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Based on strain gradient theory, a microstructure-dependent Timoshenko beam model is pre-
sented, for the first time, to analyze the vibration and structural instability of the micro scale
pipes conveying fluid. The governing equations are derived using Hamilton principle. This
new model contains three material length scale parameters which interpret the size effect.
The present model reduces to the modified couple stress model and the classical model when
two and all of these three material length scale parameters become zero, respectively. Then,
the differential quadrature method is applied to solve the equations of motion. Finally, the ef-
fects of the material length scale parameters and Poisson ratio on the vibrational characteris-
tics and stability are explored. It is found that the natural frequencies and the critical flow ve-
locities predicted by the present strain gradient model are higher than those predicted by the
modified couple stress model and the classical model. Specially, when the outside diameter
of the micropipe is comparable with the material length scale parameter, the size effect is
significant. Moreover, the Poisson effect on the critical flow velocities shows an extreme
point phenomenon for the two non-classical models, which is quite different from that pre-
dicted by the classical model.

1. Introduction

Micropipess/nanopipes have become prevalent in the fields of micro-electronic-mechanical
systems and nanotechnology, such as those employed in sensors, actuators, fluid storage, fluid
transport and drug delivery.'™ The inside diameter of circular micropipes considered ranged from 1
to 100 um.° The study on the vibration and structural instability of micropipes is a key issue for the
successful design and operation of fluidic devices. It has become an interested and challenging topic
for many researchers.

In the recent decades, the size dependence of deformation behavior in micro scale beams had
been experimentally observed in metals, polymers and polysilicons.”"! For example, in the torsion
test of thin copper wires, the torsional hardening increased by a factor of three as the wire diameter
reduced from 170 to 12 pm.’ In the micro-indentation experiments, the measured indentation hard-
ness of silver single crystal increased by more than two times when the penetration depth of the
indenter decreased from 2.0 to 0.1 pm.'® The above experimental results show that size dependence
1s intrinsic to certain materials with microstructures.
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Due to lacking internal material length scale parameters, conventional strain-based mechanics
theories fail to predict such a size dependent phenomenon. Recently, higher-order continuum theo-
ries have been developed to predict these size dependencies, in which constitutive equations intro-
duce additional material length scale parameters in addition to classical constants.

The classical couple stress theory is one of the higher-order continuum theories, originated by
Mindlin'?, Mindlin and Tiersten', and ToupinM, in which contains two additional material length
scale parameters besides the classical constants for an isotropic elastic material. Recently, the clas-
sical couple stress theory has been modified, in which only one additional material length scale pa-
rameter is involved and the couple stress tensor is symmetric.15 The theory had been employed to
study the mechanical and dynamical behavior of microbeams.' ¢!’

The Mindlin’s theory has been extended and reformulated and renamed as the strain gradient
theory, in which the strain gradient tensor is decomposed into two independent parts: the stretch
gradient tensor and the rotation gradient tensor, while the former tensor is not included in the couple
stress theory.'®"'? This theory contains seven (five additional and two classical) constants. The mod-
ified strain gradient elasticity theory is another higher-order continuum theory, which contains a
new additional equilibrium equation besides the classical equilibrium equations and also five elastic
constants (two classical and three non-classical) for isotropic linear elastic materials.® The theory
has been applied to analyze the static and dynamic problems of micro scale Bernoulli-Euler and and
Timoshenko beams.*'**

The literature about the vibration and structural instability of micropipes conveying fluid
based on higher order continuum theories are limited. More recently, microstructure-dependent
Bernoulli-Euler and Timoshenko beam models have been developed to study the dynamic behav-
iours of micropipes containing internal fluid using the modified couple stress theory.>>* Also, a
microstructure-dependent Bernoulli-Euler beam model has been presented based on the strain gra-
dient theory to explore the size effect in the micropipes conveying fluid.>* It was found that the size
effect on the natural frequencies and the critical flow velocities was significant when the outside
diameter of the micropipe became comparable with the material length scale parameter.

The objective of the present paper is to develop, for the first time, a microstructure-dependent
Timoshenko beam model for the micropipes conveying fluid using the strain gradient theory. The
rest of the paper is organized as follows. In Section 2, the equations of motion are deduced from the
Hamilton principle. In Section 3, the vibration and instability structure of pinned-pinned micropipes
containing fluid are investigated. Finally, the paper concludes with a summary in Section 4.

2. Analytical model

Consider a circular micropipe of length L, outside diameter D, inside diameter d, external
cross-sectional area A, mass per unit length m, conveying incompressible fluid of mass per unit

length m,, internal cross-sectional flow area A; flowing axially with velocity V . The Cartesian

axes for a micropipe analysis are established. The x -axis is coincident with the centroidal axis of
the micropipe.

The strain gradient elasticity theory for micropipes will be reviewed first.”’** Compared to the
modified couple stress theory, the strain gradient elasticity theory introduces additional dilatation
gradient vector and the deviatoric stretch gradient tensor in addition to the symmetric rotation gra-
dient tensor. These tensors can be specified by two classical material constants for isotropic linear
elastic materials and three independent material length scale parameters. The strain energy U in a
linear elastic isotropic material occupying region Q (with a volume element v ) can be written by:

! 1 ,,M
v ZEIQ(Uiigii + Bi7i + Tije ik +mij}(ij)du. 1)
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in which the components of the strain tensor, the dilatation gradient vector, the deviatoric stretch
gradient tensor, and the symmetric rotation gradient tensor respectively represented by &;, 7, 776{(),
Xij are defined as

1 1

ij ipg™ p“aj

ing® p&a )’

1 1
Ui(jL) = g(aigjk +0j& +akgij)_g|:5ij (Ox&mm +20mEmk ) (2)

+8y (Oimm +20nm )+ 54 (0 Emm + 20mEn; )]

where in these relations, 0;is the differential operator, U; represents the components of the dis-
placement vector, &; is the Knocker delta and e;,, is the permutation symbol. In the above and in
subsequent equations, the index notation will be used with repeated indices denoting summation

from 1 to 3.

The stress measures: the classical stress tensor, Oij» and the higher-order stresses, p;, ri(j{(),

and, m;; are the work-conjugates to &, 7;, ni(jL), Xij respectively, given by

Ojj = ké}jgmm +2Ggij: pi :2IOZG7/ia Tiﬁ() :2|12G77i§{<): m;; :2|22GZij . (3)

where k is bulk module, G is shear module and |y, I, |, appeared in higher order stresses, repre-

sent the additional independent material length scale parameters related to the dilatation gradients,
deviatoric stretch gradients and symmetric rotation gradients, respectively.
The displacement field at any point based on the Timoshenko beam theory can be described

by

u=-zp(xt), v=0, w=w(xt). 4)
where u, v, and w are the components of the displacement vector of a point (X, Yy, Z) on a pipe
cross-section in the x -, y-and z -directions, respectively; y (X, t) is the rotation angle (about the

y -axis) of the cross-section with respect to Z -axis.
The strain energy of a deformed micropipe is given by*

l L 14 ’ " [ " ’ !
u =5J'0 |:kll// 2t kop Ky (W )2 +ky (W' + 2y )2+k5(w —y/)z}dx. ®)
where

k, =1 (2|02c; +§|ﬁej, k, = 1(k+2G)+2I,°GA,,
| ; (6)
ky = Z|22(;Ap, k, = E|fGAp, ks = K,GA, .

and | is the inertia moment of the pipe. The prime represents partial derivative with respect to X .
The correction factor K, for a circular micropipe is approximately given by**

. 6(1+v)(1+a?)

> : (7
(7+6v)(1+a”) +(20+12v) e’

where @ =d /D and v is Poisson ratio.
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The total kinetic energy of the micropipe and the internal fluid may be written as*®
1 L N2 N2 1 L . 2 N2
T= Empjo [(—zl//) +(W) }dx+5mf JO [(—Zy/ +V )" +(W+Vw') }dx : (8)

The over dot denotes partial derivative with respect to the time t.
Now, the statement of Hamilton principle for a supported fluid-conveying micropipe, in the
absence of dissipative forces can be written as*®

5[ (T-Ut=0. ©)

Finally, substituting Eqs. (5-8) into Eq. (9), after considerable manipulation, the equations of
motion are obtained as

(Mg +mg )W+ 2m Vi +mV 2w+ (kg +k, )W + (ky =2k, )y " =k (W =y ") =0,
(10)
(3,+3¢ )97 + k™ = (ks = 2Kk, )W" = (K, +k; + 4Kk, )" ks (W' =) =0.

where J, and J; are the mass moment of inertia per unit length for micropipe and fluid, respec-

tively.
For a pinned-pined micropipe the boundary conditions are given by
oy oy
w(0,t)=w(L,t)=0, —(0,t)=——(L,t)=0. 11
0=w(L.y=0, L (0.)=2 (L ab

It should be noted that when the material length scale parameters |, and |, become zero, the pre-

sent strain gradient model will reduce to the modified couple stress model. Furthermore, if all the
material length scale parameters |,, |, and |, vanish, the size effect is suppressed and the present

strain gradient model will reduce to the classical model.

3. Results and discussion

To illustrate the newly derived solutions of a pinned—pinned fluid-conveying micropipe, some
numerical examples have been performed. The differential quadrature method will be used to solve
Egs. (10) and (11).” The validity of the present analysis is confirmed by comparing the present re-
sults with those given in the literature. In addition, the size effect and the Poisson effect on the natu-
ral frequency and the structural instability of the micropipe conveying fluid are investigated.

3.1 Validation

To check the accuracy and applicability of the present analysis, the results obtained from the
present analysis are compared with those obtained from the previous results. The beam considered
here is taken to be made of epoxy with the rectangular cross-section. The material properties of the
microbeam are chosen to be: Young’s modulus E = 1.44 GPa, mass density p = 1220 kg/m’, Pois-
son ratio v = 0.38 and material length scale parameter | = 17.6 um.?* For comparison convenience,
it is assumed that all three material length scale parameters are the same, i.e., |, =1, =1, =1. Also,

the cross-sectional properties are taken to be b/h =2 and L/h =20, where b and h are the width
and the thickness of the beam, respectively.? Figure 1 shows the comparison of the results. An ex-
cellent agreement of the results is observed in Fig. 1. It can be concluded that the present analysis is
an appropriate method to predict the natural frequency.
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Figure 1. Comparison of the present natural frequency results with previous results.

3.2 Size effect

Figure 2 show the dimensionless natural frequency of the pinned-pinned micropipe with re-
spect to the fluid flow velocity based on the present strain gradient model, the modified couple
stress model and the classical model, for four values of outside diameter of the micropipe D = 20,
50, 100 and 200 pm, respectively. The dimensionless natural frequency is defined as

Im(a))\/(mp +m; ) L*/ (EI ) , where @ is the circular frequency. The micropipe here is taken to be

made of epoxy. The Young’s modulus E = 1.44 GPa, mass density of micropipe p, = 1220 kg/m’,
mass density of fluid p; = 1000 kg/m’, Poisson ratio v = 0.38, material length scale parameter | =

17.6 um, e =d /D = 0.8 and aspect ratio L/ D = 20 are considered in the analysis.**

For D =20 um, when V = 0, the dimensionless natural frequency predicted by present strain
gradient model is approximately 2.35 times greater than that predicted by the classical model and
the dimensionless natural frequency predicted by the modified couple stress model is approximately
1.56 times greater than that predicted by the classical model. On the other hand, for D = 200 um
and V = 0, the ratios of dimensionless natural frequencies predicted by the two non-classical mod-
els to that predicted by the classical model are reduced to 1.02 and 1.007, respectively. Therefore,
the difference between the three models results are large when the outside diameter is comparable
with the material length scale parameter (i.e. D/l = 1), but it decreases when the outside diameter
increases, indicating that the size effect becomes negligible for large outside diameters. Further-
more, it is obvious that the dimensionless natural frequency predicted by the present strain gradient
model is always greater than that predicted by the modified couple stress model and the dimension-
less natural frequencies predicted by the two non-classical models are always greater than that pre-
dicted by the classical model. The reason is the strain gradient model contains two additional mate-
rial length scale parameters in comparison with the modified couple stress model and the classical
model has no material length scale parameter.

From Fig. 2, it is found that the dimensionless natural frequency decreases as the flow veloci-
ty increases. When the dimensionless natural frequency becomes zero, the micropipe loses its sta-
bility via divergence (buckling). The flow velocity at which the micropipe becomes unstable is
called the critical flow velocity (V,, ). To show the size effect on the critical flow velocity, the var-

iation of the critical flow velocity with the outside diameter is plotted in Fig. 3a. As shown in
Fig. 3a, for both cases of v = 0.0 and v = 0.38, the differences in critical flow velocity for the three
models are large when the outside diameter is small (e.g., D < 100 um), where as they are decreas-
ing or even diminishing with the outside diameter increasing. This indicates that the size effect is
prominent only when the outside diameter is as small as the material length scale parameter. More-
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over, the critical flow velocity predicted by the modified couple stress model is always smaller than
that predicted by the present strain gradient model, while larger than that predicted by the classical
model with the outside diameter varying. It is noted that the critical flow velocity with v = 0.0 is
always smaller than that with v = 0.38 for the classical model. However, it is not true when D <
44 um for the present model and D < 23 um for the modified couple stress model. Therefore, Pois-
son effect on the critical flow velocity is complicated and will be discussed below.
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Figure 2. The nondimensional natural frequencies based on the strain gradient model, modified couple stress
model and classical model, as functions of the flow velocity, for a pinned-pinned micropipe with (a) D= 20
um, (b) 50 pm, (c) 100 um and (d) 200 pm.

From Figs. 2-3, it can be seen that the results predicted by the modified couple stress model
and the classical model in the present study are in good agreement with the previous results,*
which further demonstrates the validity of the current model.

3.3 Poisson effect

The variation of critical flow velocity predicted by the present strain gradient model and the
other two reduced models with respect to the Poisson ratio is shown in Fig. 3b, for two cases of
outside diameter D = 20 um and D = 50 pm. Figure 3b illustrates that the critical flow velocity
predicted by the classical model increases gradually with Poisson ratio increasing. However, the
critical flow velocity predicted by the present strain gradient model decreases firstly and then in-
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creases as the Poisson ratio increases which is quite different from that predicted by the classical
model. Furthermore, the critical flow velocity predicted by the modified couple stress model exhib-
its the same behaviour as that predicted by the present model. This variable behaviour may be
called as a minimum ‘‘extreme point’’ phenomenon, which is the result of the existence of the ma-
terial length scale parameters in the micro scale Timoshenko models. Therefore, both the present
model and the modified couple stress model have minimum extreme points for different outside
diameters while the classical model exhibits a monotonically increasing behaviour with Poisson
ratio increasing as shown in Fig. 3b, indicating having no extreme point.
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Figure 3. The critical flow velocity based on three different models varying with the, (a) outside diameter for
v =0.0 and 0.38, (b) Poisson ratio for D =20 and 50 pm.

4. Conclusion

In this paper, a microstructure-dependent Timoshenko beam model was developed to study
the vibration and structural instability of micropipes conveying fluid using strain gradient theory.
The governing equations were derived based on Hamilton principle. The present model involved
three material length scale parameters to predict the size effect. After discretization via differential
quadrature method, the numerical results were obtained for a simply-supported micropipe.

Results showed that the size effect was significant when the outside diameter of the micropipe
became as small as the material length scale parameters, while diminished or even vanished for
large outside diameters. Furthermore, it was observed that both natural frequencies and critical flow
velocities predicted by the present model were not only larger than those predicted by the classical
model but also larger than those predicted by the modified couple stress model. The reason is the
inclusion of the additional dilatation gradient tensor and the deviatoric stretch gradient tensor in the
former model. The Poisson effect on the critical flow velocity was also studied. It was found that
the results obtained by the two non-classical models had the minimum extreme points with Poisson
ratio varying but those obtained by the classical model had no extreme point. In the other word, the
critical flow velocities predicted by the non-classical models decreased firstly and then increased
but those predicted by the classical model increased monotonically with Poisson ratio increasing.

Finally, we hope that the present article will lead to the improvement in the design of micro
scale sensors, actuators and fluidic devices.
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