lead to the improvement in the design of micro 
scale sensors, actuators and fluidic devices. 
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